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Abstract— This paper investigates multiuser orthogonal space-
time block coded signal detection within the ordered successive
interference cancellation (OSIC) framework. Both the zero-
forcing and minimum-mean-square-error ordering criteria are
considered. When each user terminal is equipped with no more
than four transmit antennas, it is shown that orthogonal transmit
redundancy leads to an appealing signal ordering property: in
each processing layer the transmitted symbols of an arbitrary
user are associated with an identical ordering metric. This
guarantees the feasibility of (user based) group-wise symbol
recovery through the OSIC mechanism. Analytic bit-error-rate
performance is given. Computer simulations and flop count
evaluations are also provided for comparing the OSIC based
solution with existing multiuser detection schemes reported for
the considered system.

Index Terms— Multiuser detection, ordered successive inter-
ference cancellation (OSIC), array processing, space-time block
codes.

I. INTRODUCTION

MULTIUSER orthogonal space-time block code (MU-
OSTBC) systems [9, chap. 11], [12], [13], can produce

multiple fading-resistant links but the co-channel user interfer-
ence then becomes the major impairment dominating system
performance. Toward signal recovery, one may in general re-
sort to the joint maximum-likelihood detection but this usually
suffers from intensive computational effort. For MU-OSTBC
systems in particular, the algebraic structure of OSTBC is
exploited for developing various alternative signal detectors:
typical such proposals are the Naguib’s parallel interference
cancellation (PIC) approaches [13], and the Stamoulis’s user-
wise decoupled detection method [17], [12]. The successive
interference cancellation (SIC) scheme, on the other hand, is
first suggested in [20], and later in [2], [4], and [18], regarding
the trellis coded transmission case. It has also been considered
for separating multi-group OSTBC signals, either in a point-
to-point environment [8], [22], or from a multiuser setting
[10]. The SIC method combined with certain signal ordering
mechanism, i.e., the so-called ordered SIC (OSIC) scheme [5],
[21], is known to yield a performance advantage over the un-
ordered case at the expense of algorithm complexity. Although
the OSIC method is a well-recognized solution for space-
time signal detection [15, chap. 7], the related study in the
MU-OSTBC scenario is nonetheless not fully investigated. In
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particular, the impacts of the OSTBC structural property on the
algorithm characteristics, e.g., the optimal ordering strategy
as well as the associated possible low-complexity algorithm
implementation, remain important aspects yet to be addressed.

This paper studies the OSIC based signal detection for
MU-OSTBC system, in which each user terminal is equipped
with L transmit antennas. The underlying analysis builds on
the linear matrix modulation representation [9] of codeword
matrices and the assumption L ≤ 4. The signal ordering
rule can be either zero-forcing (ZF) or minimum-mean-square-
error (MMSE) criterion. By exploiting the algebraic structure
of OSTBC it is shown that, in each processing layer, the
transmitted symbol streams of an arbitrary user are associated
with an identical ordering metric. The signal ordering in each
stage, therefore, is arranged on a user-wise basis; this property
is observed to be no longer true for L > 4. As a result,
whenever multiuser interference is present, only a subclass
of orthogonal codes allows for joint recovery of per user’s
symbols via the OSIC mechanism. Analytic bit-error-rate
(BER) results are provided and are testified through numer-
ical simulations. The established user-wise ordering property
offers a potential advantage of computation reduction based
on group-wise data processing; an associated low-complexity
algorithm implementation which further exploits the OSTBC
structure is derived in [7]. Recently it is reported that the
uplink performance of MU-OSTBC systems can be further
improved by incorporating the codeword rotation technique
[14]. Our discussions below, however, will not take such
a codeword mapping into account to better focus on the
intrinsic properties introduced by OSTBC. It is noted that
group-wise detectors are also proposed in [14] for multiuser
signal separation. The MMSE based solution in [14, p-325] is
basically a parallel interference suppression scheme but does
not exploit the algebraic property of OSTBC; the associated
refined version with signal ordering in [14, p-326] is however
virtually similar to the one-step PIC method introduced in
[13]. The rest of the context is organized as follows. Section
II describes the system model. Section III presents the main
results, and the related performance analysis is given in
Section IV. Section V contains the simulation results. Finally,
Section VI is the conclusion.

