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Fuzzy Macromodel for Dynamic Simulation
of Microelectromechanical Systems

Chun-Hsu Ko and Jin-Chern Chiou

Abstract—This paper proposes an efficient approach that con-
sists of an experimental design and a fuzzy-logic model (FLM) to
generate macromodels for the simulation of microelectromechan-
ical systems. Firstly, in the present approach, a force macro-
model is adapted to perform the coupled simulations. Then, an
experimental design is utilized to reduce the number of data
needed for macromodel identification, and an FLM is chosen to
fit the data. The identification scheme involves cluster estimation
to determine the FLM structure and backpropagation method
to efficiently obtain the FLM structure parameters that lead to
an accurate macromodel. In order to verify the accuracy of the
macromodel, the approach has been applied to a magnetic mi-
croactuator. The simulation results show that the force macro-
model yielded errors of less than 1.5% for a 5-µm displacement.
Furthermore, the dynamic coupled simulation takes only several
minutes. The results demonstrate the efficiency and effectiveness
of the current approach.

Index Terms—Coupled analysis, experimental design, fuzzy-
logic model (FLM), macromodel, microactuator.

I. INTRODUCTION

COMPUTATIONAL coupled analysis has attracted much
attention in the design of microelectromechanical systems

(MEMS), which require self-consistent solutions to coupled
energy domains via nonlinear partial differential equations [1].
Numerical approaches, such as the finite-element method
(FEM), can yield coupled quasi-static solutions [2]. However,
the coupled simulations of fully meshed FEM models are usu-
ally time consuming, due to the fact that the models are usually
with significant degrees of freedom (DOF). Furthermore, the
coupled dynamic analysis of the system-level design requires
many simulations, which are quite inefficient. Approaches us-
ing macromodels with relatively fewer DOFs (also called as
reduced-order models) have been proposed to improve the effi-
ciency of coupled dynamic analysis [3]–[6]. These macromodel
approaches can accurately model the system by capturing the
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dominant dynamic behaviors and are effective for fast coupled
system-level design.

In general, macromodel generation requires first finding the
basis functions by using techniques, such as modal analysis
[3], [4], singular-value decomposition [5], and neural-network
method [6]. The macromodels are then built by adopting the
generalized coordinates accompanied with these basis func-
tions. It is possible to determine the macromodels by using
analytical models [5], [6]. However, the use of analytic models
usually demands assumptions, which may affect model accu-
racy and effectiveness. An attractive alternative is to build
empirical macromodels using identification techniques [3], [4],
[7]. The identified macromodel can be obtained via the fitting of
a set of sampling data. This approach may demand many basis
functions, leading to high input dimensions and also raising
the complexity of data generation in running a large number of
simulations [3]. Also, these previously proposed methods, such
as multivariate polynomials [3] and neural network [4], have
some drawbacks. The multivariate-polynomial model has low
efficiency, and the neural-network approach cannot provide a
meaningful interpretation of the network structure, which poses
a difficulty in determining the structure. The macromodels in
[3] and [4] are even with the differentiation of the identified
energy model. Based on the discussions, it is imperative to
achieve an efficient macromodel.

Fuzzy-logic models (FLMs), which can be used as structured
numerical estimators, categorize the data obtained in exper-
iments and then create meaningful fuzzy IF-THEN rules to
form expert knowledge [8]. These FLMs combine fuzzy sets
with fuzzy rules that have the capability to model the complex
nonlinear behavior. Furthermore, the structure/parameter of the
FLM has been efficiently identified by using the proposed learn-
ing approach, including cluster estimation, gradient descent,
and the back-propagation method [9], [10]. Previous studies
have demonstrated the feasibility of the Sugeno-type FLM
in system modeling and control [10]–[13], which motivates
us to further explore its possibility in building the MEMS
macromodel.

