
Encapsulation in Object-Oriented Programs

Jiun-Liang Chen Feng-Jian Wang

Institute of Computer Science and Information Engineering
National Chiao Tung University
HsinChu, 30050, Taiwan, R.O.C.

TEL:+886-35-712121-54718
FAX:+886-35-724176

e-mail: {jlchen, fjwang} @csie.nctu.edu.tw

1. Issue of Encapsulation

In stead of decomposing data and procedures, object-oriented (OO) programming encapsulates
the both through an object. An object is instantiated from a class which defines attributes (related data)
and methods (operational procedures). The definition of a class may be recursive since the class can
encapsulate the instance(s) of another classes as its attributes. An object containing other objects is called
a complex object. The form of a most primitive object, an object containing no other object, is nothing
but a data entity and is called a simple object. Encapsulation solidates an object by hiding the details; it
may also obstruct dependency analysis for complex objects by information hiding.

Program Dependency Graph (PDG) [OtOt84] represents the structure of a program. It is a set of
graphic representations, vertices for entities in a program and edges for dependencies between the
entities. PDG has been used in various dependency analysis techniques, such as program slicing
[HoRe+91] and program optimization [FeOt+87]. Recently, many researches (such as [MaMc+94,
LaHa95, ZhCh+96]) extended PDG, by augmenting class and object relationships (e.g., inheritance,
membership, ..., etc.) in a PDG, to represent OO programs for dependency analysis. In extended PDG's,
a vertex denotes an object while an edge denotes a dependent relation. However, a complex object can
not guarantee the cohesion of and coupling among its components to be strong. Extended PDG's have
some defects for dependency analysis, especially to represent a complex object as a vertex. For example,
the extended PDG for objects A, B, and C with dependencies between them is shown in Figure 1. In the
graph, the dependencies, "B depends on A" and "C depends on B," imply "C depends on A." On the other
hand, B itself is a complex object containing objects bl and b2. The dependencies defined in more details
are "bt depends on A," and "C depends o n b2," but no dependency between bl and b2. Consequently, C
does not depends on A with transitive property of B's dependency; This conflicts with the previous result,
"C depends on A." In other words, a transitive relation can not be directly applied to such extended
PDG's.

Object

Dependency

Figure 1. The dependency between objects

2. Dependency between Objects

To investigate the dependency analysis obstructed by encapsulation, we take a data-dependent
relation into discussion. An object is said to be data-dependent on another if the change of former's value
affects the latter's. Formally, a data dependency between two arbitrary objects can be defined as
following:

Definition 1 Let O,. be a set of simple objects, and O¢ be a set of complex objects. Given two objects,
o~ and [3, o~ is said to be data-dependent on 13, denoted as ~x9t[3, if one of the following cases holds:
(1) oc, [3 ~ 0,., the change of 13's value might make c~'s change,
(2) ot ~ 0,., [3 ~ Oc, 3 b, b is an attribute of [3, such that o~91b,
(3) o~ e Oc, [3 e O,, 3 a, a is an attribute of c~, such that a9113, or
(4) o~, [3 ~ Oc, 3 a, a is an attribute of c~, and 3 b, b is an attribute of 13, such that a91b.

This definition is recursive and terminates at case (1). In this definition, the first case states that a simple
object is data-dependent on anther. The rest cases state that there exists a component object in a complex
object to form the data dependency. Besides, the last case indicates that when a complex object depends
on another, only part of component objects of the former, not the whole, depends on that of the latter.

Definition 1 describes a direct data dependency between two objects. However, data dependency
may be caused not only directly but also indirectly. Indirect dependencies may be computed according
to transitive property of dependencies. According to Definition I, the transitive property of data
dependencies is inherent since an object may be data dependent on the portion of another. Therefore,
applying transitive property to compute indirect dependency has to consider the components of a
complex object on which another depends. The following property can be applied to compute an indirect
data dependency.

Property 1 Given arbitrary three objects c~, [3, and y, then (x9113 and [391 T imply c~91 7, denoted as
ot9113 ̂ 139l 7 ~ ot91"t', when one of following cases holds:

(1) 13 e o .
(2) 13 e Oc, 3 b, b is an attribute of 13, c~91b, and b91 T, such that ~x91b A b91 T ~ b91 T.

Property 1 describes the condition for an indirect data dependency between two objects via a third object,
a simple or complex object. If the third is simple, the dependency can be computed directly with
transitive property. Otherwise, there exists one component of the third object via which an indirect
dependency between original two holds. With this property, one can find indirect data dependencies
precisely without the problem described in prelim.

3. Remark

According to the previous definition and property, an indirect data dependency can be computed
precisely with transitive property. When performing the computation, one has to decompose encapsulated
components of complex objects. Undoubtedly, the algorithm for identifying such dependency is not cost-
effective because each complex object needs to be decomposed into bottom simple objects eventually. To
avoid this, one can pursue an approximate solution by restricting the level of encapsulation at which a
complex object is decomposed. The algorithm for the solution is more cost-effect, even though the
solution may contain some spurious dependent relations (like the example in Figure 1). In spite of this, an
approximate solution is still useful because it is more precise than that from extended PDG's directly.
Furthermore, OO paradigm brings building block programming style. For example, C++ standard
template library [StLe95] provides basic data structure components, container classes. These classes
encapsulate a number of objects that usually encapsulate their own attributes and methods. Therefore, we
suggest that the level of encapsulation at which a complex object is decomposed should not be less than

31

two,

Acknowledgment

This research was partly
NSC85-2213-E009-030.

sponsored by National Science Council, Taiwan, ROC, under contract No.

References

[FeOt+87] J. Ferrante, K.J. Ottenstein, and J.D. Warren, "The Program Dependence Graph and Its Use in
Optimization," ACM Transactions on Programming Languages and Systems, vol. 9(3),
pp.319-349, July 1987.

[HoRe+91] S. Horwitz, T. Reps, and D. B inkley, "Interprocedural Slicing Using Dependence Graphs,"
ACM Transactions on Programming Languages and Systems, vol 12(1), pp.26-60, 1990.

[LaHa95] L.D. Larsen and M.J. Harrold, "Slicing Object-Oriented Software," Technical Report No.95-
103, Department of Computer Science, Clemson University, 1995.

[MaMc+94] B.A. Malloy, J.D. McGregor, A. Krishnaswamy, and M. Medikonda, "An Extensible
Program Representation for Object-Oriented Software," ACM SIGPLAN Notices, vol. 29(12),
pp.38N47, 1994.

[OtOt84] K.J. Ottenstein and L.M. Ottenstein, "The Program Dependence Graph in a Software
Development Environment," Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, pp. 177-184, 1984.

[StLe95] A. Stepanov and M. Lee, "The Standard Template Library", Technical Report, Hewlett Packard
Laboratories, 1995.

[ZhCh+96] J. Zhao, J. Cheng, and K. Ushijima, "Static Slicing of Concurrent Object-Oriented
Programs," submitted to COMSAC'96, IEEE, 1996.

32