II. SYSTEM MODEL

A. System Description and Basic Assumptions

Consider an MU-OSTBC system over flat fading channels
as shown in Figure 1. The qth user’s symbol stream sq(·),
1 ≤ q ≤ Q, is first parsed into consecutive P -dimensional
blocks, and the OSTBC encoder then associates per block of
symbols sq,p := sq(p − 1), 1 ≤ p ≤ P , with an L × K

1536-1276/06$20.00 c© 2006 IEEE
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Fig. 1. The schematic diagram of the transceiver.

space-time codeword matrix1

Xq :=
2P∑
p=1

Aps̃q,p, (1)

where s̃q,p = Re {sq,p} for 1 ≤ p ≤ P , s̃q,p(k) =
Im {sq,p−P } for P+1 ≤ p ≤ 2P , and the matrix Ap ∈ CL×K
satisfies2 [9]

AiAH
i = IL and AiAH

j + AjAH
i = 0L for i �= j. (2)

The structural properties of Ap’s specified in (2) immediately
implies that Xq is orthogonal. Expression of the codeword
matrix in the linear matrix modulation form (1) has the
advantage of unifying both the codeword representation and
the problem formulation, regardless of the rate of the OSTBC
and hence the symbol constellations used. We assume that N
antenna elements are located at the receiver. Let yn(·) be the
received discrete-time data, sampled at the symbol-rate, from
the nth receive antenna and define y(·) := [y1(·) · · · yN(·)]T ∈
CN . By collecting y(·) over K successive symbol periods
to form Y := [y(0) · · ·y(K − 1)], we have the following
space-time data model (assuming that the Q users are symbol
synchronized)

Y(k) =
Q∑
q=1

HqXq + V, (3)

where Hq =
[
h

(q)
mn

]
∈ CN×L is the channel matrix from the

qth user’s antenna array to the receiver and V ∈ CN×K is the
channel noise matrix. The following assumptions are made in
the sequel.

(a) The symbol streams sq(k), 1 ≤ q ≤ Q, are i.i.d. with
zero mean and variance σ2

s .
(b) The noise V is spatially and temporally white, each

entry being with zero mean and variance σ2
v .

(c) We assume that L ≤ 4 and hence, according to [19], the
symbol block length P ∈ {2, 4}. The proposed scheme
is exclusively applicable to this subclass of orthogonal
codes.

(d) For 3 ≤ L ≤ 4 with complex-valued constellations, the
half rate codes [19, p-1464] are used.

1Since block-by-block transmission is considered, we will not include the
block index and consider only the first P symbols for notational simplicity.

2The notations (·)T , (·)H , Im, and 0m respectively denote the transpose,
the complex conjugate transpose, the m×m identity matrix, and the m×m
zero matrix.

B. Equivalent System Model

In the matrix data model (3), the source symbol blocks
are spatially and temporally encoded to form the codeword
matrices. To formulate the problem into a standard multiuser
detection framework, in what follows we will present an
equivalent linear system model in which all users’ symbol
blocks are “restored” as the signal of interest. Specifically, let
us split each user’s data block sq := [sq,1, . . . , sq,P ]T and each
received data vector y(i) into the respective real and imaginary
parts to obtain s̃q :=

[
Re
{
sTq
}

Im
{
sTq
}]T ∈ R2P , for

1 ≤ q ≤ Q, and ỹ(i) :=
[
Re
{
yT (i)

}
Im
{
yT (i)

}]T ∈ R2N ,
for 0 ≤ i ≤ K − 1. Associated with the qth user’s channel
matrix Hq , we define the following matrix

H̃q � IK ⊗
[

Re {Hq} −Im {Hq}
Im {Hq} Re {Hq}

]
∈ R2KN×2KL, (4)

where the notation ⊗ stands for the Kronecker product; also,
with al,q denoting the lth column of the matrix Aq and ãl,q :=[
Re {al,q}T Im {al,q}T

]T
∈ R2L, we define

Ã �

⎡
⎢⎣

ã1,1 · · · ã1,2P

...
. . .