This paper proposes an efficient approach to generating
macromodels by using an experimental design and FLM. It
is organized as follows. Section II introduces the macromodel
approach for the MEMS systems. The fuzzy macromodel-
generation method, which includes the experimental design for
data sampling, an FLM to represent the data, and an efficient
identification scheme for data fitting, is given in Section III.
The example involving a magnetic microactuator, along with its
corresponding static and dynamic simulations, are performed
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Fig. 1. Block diagram of the macromodel approach with FLM.

and reported in Section IV. Finally, the conclusion of the pres-
ent paper are covered in Section V.

II. MACROMODEL APPROACH

Fig. 1 shows the procedure for the coupled dynamic analysis
of MEMS using the macromodel approach with FLM. First, a
fully meshed model of an MEMS is constructed by meshing the
continuous distributed domains. Next, the degrees of freedom
(DOF) of the system are reduced by selecting the basis func-
tions, and inputs to the model are defined on the generalized
coordinates. The identified macromodel is then built by using
the FLM. Finally, a coupled dynamic simulation is performed
based on the macromodel to yield the system response. From
the procedure, to perform the simulation using the macromodel
approach, we must first find the coupled dynamic equations of
the system.

MEMS typically involve multiple energy domains, and their
dynamic equations can be directly obtained from Lagrange’s
equations [14], which are given as

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (1)

where the Lagrangian L(q, q̇, t) is a function of the generalized
coordinate q, their first derivatives q̇, and time t. L(q, q̇, t) is
defined by

L(q, q̇, t) = T (q, q̇, t) − U(q, q̇, t) (2)

where T (q, q̇, t) is the kinetic energy andU(q, q̇, t) the potential
energy. By selecting the meshed nodal displacements u as the
generalized coordinates, and assuming u as small displace-
ments, the dynamic equations described in (1) then become

Mü+Ku− Fm(u, t) = 0 (3)

where M is the mass matrix defined on the mesh, K the stiff-
ness matrix, and Fm the nodally defined actuation force. Note
that the equations of motion of (3) are nonlinear and coupled.
The meshed models for realistic calculation usually involve
high DOFs, such that the users need to endure an intensive
computation to obtain the simulation result. On the other hand,
the macromodels have the capability to accurately simulate
the system behavior of the modeled dynamic system with a
few coupled equations. To build the macromodel, we select
the n-dimensional generalized coordinates qi(i = 1, 2, . . . , n),
and n is much lower than the meshed model’s DOFs,
which yields

u =
n∑

i=1

qi(t)ϕi (4)

where ϕi(i = 1, 2, . . . , n) are the selected basis functions.
These basis functions can be conveniently determined by using
the natural modes from the modal analysis. The natural modes
possess a useful property known as orthogonality. Equation (3)
then becomes

q̈i + ω2
i qi = ϕT

i Fm(q, t) (5)

where ωi(i = 1, 2, . . . , n) are the natural frequencies and q =
[ q1 q2 . . . qn ]T. Note that the electromagnetic force Fm

for actuating MEMS can be expressed as

Fm(q, t) = I2(t)fm(q) (6)

where I(t) is the input current that depends on time t in current-
controlled devices and fm(q) is the magnetic force resulting
from the unit input current. Substituting (6) into (5), we have

q̈i + ω2
i qi = I2(t)pi(q) (7)

where pi(q) = ϕT
i fm(q) is the generalized force, referred to as

the force macromodel.
On the other hand, the reduced-order dynamic equations

can also be directly derived from (1) using the magnetic co-
energy [3]

q̈i + ω2
i qi = I2(t)

∂u∗m(q)
∂qi

(8)

where u∗m(q) is the magnetic coenergy resulting from the unit
input current, referred to as the energy macromodel, and its
differentiation ∂u∗m(q)/∂qi represents the generalized force.

Equations (7) and (8) are both reduced-order equations for
different forms of magnetic macromodels, leading to different
computation procedures. Here, the force macromodel pi(q) first
requires the evaluation of the magnetic force in displacement
(u) space, and is then obtained by projecting the magnetic
force onto the generalized q space with the inner product of the
magnetic force and the normal modes. The energy macromodel
u∗m(q), on the other hand, requires the coenergy function to
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be established in q’s space, and the generalized force is then
obtained with the differentiation of the coenergy function.

