
An integrated approach to achieving optimal design of computer games

Shang Hwa Hsu *, Feng-Liang Lee, Muh-Cherng Wu

Department of Industrial Engineering and Management, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan, ROC

Abstract

In a time-to-market environment, designers may not be able to incorporate all the design features in a computer game. For each feature, there are

several levels of implementation, which is corresponded to different levels of benefit as well as cost. Therefore, a trade-off decision for

determining appropriate levels of implementation is very important, yet has been rarely studied in literature. This paper presents an approach to

solve the trade-off decision problem. This approach applies the neural network technique and develops a genetic algorithm to optimize the design

of computer games. By this approach, a near-optimal design alternative can be identified in a timely fashion.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Computer game is a promising industry (Bethke, 2003) and

much research on the effective design of computer games has

been published in the last two decades. Most of these studies

focused on the identification of design factors to make a game

fun. Malone and Lepper (1987) argued that a fun game has to

involve four characteristics: challenge, fantasy, curiosity and

control, which can intrinsically motivate game-players. Based

on these characteristics, Fabricatore, Nussbaum, and Rosas

(2002) developed a set of detailed design guidelines for action

games. A recent study further identified 39 design features that

contribute to the fun of an action game (Hsu, Lee, & Wu,

2004).

Attempting to incorporate all the design features in a

computer game is infeasible for several reasons. First, time-to-

market in this industry is a critical factor for product success

because the life cycle of a computer game is quite short.

Therefore, incorporating all the design features is generally

impossible in a limited time frame. Second, the benefit function

of a design feature has a marginal-diminishing effect. That is,

the incremental benefit decreases as total investment on

implementing a design feature increases. Therefore, it may

not be cost-effective to implement every design feature up to its

maximum level. Third, most companies in this industry tend to
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adopt a risk-pooling product strategy, which leads to the

development of several games at the same time. The resources

allocated to a particular game are rather limited. How to

effectively design a computer game in limited time and budget

is therefore a very important issue, yet has rarely been

investigated in previous literature.

The issue of designing a computer game within time and

budget constraint is essentially a selection problem; that is,

selecting a design alternative out of a large solution space. For

example, a game involves 39 design features. Each feature can

be implemented in six levels; the higher the implementation

level, the higher the performance as well as the cost.

Consequently, the solution space of designing such a game

can involve 639 alternatives—a formidable task if an optimal

design is to be identified by applying an exhaustive search.

This paper proposes an approach to efficiently identifying a

near-optimal design alternative out of the enormous solution

space. This approach involves the use of artificial neural

network (ANN) technique (Rumelhart, Hinton, & Williams,

1986) and genetic algorithm (GA) (Michalewicz, 1992) to

select the design alternative. Specifically, a neural network is

established to evaluate the perceived fun of a design

alternative. A genetic algorithm is developed to identify a

near-optimal design alternative. The identified design alterna-

tive suggests the appropriate implementation level of each

design feature and facilitates designers to properly allocate

their efforts to various design features.

The technique of integrating ANN and GA has been

successfully applied in some optimization problems such as

engineering design (Marcelin, 2004; Mok, Kwong, & Lau,

2001; Qiu & Li, 2004; Shi, Lou, Lu, & Zhang, 2003; Su, Kao,

& Tarng, 2004), management decision (Kuo & Chen, 2004;
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Lee, Lee, Lee, Choi, & Lee, 2001; Li, Wu, & Pang, 2004; Yuan

& Chen, 2001), and financial planning (Chen & Huang, 2003;

Kim & Han, 2000, 2003; Shin & Han, 2000; Versace, Bhatt,

Hinds, & Shiffer, 2004). In this study, we attempt to apply the

techniques to tackle the problem of designing computer games.

The remainder of this paper is organized as follows. Section

2 describes the modeling of a design alternative, which

involves its implementation levels of design features and

perceived fun. Section 3 describes how to apply neural network

technique to evaluate the perceived fun of a design alternative.