...
ãK,1 · · · ãK,2P

⎤
⎥⎦ ∈ R2KL×2P . (5)

Then the matrix data model (3) can be rewritten, after some
manipulations, as the following equivalent linear model for
signal detection

yc = Hcsc + vc, (6)

where yc :=
[
ỹT (0) · · · ỹT (K − 1)

]T ∈ R2KN and sc :=[
s̃T1 · · · s̃TQ

]T ∈ R2PQ are respectively the split real-valued
received data and multiuser symbol block,

Hc :=
[
H̃1Ã · · · H̃QÃ

]
∈ R2KN×2PQ (7)

is the effective channel matrix, and vc ∈ R2KN is the corre-
sponding noise component. It is noted that, upon restoration
of the transmitted symbols into a vector (sc in (6)), the
structural information of the space-time codeword matrices is
incorporated into the equivalent channel matrix Hc (see (7)).
It is such in-built structure in Hc that will lead to the user-
wise signal ordering property, as will be shown in the next
section. To manifest the core ideas, we will hereafter focus
on the real-valued symbol case with unit-rate codes; for the
complex-valued constellation case, essentially the same results
can be obtained and these are included in the appendix.

III. MAIN RESULTS

To establish the user-wise ordering property, we shall first
consider the ZF ordering criterion, in which the detection
order is determined based on the post-detection SNR [21];
the MMSE counterpart can be readily deduced from the ZF
results and is provided in the Appendix. At the first stage,
the ZF scheme forms the decision statistic of the lth symbol
stream as (cf. (6))

zl := gTl yc = gTl Hcsc + gTl vc, 1 ≤ l ≤ PQ, (8)
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where the weighting vector gl nulls the interference from other
substreams so that

gTl Hc = eTl , (9)

where el is the lth unit standard vector in RPQ. The unique
solution of gTl , which minimizes noise amplification due to
interference nulling and fulfills the constraint (9), is thus the
lth row of the pseudo-inverse of Hc, namely,

gTl = eTl
(
HT
c Hc

)−1
HT
c , 1 ≤ l ≤ PQ. (10)

Since the noise vc is white and the source symbols are i.i.d.
with variance σ2

s , the post-detection SNR in the lth decision
component [21, p-297] can be computed from (8)-(10) as

ρ
(0)
l :=

σ2
s

σ2
v

∥∥∥eTl (HT
c Hc)

−1 HT
c

∥∥∥2 . (11)

It is straightforward to verify that∥∥∥eTl (HT
c Hc

)−1
H−1
c

∥∥∥2

= eTl F−1el, (12)

with
F := HT

c Hc ∈ RPQ×PQ. (13)

Equations (11) and (12) imply that, given σ2
s and σ2

v , the SNR
level depends entirely on the lth diagonal entry of the matrix
F−1. In particular, small

[
F−1

]
ll

implies large ρ(0)
l , and hence

better detection accuracy in the lth decision component. The
optimal detection order at the first stage, therefore, is given by
the index 1 ≤ l ≤ PQ at which

[
F−1

]
ll

is minimal. With the
adoption of OSTBC, the matrix F defined in (13) will exhibit
a distinctive structure as shown in the next lemma (see [6]
for a proof). Based on this result, we can further specify the
diagonal entries of F−1 for determining the optimal index.

For a fixed symbol block length P , denote by O(P ) the set
of all P × P real orthogonal designs with constant diagonal
entries as specified in [19, p-1458].

Lemma 3.1: Let Fp,q ∈ RP×P , 1 ≤ p, q ≤ Q, be the
(p, q)th P × P block submatrix of the matrix F defined in
(13). Then we have Fq,q = αqIP , and Fp,q ∈ O(P ) for
p �= q.

It is noted that the matrix F defined in (13) can be
interpreted as the space-time matched-filtered channel matrix
in the multiuser case. In view of this point, the assertion
Fq,q = αqIP in Lemma 3.1 reflects that, through space-time
matched filtering, the intra-antenna symbol streams of each
user remain decoupled. Also, since the off-diagonal blocks
Fp,q’s account for the effective multiuser interference, the
assertion Fp,q ∈ O(P ) reveals that the interference signatures
are orthogonal designs. This attractive fact, which is true
only for the considered code subclass with L ≤ 4, lays the
foundation for proving the user-wise ordering property. Based
on Lemma 3.1, we state in the following theorem the central
result: the matrix F−1 “inherits” the key features of F.

Theorem 3.1: For a fixed block length P and number of
users Q, let FP (Q) be the set consisting of all invertible
real symmetric PQ×PQ matrices possessing the block-wise
orthogonal structures as F shown in Lemma 3.1. Then we
have F−1 ∈ FP (Q).