To increase the efficiency in performing the coupled
dynamic-system simulations in (7) and (8), macromodels in
analytical form are required. In order to generate macromodels,
it is necessary to select the basis functions that are significantly
contributed to the system dynamic behavior. The selection
process begins with the typical displacement us, which contains
information on the amplitude for each basis function [3], [4].
The displacement is calculated from the coupled quasi-static
analysis with FEM software, such as ANSYS (ANSYS, Inc.,
Canonsburg, PA. http://www.ansys.com). Using the ns (about
30) modes of the lower natural frequency as the basis functions,
the displacement can be expanded with the coefficients yi as

us ≈
ns∑

i=1

yiϕi. (9)

Note that (9) is an overdetermined system requiring a least-
square solution. The orthogonal-triangular (QR) factorization
algorithm is adopted to yield the coefficients yi [15]. The
displacements of the modes can then be calculated by indicating
important modes. Furthermore, the magnitudes of the coeffi-
cients yi are used to predict the relative ranges of qi for the input
domain of the macromodel. Once the basis functions and the
estimation range are determined, the fuzzy model-identification
method can be used to generate the nonlinear macromodel.

III. FUZZY MACROMODEL GENERATION

The fuzzy macromodel generation with the identification
technique includes data sampling, FLM selection, and FLM
identification, which are described below.

A. Data Sampling

The data for macromodel generation are the generalized
coordinates q as the input variables and the generalized force
or coenergy as the output. Note that input-data selection is im-
portant since it will affect both the reliability of the macromodel
and the number of simulation runs. Thus, proper design of the
simulation experiments is imperative. The experimental design
takes certain values, called levels, for every input variable.
The levels are used to adequately span the input range. The
number of input data depends on the input variables and levels.
Data with more input variables (i.e., more basis functions) and
levels lead to more accurate macromodels, but also increase the
difficulty in data selection. For example, n input variables and
m levels produce a total of nm runs for all the combinations,
which shows the exponential increase in data number. Hence,
an efficient experimental design is needed to obtain accurate
results from a minimum number of computer runs.

To achieve this objective, Taguchi’s method is proposed [16].
This method provides a predefined set of orthogonal tables that
contain fractional orthogonal designs. For example, two-level
L4, L12, and L16 arrays [16] allow 3, 11, and 15 inputs to be
evaluated with only 4, 12, and 16 design points, rather than the
exponential 23, 212, and 216.

B. FLM Selection

In Sugeno-type FLM, the ith rule is described as follows.
If x1 is Fi1, and x2 is Fi2, · · · and xn is Fin, then the role

output is

yi(x1, x2, . . . , xn) = pi0 + pi1x1 + pi2x2 + · · · + pinxn

where xj(j = 1, 2, . . . , n) is the input variable, Fij the fuzzy
set, and output yi an internal function with parameters
Pi0, Pi1, · · · , Pin. The Gaussian-type membership function
µFij for the input variable xj can be expressed as

µFij(xj) = exp

[
−1

2

(
xj − cij
σij

)2
]

(10)

where cij and σij are, respectively, the location and shape
parameters. Then, by using the product operator to represent
the and operator in the rules, the weight for each rule’s out-
put becomes

wi = exp


−1

2

n∑
j=1

(
xj − cij
σij

)2

 . (11)

Finally, the output of the FLM is inferred by taking the
weighted average of the rule’s outputs. For an FLM with r
rules, the output can be expressed as

y =
r∑

i=1

viyi, with vi =
wi

r∑
i=1

wi

. (12)

With the energy macromodel described in (8), the general-
ized force can be obtained by differentiating the fitted coenergy
function. The differentiation of the FLM output can be ana-
lytically derived as

∂y

∂xj
=

r∑
i=1

vi

(
−(xj − cij)

σ2
ij

+
r∑

k=1

vk(xj − cij)
σ2

kj

+ pij

)
.