Section 4 formulates the research problem. Section 5 presents

the genetic algorithm to search for a near-optimal solution. A

numerical example is illustrated in Section 6 and concluding

remarks are given in Section 7.
Fig. 1. Architecture of the neural network.
2. Modeling of design alternatives

Hsu et al. (2004) conducted a study to identify the design

features contributing to fun, which involves 28 action games

and the overall perceived fun of each game was rated at one of

five levels, ranging from 1 to 5.

The procedure for the identification of design features

consisted of three steps. First, experienced game-players were

asked to classify the 28 games into three groups according to

their perceived fun. Second, each game in the ‘fun’ group was

contrasted with a game in the ‘no-fun’ group in order to

identify the design features that make a game fun. Third, each

design feature of a game was rated in terms of its

implementation level, ranging from 0 to 5. Their experiment

results indicated that an action game is composed of 39 design

features.

An action game is essentially a design alternative before

completion of a design process. This study models ith design

alternative by vector �xiZ ½xij�, 1%j%39, where xij2[0, 5]

represents the implementation level of jth design feature in the

design alternative. The overall perceived fun of ith design

alternative is represented by yi2[1,5].

According to the modeling, the solution space of the optimal

design of interest can be represented by

SZ f �xj �xZ ½xj�; xj2½0; 5�; xj2ZC; 1% j%39g, also called the

Design Space. The space of the perceived fun can be

represented by YZ fyjy2R; 1%y%5g, briefly called Fun

Space.
3. Evaluation of perceived fun for design alternatives

To find an optimal design of interest, a general mapping

function between Design Space S and Fun Space Y has to be

established. Such a mapping function is constructed by a neural

network.

The architecture of the neural network is described below.

The network is composed of three layers: an input layer, an

intermediate hidden layer, and an output layer. Each node in

the input layer represents the implementation level of a design

feature and the single node in the output layer represents the

overall perceived fun. Given a design alternative �x in Design
Space S, the neural network is intended to compute the overall

perceived fun of the alternative.

The construction of the neural network involves two stages:

network training and verification. In Fig. 1, each of the lines

connecting the nodes in distinct layers represents a weighting

to be determined by the network training process. Of the

sampled data sets, some are used to train the neural network

and the others are used to verify the effectiveness of the

network. A well-trained network has to ensure the validity of

input/output mapping. That is, for an input vector �xh with a

corresponding output yh, the network will estimate an output

Oh with tolerable error; namely, ðjOhKyhj=yhÞ%3 where 3 is a

very small value. The network if well trained can appropriately

evaluate the perceived fun of a design alternative. Detailed

procedure of the training algorithms can be referred to

Rumelhart et al. (1986).

With the constructed network, we can quickly determine the

perceived fun of any design alternative in Design Space S. To

facilitate the following presentation, the mapping provided by

the neural network is represented by yZGð �xÞ.
4. Problem formulation

The research problem for selecting an optimal design

alternative of a computer game can be formulated as follows:

Minimize Tð �xÞZ
XN
jZ1

f ðxjÞ

Subject to:

�x2S (1)

yZGð �xÞ (2)

yRPFmin (3)

The objective function indicates that the total design time is

to be minimized, where f(xj) represents the design time

required to achieve a particular implementation level xj for

jth design feature. Constraint (1) indicates that we need to
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select a design alternative from Design Space S. Constraint (2)

represents the neural network mapping between Design Space

S and Fun Space F. Constraint (3) denotes that the perceived

fun of the selected design alternative should meet the minimum

requirement PFmin, which is demanded by users.

In the above formulation, Design space S consists of mN

design alternatives, where N denotes the number of design

features and m denotes the number of implementation levels.