Proof: The proof is based on a crucial fact about the
orthogonal designs [19]. Specifically, it can be checked by

analytic computations that, if O1,O2 ∈ O(P ), then so are
O1 + O2 and O1O2, that is,

Fact 1: The set O(P ) is closed under addition and multi-
plication. Moreover, for any O1 ∈ O(P ), we have O1+OT

1 =
γIP for some scalar γ.

With Fact 1, the assertion can be shown by induction on Q
and the details are relegated to Appendix I.

Theorem 3.1 implies that each P × P block diagonal
submatrix of F−1, say F−1

q,q , is a scalar multiple of IP , i.e.,

F−1
q,q = βqIP , 1 ≤ q ≤ Q. (14)

As a result, the PQ diagonal entries of F−1 assume only Q
distinct levels, one for a particular user. The optimal index
in the first stage is thus

q̄(0) = arg min
1≤q≤Q

βq; (15)

the ZF weighting vectors for separating the q̄(0)th user’s signal
are chosen to be⎡
⎢⎢⎣

gT(q̄(0)−1)P+1

...
gT(q̄(0)−1)P+P

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

eT(q̄(0)−1)P+1

...
eT(q̄(0)−1)P+P

⎤
⎥⎥⎦ (HT

c Hc

)−1
HT
c .

(16)
To validate the user-wise ordering property in subsequent

stages, the contribution of the detected user’s signal (assuming
error free) is first cancelled from the received data (6) to obtain
a reduced-dimensional signal model for next layer detection.
With such a detect-and-cancel process and by following essen-
tially the same arguments as in (8)-(10), it can be successively
verified that, at the (i+1)th processing layer (1 ≤ i ≤ Q−1),
the optimal detection index is determined by 1 ≤ l ≤ P (Q−i)
at which

[
F−1
i

]
ll

is minimal, where Fi = HT
c,iHc,i and

Hc,i ∈ RKN×P (Q−i) is obtained by deleting i block(s) of
P columns (corresponding to the previously detected signals)
from Hc. By construction of Hc,i, it is easy to see that Fi
is directly obtained from F (= HT

c Hc) by deleting from it
the i associated block(s) of P rows and P columns. This
immediately implies that Fi ∈ FP (Q− i), and hence F−1

i ∈
FP (Q− i) by Theorem 3.1: the user-wise ordering rule at any
subsequent processing stage is thus preserved. The algorithm
flow of the user-wise OSIC detector is outlined in Table I.

Remarks:

i) The major implementation concern of the OSIC al-
gorithm is the computations of the pseudo-inverse(
HT
c,iHc,i

)−1
HT
c,i in each layer for determining the

optimal detection index and for separating the desired
signals [4]. In light of this fact, the advantages of
the user-wise ordering characteristic are two-fold. For
the first, since the norms of the P (Q − i) rows of(
HT
c,iHc,i

)−1
HT
c,i, or equivalently, the P (Q − i) the

diagonal entries of F−1
i , assume Q − i different lev-

els, it suffices to determine only this level set for
choosing the detection index; an exhaustive search can
thus be avoided. Second, to compute the corresponding
weighting matrices, it is plausible to exploit the signal
redundancy (due to OSTBC) for further realizing a
layer-wide computational efficacy. In [7] an efficient
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recursive algorithm is derived, within a more general
multiuser context, for fulfilling the aforementioned im-
plementation facilities.

ii) It is noted that the user-wise ordering property benefits
uniquely from the distinctive structure of F specified
in Lemma 3.1, which is true only when L ≤ 4. For
5 ≤ L ≤ 8 (hence with symbol block length P = 8
[19]), the structure of F will gradually deviate as L
increases. Indeed, the off-diagonal block Fp,q ∈ R8×8

when L = 5 (or L = 6, respectively) can be shown
to consist of four (sixteen) 4 × 4 (2 × 2) orthogonal
design sub-blocks. For L = 7, 8, there is no particular
imbedded structure in Fp,q. As a result, for 5 ≤ L ≤ 8,
the diagonal blocks (with dimension 8 × 8) of F−1

will not be proportional to the identity matrix I8: the
transmitted symbols from a user will no longer share
the same ordering metric, and the user-wise ordering
characteristic does not hold. We finally note that the
constraint L ≤ 4 does not appear stringent in practice
since, to economize the implementation cost and to
also tolerate a sufficient antenna spacing, it is usually
undesirable to place too many antenna elements on the
user terminals.