(13)

The total number of membership functions and internal
function parameters in the FLM to be determined is r × (3 ×
n+ 1). Minimization of the squaring errors between the sam-
pling data and the calculated FLM outputs, in turn, determines
these parameters.
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C. FLM Identification

For a set of sampling data (x1k, x2k, . . . , xnk, yk), the accu-
racy of the FLM is given by the multiple correlation coefficient
R2 [10], which is defined as

R2 = 1 −

m∑
k=1

(ŷk − yk)2

m∑
k=1

(ŷk − y)2
(14)

where ŷk is the output of the macromodel, y the mean of the
output of the sampling data, and m the total number of data
sets. When R2 = 1, it means that the model fits every sampling
data point perfectly. The primary goal of FLM identification
is to maximize R2 to 1, and, thus, the resulting FLM makes
accurate predictions of the input domain.

There are two major tasks in identifying an FLM for a sys-
tem: structure and parameter identification [17]–[19], each of
which consists of a premise and a consequence part. To identify
the FLM parameters with an optimal structure accurately, we
partition the available data into training and testing data. An
efficient identification approach involving cluster estimation,
gradient-descent, and backpropagation method is then utilized
to identify intermediate FLMs with various structures using
the training data. The decision rule seeks maximal multiple
correlation coefficients among the intermediate FLMs and the
testing data to achieve an optimal structure. Thus, the resulting
macromodel not only fits the training data well, but also makes
accurate predictions.

The cluster-estimation method [9], [10] is used here for
the coarse tuning process of the FLM identification algorithm.
Data-point potential measure is used to locate the cluster cen-
ters, defined as

Vi =
m∑

k=1

exp
(
− 4
r2a

‖xi − xk‖2

)
(15)

where ‖.‖ denotes the Euclidean distance and ra a positive
constant used to define the effective radius of a neighborhood.
The data points with higher potentials are chosen as cluster
centers. Each cluster center is, in essence, a prototypical data
point that exemplifies a characteristic behavior of the system
[9]. Hence, each cluster center can be used as the basis of a
rule-describing system behavior, and the number of fuzzy rules
will be equal to that of the cluster centers.

When the fuzzy structure is determined, parametric identi-
fication of a fuzzy model based on the gradient-descent and
backpropagation methods is then conducted. The output of the
FLM is calculated and internal parameters are updated by the
instantaneous error between the FLM output ŷk and the current
training data output yk. Here, we minimize the square of the
instantaneous error with respect to the unknown parameters
pi0, pij , cij , and σij of the internal functions and membership
functions, i.e.,

Ek =
1
2
(ŷk − yk)2 =

1
2
e2k. (16)

By applying the chain rule on (16), we can obtain the equations
for updating the estimates of the unknown parameters pi0, pij ,
cij , and σij as

pi0(k + 1) = pi0(k) − α0vi(k)ek (17)

pij(k + 1) = pij(k) − α1vi(k)ekxj (18)

cij(k + 1) = cij(k) − α2vi(k)ek

× [yi(k) − yk]
xj − cij(k)
σ2

ij(k)
(19)

σij(k + 1) =σij(k) − α3vi(k)ek

× [yi(k) − yk]
[xj − cij(k)]2

σ3
ij(k)

. (20)

The gradient-descent method is used to minimize the instan-
taneous error. Since this method is basically a kind of hill-
climbing technique, it runs the risk of being trapped in a
local minimum, where every small change in synaptic pa-
rameters pi0, pij , cij , and σij would increase the square-
error function Ek. Therefore, initial parameter estimation is
crucial when this method is used. Here, the initial parameter
estimations cij and pi0 are the coordinates of the ith cluster
center (x∗1i, x

∗
2i, . . . , x

∗
ni, y

∗
i ), and the parameter σij is defined

as the distance with the constant ra, i.e., σij = l × ra. By using
the results obtained in [10], parameter l is set to 3/(4