The design space can easily become quite huge (639z2.23!
1030) when several tens of design features (NZ39) and a few

implementation levels (mZ6) are involved. Applying an

exhaustive search method is almost impossible. Therefore,

this research develops a genetic algorithm to efficiently find a

near-optimal solution from such a huge space.
Table 1

Design features identified in example (Hsu et al., 2004)

DF1: Scenario is unpredictable

DF2: Scenario is varying

DF3: Scenario is dramatic

DF4: Scene is creative

DF5: Scene is looking-real

DF6: Scene is colorful

DF7: Scene is complex

DF8: Scene is varying

DF9: Scene transmits smoothly

DF10: Character is creative

DF11: Character looks like a real person

DF12: Character’s style is similar to mine

DF13: More than one player can participate

DF14: Opponent is competitive

DF15: Opponent is unpredictable

DF16: Weapons are creative

DF17: Weapons are powerful

DF18: Background music suits the scene

DF19: Background music is varying

DF20: Music tempo suits the plot

DF21: Sound effect varies with events

DF22: Sound effect suits the event

DF23: Sound effect is loud enough

DF24: Sound effect is varying

DF25: Level difficulty is flexible to choose

DF26: New skills are acquired at every level

DF27: Level difficulty increases progressively

DF28: Levels can be skipped

DF29: Beginning levels are easy
5. Searching for optimal design alternative

We develop a GA to solve the formulated problem. Each

aspect of the proposed GA is described below.

5.1. Chromosome representation

A solution (a design alternative) is modeled by vector �x
(called a chromosome), which is composed of N features

(called genes). Each feature has m implementation levels.

5.2. Initial population

An initial population P(0) is created by randomly generating

M chromosomes. In generating a chromosome, the value of

each gene xj, an integer, is randomly chosen from the interval

[0, 5].

5.3. Fitness function

By referring to Chen and Huang (2003) and Marcelin (2004)

, the fitness function is defined below. The higher the Fð �xÞ, the
lower is the fitness value of �x. The chromosome with a small

fitness value is less likely to survive during the evolution of the

population and tends to be finally excluded from the

population.

Fð �xÞZK Tð �xÞCZ
PFmin

y
K1

� �� �

Z Z
0; if PFmin% �y;

a large positive number; otherwise

(
(4)
DF30: Final levels are difficult

DF31: Pace is fast enough

DF32: Pace is varying

DF33: Input device is easy to control

DF34: Game can be saved for continuity

DF35: High score board can be viewed

DF36: Game scores can be accumulated

DF37: Virtual token can be won

DF38: Instruction is clear

DF39: Real-time information is updated
5.4. Crossover

The crossover operator is designed to create M!Pcr new

chromosomes, where Pcr is the crossover probability. The

creation procedure is as follows. Randomly sample M!Pcr

chromosomes from P(t) and group them into (M!Pcr)/2 pairs.

Two new chromosomes are created by exchanging a portion of

the two original chromosomes in a particular pair.
5.5. Mutation

The mutation operator is designed to create M!Pmu new

chromosomes from P(t), where Pmu is the mutation probability.

This operator creates a new chromosome by randomly

selecting a chromosome from P(t) and replaces the value of

one of its genes. The mutation procedure is repeated until M!
Pmu has been created.
5.6. Evolution of population

Put the original chromosomes in P(t) as well as the newly

created ones into a setW, from whichM chromosomes are to be

selected to from the next population P(tC1). The evolution

procedure is as follows (Goldberg & Deb, 1991). Randomly

sample nR2 chromosomes from W and evaluate their fitness

values. Select the one with maximum fitness value and put it

into P(tC1). Iterate the above steps until P(tC1) is formed.



Table 3

The best design alternative of the 100 replications

Total design time required Tð �xÞ 483

Overall perceived fun (y) 4.5483

Implementation level of each x1Z0 x2Z1 x3Z1 x4Z2 x5Z2
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5.7. Termination condition

The evolution stops either when the number of evolution tO
T or when a particular chromosome keeps being the best

solution in the population for over Q generations.
design feature x6Z3 x7Z2 x8Z0 x9Z5 x10Z0

x11Z1 x12Z0 x13Z0 x14Z0 x15Z1

x16Z0 x17Z2 x18Z4 x19Z4 x20Z0

x21Z4 x22Z0 x23Z5 x24Z3 x25Z4

x26Z2 x27Z1 x28Z5 x29Z0 x30Z5

x31Z5 x32Z1 x33Z1 x34Z5 x35Z3

x36Z1 x37Z0 x38Z3 x39Z3
6. Numerical example

The proposed method of integrating ANN and GA to

optimally design an action game is implemented by using the

result of Hsu et al. (2004). The 39 design features identified are

shown in Table 1. The implementation is coded with CCC
program language.