IV. PERFORMANCE ANALYSIS

The performance of the SIC/OSIC method is addressed
in many works under the error-propagation free assumption,
e.g., [11], among others. The general case in which erroneous
decisions occur in each layer is recently discussed in [16],
and also in [8] for variable-rate OSTBC systems. This section
leverages the BER analysis in [8], and resorts to the technique
in [3], to derive closed-form approximate BER at high SNR
for the considered MU-OSTBC system; in what follows we
assume that the symbol constellations are drawn from M -ary
PSK constellations.

For a system of Q OSTBC user terminals, each equipped
with L transmit antennas, the exact BER formulas for SIC
based detection under a fixed SNR can be evaluated via
equations (25)-(27) in [8, p-1207]; these results are derived
based on the multi-channel receive performance reported in

[3], as well as the analysis framework for ZF group-wise
detection shown in [20]. For 1 ≤ i ≤ M , let us define the
set Θi := [(2i − 3)π/M, (2i − 1)π/M); also, with fixed
σ2
s and σ2

v , denote by Pr
(
θ ∈ Θi | d, σ2

s , σ
2
v

)
the probabil-

ity that the received symbol lies in the region Θi through
maximal-ratio combining d receive branches (explicit formula
for Pr

(
θ ∈ Θi | d, σ2

s , σ
2
v

)
can be found in [8, p-1205]). For

the particular Q = 2 case and equally-probable source, the
average BER over the two processing stages are computed,
after some manipulations, as

P b =
1
2

2∑
q=1

P bq , (17)

where

P b1 =
1

log2M

M∑
i=1

Pr
(
θ ∈ Θi | L(N − L), σ2

s , σ
2
v

)
(18)

and

P b2 =
∑

z1∈A1

∑
ẑ1∈A1

{[
1

ML log2M

M∑
i=1

× Pr
(
θ ∈ Θi | LN, σ2

s , σ
2
v + ρ |z1 − ẑ1|2

)]
× Pr

(
z1 → ẑ1 | L(N − L), σ2

s , σ
2
v

)}
(19)

are respectively the BER at the first and the second processing
layers; in (19), the L-dimensional vectors z1 and ẑ1 are
respectively the transmitted and the detected symbol vectors
in the first stages, ρ is a scaled version of the signal variance
σ2
s [8, p-1207], and A1 denotes the L-fold Cartesian product

of the constellation set {exp (j2πk/M)}0≤k≤M−1. For high
SNR σ2

s/σ
2
v � 1, it can be shown that [3]

Pr
(
θ ∈ Θi | d, σ2

s , σ
2
v

) ≈
(
2d
d

)
M − 1

M
[
log2M sin2

(
π
M

)
4
(
σ2

s

σ2
v

)]d .
(20)

The approximation (20) allows us to derive closed-form BER
expressions (at high SNR) based on (18) and (19) for further
quantifying the achievable diversity order in each processing
stage. Specifically, from (18) and (20), it can be seen that, at
high SNR, P b1 roughly behaves as

P b1 ≈ G1

(
σ2
s/σ

2
v

)−L(N−L)
for some G1, (21)

confirming that the detected signal in the first stage enjoys a
diversity order equal to L(N −L): L due to OSTBC transmit
diversity and N − L from the receive diversity. In case that
the initial symbol decision is correct, i.e., z1 = ẑ1, we have

Pr
(
z1 → ẑ1 | L(N − L), σ2

s , σ
2
v

)
= 1, (22)

and P b2 in (19) reduces to [8]

P b2 =
1

log2M

M∑
i=1

Pr
(
θ ∈ Θi | LN, σ2

s , σ
2
v

)
. (23)

Equations (23) and (20) in turn imply, at high SNR,

P b2 ≈ G2

(
σ2
s/σ

2
v

)−LN
for some G2, (24)

that is, an LN -fold diversity gain can be attained in the second
stage. However, if erroneous decision occurs so that z1 �= ẑ1,
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Fig. 2. Theoretical and simulated average BER for different constellations.