√
2),

and pij to zero. The method is used repeatedly to update the
model parameters until R2 ≥ R2

min. Note that the criterion
R2 ≥ R2

min is to ensure the accuracy of the FLM.
Finally, intermediate FLMs with various structures are built

from the training data by using the identification method
described above. A multiple correlation coefficient R2

search

(e.g., 0.99) is specified for fast establishing the intermediate
FLMs. The testing data are used to evaluate the accuracy of
the intermediate FLMs by employing the multiple correlation
coefficients recorded as R2

test. The FLM structure with the
highestR2

test is then chosen as the optimal structure. We further
use the training and testing data with a larger multiple correla-
tion coefficient R2

goal (e.g., 0.9999) than R2
search to identify the

accurate FLM with the optimal structure.
Based on the discussion above, the FLM identification algo-

rithm is developed and stated as follows.

FLM Identification Algorithm:

Step 1) Specify the input variables x1, x2, . . . , xn, and the
output variable y.

Step 2) Provide training and testing data.
Step 3) Give the maximum number of rules rmax to establish

the intermediate FLMs, and the multiple correlation
coefficients R2

search and R2
goal.

Step 4) Begin the search algorithm and set the fuzzy rule
number r = 1.

Step 5) Use the cluster-estimation method to search for the
constant ra for building the FLM structure with r
rules and the initial parameters pi0, pij , cij , and σij .
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Fig. 2. Quasi-static displacement of asymmetric suspended plate with 36-mA
actuation.

TABLE I
MODE CONTRIBUTIONS TO THE DISPLACEMENT OF THE PLATE CENTER

Step 6) Calculate the FLM output yk with the train-
ing data, and the instantaneous error ek. Perform
back-propagation to refine the parameters pi0, pij ,
cij , and σij with the gradient-descent method.

Step 7) Calculate the training correlation coefficient R2. If
R2 is less than R2

search, go to Step 6) for the next
iteration; otherwise, test the FLM using the testing
data and record the testing correlation coefficient
as R2

test(r).
Step 8) Set r = r + 1, if r is less than or equal to rmax,

go to Step 5); otherwise, select the rule number r
that corresponds to the maximum test correlation
coefficient R2

test(r) as the optimal rule number ropt.
Step 9) Set-up all available data in Step 2) as new training

data and R2
goal as the convergence correlation co-

efficient. Identify the optimal FLM with ropt rules
and output its parameters.

IV. SIMULATIONS AND RESULTS

In order to demonstrate the efficiency of the proposed ap-
proach, the macromodeling process was applied to a magnetic
microactuator containing a magnetic core and a deformable
structure [20]–[22]. The structure of the microactuator was
shown in Fig. 2. The magnetic microactuator had an asym-
metric 625 × 625 × 5 µm plate suspended from four beams
50-µm wide by 5-µm thick, the shortest of which was 150-µm

Fig. 3. Mode shapes used as the basis functions.

TABLE II
MODE PARAMETERS

high, the tallest 300-µm high, and the others 200- and 250-µm
high. A 500 × 500 × 5 µm permalloy panel was attached under
the plate at the corner near the shortest support beam, and an
electromagnet consisting of a 32-turn coil and an enclosed core
was placed underneath, separated from the permalloy plate by a
16-µm gap. Due to the unequal beam length and the off-center
magnetic force, this structure displaced, bent, and tilted upon
application of electrical current.

In the simulation, we used the ANSYS software to con-
struct a three-dimensional (3-D) model by meshing a magnetic
microactuator to create structural and magnetic FEM models.
The structural finite-element mesh, which had its thickness
magnified by four times for clarity, comprised 411 solid el-
ements with a total of 799 nodes, and the magnetic FEM
model contained 17 408 eight-node brick elements for a total
of 19 602 nodes. An equilibrium displacement was obtained via
the quasi-static magnetostructural simulation, with the resulting
deformation depicted in Fig. 2.