In the research problem, we aim to identify a design

alternative that minimizes total design time Tð �xÞ and meets the

minimum fun requirement PFminZ4.5. Design times required

to achieve various implementation levels for each design

feature are shown in Table 2.
Table 2

Design time required to achieve various implementation levels for each design

feature

Implementation

level

0 1 2 3 4 5

DF1 0 10 30 50 70 90

DF2 0 10 20 40 80 160

DF3 0 10 30 90 190 330

DF4 0 10 20 40 80 160

DF5 0 10 20 30 40 50

DF6 0 5 6 10 12 15

DF7 0 5 7 8 9 10

DF8 0 5 10 15 18 20

DF9 0 5 7 10 12 20

DF10 0 10 20 30 40 50

DF11 0 10 30 60 90 120

DF12 0 10 20 40 80 160

DF13 0 10 12 20 22 24

DF14 0 10 20 40 80 160

DF15 0 10 20 30 40 50

DF16 0 10 20 40 80 120

DF17 0 10 20 40 80 100

DF18 0 10 20 40 60 80

DF19 0 5 7 19 20 25

DF20 0 5 7 8 9 10

DF21 0 5 7 10 15 20

DF22 0 10 20 30 40 50

DF23 0 5 7 10 12 14

DF24 0 5 8 10 12 20

DF25 0 5 6 10 12 15

DF26 0 10 20 40 60 80

DF27 0 10 20 30 40 50

DF28 0 10 12 15 18 20

DF29 0 5 8 10 15 20

DF30 0 5 8 10 12 15

DF31 0 10 12 15 18 20

DF32 0 10 12 15 18 20

DF33 0 10 20 30 40 50

DF34 0 5 15 25 35 45

DF35 0 5 10 15 20 25

DF36 0 5 10 15 20 25

DF37 0 10 20 40 60 80

DF38 0 5 10 15 20 25

DF39 0 10 20 30 40 50
Of the 28 design alternatives in Hsu et al. (2004) study , the

data sets of 21 alternatives are used to train a neural network

and that of the other seven alternatives are used to evaluate the

effectiveness of the neural network. The trained neural network

seems an effective one because the output error of the network

is less than 0.2%.

The proposed GA is then used to identify a near-optimal

design alternative from Design Space S. The parameters of the

GA are given as follows: MZ100, PcrZ0.80, PmuZ0.05, TZ
99,999, QZ1000. We run the GA program with 100

replications. For the 100 replications, the mean design time

is 514.83 time units and its standard deviation is 19.396 time

units. Of the 100 replications, the best design alternative is

shown in Table 3. The small standard deviation indicates that a

few replications will be sufficient to identify a near-the-best

solution of the GA. The computation time required for a

replication is about 5 min, by a personal computer with

1.8 GHz CPU. This approach can provide a timely solution and

therefore serve as an effective aid for game design.
7. Conclusions

This study proposes an approach to solving a trade-off

decision problem for game design. Making a trade-off among

design features is very important in the design process, but can

be very complex. A computer game involves a large number of

design features, and each feature can be implemented in

various levels. The number of design alternatives can therefore

be quite huge due to the combinatorial explosion of

implementation levels. Due to the pressure of time-to-market,

the time available to designers is relatively limited. Therefore,

developing a method that allows to efficiently identifying a

design alternative is critical to game design.

This study uses ANN and GA to optimize the design of a

computer game. This issue is resolved in two-fold. First, the

constructed ANN, using a few expensive experiment data, can

evaluate the overall perceived fun of a design alternative.

Second, the proposed GA can efficiently identify a near-

optimal design alternative out of the enormous solution space.

The suggested design alternative facilitates game designers to

properly allocate their efforts to various design features.

Although this approach has been successfully applied to

action games, the applicability of other types of digital contents

remains to be investigated. At the present time, we are
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investigating the possibility of extending this approach to some

other digital contents such as other types of computer games,

multi-media, movies, e-learning, and man–machine interfaces

of mobile devices.
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