it can be deduced from (19)-(20) that, when σ2
s/σ

2
v is large

and ρ |z1 − ẑ1|2 is small,

P b2 ≈ G̃2

[
σ2
s/
(
σ2
v + ρ̄

)]−LN (
σ2
s/σ

2
v

)−L(N−L)
, (25)

for some G̃2 and ρ̄. When the symbol power σ2
s is fixed and

let the noise variance σ2
v → 0, equation (25) then becomes

P b2 ≈ G3

(
σ2
s/σ

2
v

)−L(N−L)
, where G3 = G̃2

(
σ2
s/ρ̄
)−LN

.
(26)

As a result, whenever inter-layer error propagation takes place,
the diversity order in the second layer would be limited to only
L(N −L) as in the first stage; by further invoking the results
in [8, p-1207], and following the above analysis procedures,
it can be shown that, in the general multiuser case and subject
to error propagation, the achievable diversity gain per layer
is equal to that in the first stage. It is noted that a similar
phenomenon has also been proved in [16] regarding an L-input
N -output i.i.d. Rayleigh fading channel: imperfect symbol
decision limits the diversity orders throughout the layers of
an SIC receiver to N−L+1, which is just the attainable gain
in the first layer. In our numerical test for the Q = 2 case (see
Simulation-A), the BER curve in the second layer, however, is
seen to be very close to the corresponding error-propagation-
free performance. A plausible rationale behind this would be
that, in the first stage, each user’s signal does already enjoy
L-fold transmit diversity due to OSTBC: the imbedded signal
reliability improves detection accuracy at the first layer and
significantly reduces the effect of error leakage.

Remark: The above analysis does not take into account
signal ordering and thus would only provide a BER perfor-
mance upper bound with respect to the optimally ordered
case. However, even though signal ordering can lead to certain
performance gain, it does not enlarge the diversity order in
each stage [11], [16].

V. SIMULATION RESULTS

This section uses several numerical examples for illustrating
the performance of the proposed scheme. We consider a
system of two users, each one using the Alamouti’s code [1]
(and hence with L = 2 transmit antennas). The propagation
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Fig. 3. Theoretical and simulated BER per layer (8-PSK).

channel between each user terminal and the receiver is quasi-
static i.i.d. Rayleigh fading; the channels are perfectly known
at the receiver. In the abscissa of all simulation figures, SNR
denotes the ratio σ2

s/σ
2
v .

A. Corroboration of the Theoretical Performance

This simulation demonstrates the predicted BER perfor-
mances in Section IV and the corresponding simulated out-
comes (N = 4 antenna elements are placed at the receiver).
Figure 2 shows the average BER for three different symbol
constellations: BPSK, QPSK, and 8-PSK; the theoretical val-
ues (cf. (17)-(19)) are computed based on the exact formula
of Pr

(
θ ∈ Θi | d, σ2

s , σ
2
v

)
given in [8, p-1205] other than the

simplified expression (20). As we can see from the figure,
the simulated results closely match the theoretical solutions.
For the particular 8-PSK case, Figure 3 explicitly depicts the
BER at both processing layers; the theoretical BER in the
second stage assuming perfect previous symbol decision is
also included (this indicates the decision result attained with
maximally achievable diversity gain). The figure shows that,
in the presence of inter-layer error leakage, the simulated BER
in the second stage is almost identical to the corresponding
error-free benchmark solution. This tends to imply that the
error-propagation effect could be slight (due to OSTBC), and
the increase in diversity gain remains largely intact.

B. Comparisons with Existing Solutions

This simulation compares the user-wise OSIC method with
several existing solutions: the Naguib’s approaches [13], the
Stamouli’s method [17], and the MMSE parallel interference
suppression method [14, p-325]. The system platform is the
one considered in [12] with two receive antennas. Figure 4
shows the respective resultant average BER (8-PSK modu-
lation is used). As we can see, the OSIC method leads to
the best performance; the Naguib’s two-step approach [13, p-
1806] achieves a comparable BER level as the MMSE-based
OSIC when SNR is low, but it deteriorates as SNR increases.
Also, the OSIC method is seen to significantly outperform
the Stamouli’s decoupled based detector, which is free from
error-propagation but the diversity gain for each user’s signal
branch is fixed to L. This might again confirm that, in the
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TABLE II

FLOP COUNTS OF THREE COMPARATIVE METHODS (D: CONSTELLATION SIZE).