The first thirty mode shapes of the structural FEM model
are determined using modal analysis. We projected the quasi-
static solution onto the mode shapes using QR factorization.
Table I lists the ten most significant modes contributing to this
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TABLE III
L25(56) ORTHOGONAL ARRAY

TABLE IV
L16(45) ORTHOGONAL ARRAY

deformation and their contributions to the displacement of the
plate center. To obtain a reduced-order model, the six dominant
modes, shown in Fig. 3, were selected as the basis functions
for computing system response. Table II lists the frequencies
for each of the selected modes.

The proposed macromodel-generation approach was used to
build the nonlinear magnetic macromodel. The first six modes
were taken as the shape functions along with their contributions
as the input ranges of the macromodel. By setting five levels
for each factor and using the orthogonal table L25(56) from
Taguchi’s method, shown in Table III, we obtained training

TABLE V
COMPUTATION TIMES FOR MACROMODEL GENERATION

Fig. 4. Comparison of the solutions of the plate-center displacement by using
force macromodel, energy macromodel, and quasi-static coupled FEM.

data through performing 25 simulations of magnetic force and
coenergy. Meanwhile, the orthogonal table L16(45) containing
16 simulations was used for obtaining the testing data, as
shown in Table IV. The testing-data levels were determined
by taking the four middle points of the five levels in the
training data. Note that table L16(45) was for an experimental
design of five factors. To permit experimenting on six factors
with a table of five factors, we combined minor factors (the
fifth and sixth factors) into a compound factor. Finally, the
FLM identification algorithm was used to obtain the identified
macromodels.

Table V shows the macromodeling computation times for
force and energy macromodels run on a Pentium-III 850-MHz
microprocessor. The total computation time was almost the
same for both macromodeling approaches, approximately
within 4.5 h for the complex example. We found that the data-
sampling procedure took most of the macromodel-generation
time. Note that the total run time would have been longer in
the absence of the experimental design. Hence, the experi-
mental design was effective in reducing the total required run
time. Meanwhile, FLM identification took only a few minutes,
demonstrating the efficiency of the proposed identification
approach.

To check the accuracy of the fitted macromodel, the quasi-
static case was firstly performed by setting the time derivatives
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TABLE VI
MACROMODEL ACCURACY IN COUPLED QUASI-STATIC SIMULATIONS

Fig. 5. Response to a 25-mA square wave with a 125-µs hold and a
500-µs period.

to zero in the dynamic equations of motion. The solution was
obtained by solving a set of coupled algebraic equations, and
it agrees well with the solution of the coupled quasi-static
FEM simulation. Fig. 4 shows the comparison of the solu-
tions of plate-center displacement, and Table VI presents the
accuracy of the macromodels. We found that the force macro-
model yields an error of less than 1.5% for a 5-µm displace-

Fig. 6. Response to a 25-mA sawtooth wave with a 50-µs rise and a
500-µs period.

ment, demonstrating that the proposed force-macromodeling
approach was very effective. But the solution from the energy
macromodel shows a much larger error generated by using the
differentiation of the fitted-energy macromodel.

Figs. 5 and 6 show the dynamic responses of the force-
macromodel coupled simulations. In Fig. 5, each mode re-
sponse containing the ripple has the same timing as the applied
square wave. In Fig. 6, mode 1 dominated the main response,
while the rest reflected the general shape of the applied saw-
tooth wave. Each simulation took about 2 min. The results
demonstrate that the generated macromodels achieved efficient
modeling of the nonlinear coupling effects.

V. CONCLUSION

In this paper, we have proposed a macromodeling process
for simulating a magnetic microactuator based on a FLM.
Approaches, such as force and energy macromodels, have been
utilized and discussed. Accordingly, macromodels have been
efficiently established by using cluster estimation, gradient
descent, and backpropagation. The required data for fitting the
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macromodel have been also effectively reduced by using the
proposed experimental design. Compared with quasi-static cou-
pled simulations, the simulation of the force macromodel using
the proposed FLM identification yields an error of less than
1.5% for a 5-µm displacement, demonstrating the effectiveness
of the proposed scheme.
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