ZF-OSIC 
2 3 3 2 2 2 2 25 / 3 / 6 5 3 11 /3 / 2 7 / 4 /2 2 1P Q PQ P Q PQ P Q Q PQ Q P+ − + + + − + − −  

Naguib’s two- 

step method 

2 3 3 1 2 214 / 3 (2 5)D
P Q PQ P Q

+
− + − +  

( ) ( )1 2 2 12 7/ 2 4 / 3 3 2 11/2 (2 2 ) 3 2D D DPQ P Q PQ Q P+ +
+ + + ⋅ − + − + −  

Stamoulis method 
2 4 2 3 2 2 2 2 223 /12 13 /6 19 /12 /4 /2 /3 8 /3 3 /2 2 1P Q P Q P Q PQ Q P Q PQ Q P− − + + − − − − +  
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Fig. 4. BER performances for various signal detectors (8-PSK).

OSIC based detection, the effect of error propagation is slight
so that a layer-wise increase in diversity gain is achieved. It is
noted that the Naguib’s approach, the Stamoulis’s method, and
the proposed user-wise OSIC detector all exploit the algebraic
structure of OSTBC; the respective algorithm complexity
measures are listed in Table II (the proposed method is
implemented using the recursive scheme in [7]). As one can
see, the proposed solution calls for least computational cost.

VI. CONCLUSIONS

In this paper we study the OSIC based signal detection for
MU-OSTBC system. Subject to multiuser interference, it is
proven that joint recovery of per user’s signal, under either
ZF or MMSE ordering criterion, can be achieved only for
a restricted class of orthogonal block codes. The established
user-wise ordering (detection) property potentially reduces
the computations and decoding delays regarding OSIC based
signal recovery. Average BER in closed-form is given and
the attainable diversity order is quantified. Numerical study
shows that, in the considered scenario, error propagation does
not seem to incur severe loss in diversity gain. The proposed
approach compares favorably with existing multiuser detection
schemes reported for the MU-OSTBC system, in terms of both
numerical performance and algorithm complexity.

APPENDIX I
DETAILED PROOF OF THEOREM 3.1

For the Q = 1 case, the result is obvious since F = αIP .
Assume that the result is true for an arbitrary Q > 1, that is,
F ∈ FP (Q) implies F−1 ∈ FP (Q) for such a Q. We have
to check that F−1 ∈ FP (Q + 1) whenever F ∈ FP (Q + 1).
To see this, let us partition an arbitrary F ∈ FP (Q + 1) as

F =
[

A B
BT D

]
, where A ∈ RPQ×PQ, B ∈ RPQ×P ,

and D ∈ RP×P . We note that, since F ∈ FP (Q + 1),
we have (a) A ∈ FP (Q) and hence A−1 ∈ FP (Q) by
assumption, (b) D = cIP for some scalar c, and (c) if we
write B =

[
BT

1 · · ·BT
Q

]T
, where Bi ∈ RP×P , then we have

Bi ∈ O(P ). Let us similarly write F−1 =
[

Ā B̄
B̄T D̄

]
,

where Ā ∈ RPQ×PQ, B̄ ∈ RPQ×P , and D̄ ∈ RP×P . To
show that F−1 ∈ FP (Q + 1), it suffices to check that (1)
Ā ∈ FP (Q), (2) B̄ =

[
B̄T

1 · · · B̄T
Q

]T
, where B̄i ∈ RP×P , is

such that each B̄i ∈ O(P ), and (3) D̄ = dIP for some scalar
d. Properties (1)-(3) can be shown based on the inversion
formula for block matrices, that is

M =
[

M11 M12

M21 M22

]
⇒ M−1 =

[
M̄11 M̄12

M̄21 M̄22

]
, (27)

where

M̄11 =
(
M11 − M12M−1

22 M21

)−1
,

M̄12 = − (M11 − M12M−1
22 M21

)−1
M12M−1

22 ,

M̄21 = − (M22 − M21M−1
11 M12

)−1
M21M−1

11 ,

M̄22 =
(
M22 − M21M−1

11 M12

)−1
.

Proof of (1): From (27), we have Ā =(
A − BD−1BT

)−1 =
(
A − c−1BBT

)−1
, where the

last equality follows since D = cIP . Since each Bi ∈ O(P ),
with direct block matrix multiplication and using Fact 1 it
is easy to show that A − c−1BBT ∈ FP (Q) and hence
Ā ∈ FP (Q), by assumption.

Proof of (2): From (27), we have B̄ = −ĀBD−1 =
c−1ĀB. Since Ā ∈ FP (Q) and each Bi ∈ O(P ), direct
block matrix multiplication together with Fact 1 shows that
each submatrix B̄i ∈ O(P ).

Proof of (3): Since D̄ =
(
D − BTA−1B

)−1
and D =

cIP , it suffices to check that BTA−1B = c1IP for some
scalar c1. For 1 ≤ p, q ≤ Q, denote by Upq the (p, q)th
P × P block submatrix of A−1. Since B =

[
BT

1 · · ·BT
Q

]T
,

it is easy to verify that

BT A−1B =

Q�

p,q=1

BT
p UpqBq

=

Q�

p=1

BT
p UppBp

+

Q�

p,q=1, p�=q

BT
p UpqBq. (28)



1600 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 7, JULY 2006

Since A−1 ∈ FP (Q), we have by definition Upp =
ηpIP for some scalar ηp: the first summation on the right-
hand-side of the second equality in (28) thus simplifies as∑Q

p=1 BT
pUppBp =

∑Q
p=1 ηpB

T
pBp = ηIP . On the other

hand, direct multiplication and using Fact 1 shows that each
BT
pUpqBq ∈ O(P ), which, again from Fact 1, implies that

BT
pUpqBq + BT

q UqpBp = αp,qIP . The result shows that∑Q
p,q=1, p�=q BT

pUpqBq = η̃IP and the assertion follows.

APPENDIX II
USER-WISE MMSE ORDERING

Consider the real constellation case. In the initial stage, the
MMSE weight minimizing E

{∥∥sc − WTyc
∥∥2

2

}
is obtained

as W =
[
σ2
sHcHT

c +
(
σ2
v/2
)
IPQ

]−1
. The lth symbol mean-

square error, i.e., E
{∣∣eTl sc − WTyc

∣∣2}, is then computed

as eTl
[(

2σ2
s/σ

2
v

)
F + IPQ

]−1
el. Since F ∈ FP (Q), it is

easy to see that
(
2σ2

s/σ
2
v

)
F + IPQ ∈ FP (Q) and so is[(

2σ2
s/σ

2
v

)
F + IPQ

]−1
by Theorem 3.1: user-wise MMSE

ordering is thus achievable in the first stage. Starting from
(6) and with per block detect-and-cancel process, it can be
checked that, at the (i + 1)th iteration (1 ≤ i ≤ Q − 1),
the symbol mean-square errors are computed as the diago-
nal entries of the matrix

[(
2σ2

s/σ
2
v

)
Fi + IP (Q−i)

]−1
. Since

Fi ∈ FP (Q − i), so is
[(

2σ2
s/σ

2
v

)
Fi + IP (Q−i)

]−1
and this

guarantees user-wise MMSE ordering at each iteration.

APPENDIX III
COMPLEX-VALUED CONSTELLATION CASE

We only highlight the ZF case (the MMSE case similarly
follows). It suffices to check that the associated F matrix in
each case exhibits the structure shown in Lemma 3.1. For L =
2 (thus full-rate code and F ∈ R4Q×4Q), it is shown in [6]
that F ∈ FP (Q): Theorem 3.1 implies that F−1 ∈ FP (Q) and
hence the user-wise ordering property holds. For 2 < L ≤ 4
(half-rate code, P = 4 and F ∈ R8Q×8Q), it is shown in [6]
that, if we denote by Fp,q the (p, q)th 8 × 8 block submatrix
of F, then we have Fp,p = αpI8 for some αp, whereas, for
p �= q, we have

Fp,q =
[

O1 0
0 O2

]
, where O1 and O2 lie in O(4).

(29)
The results can then be easily deduced based on the block
diagonal structure of Fp,q in (29). Indeed, with (27) and by
repeating the same procedures in Appendix I, the matrix F−1

can be proved to be of an identical form as F, and the assertion
thus follows in the initial layer. At the ith layer, for either
L = 2 or 2 < L ≤ 4, we first note that each Fi matrix is of
the same structure as F but is of lower dimensions. It can be
shown by construction that F−1

i is also and the result follows.
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