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Abstract

Machine learning methods such as fuzzy logic, neural networks and decision tree induction have been applied to learn rules, however they can

get trapped into a local optimal. Based on the principle of natural evolution and global searching, a genetic algorithm is promising for obtaining

better results. This article adopts the learning classifier systems (LCS) technique to provide a three-phase knowledge extraction methodology,

which makes continues and instant learning while integrates multiple rule sets into a centralized knowledge base. This paper makes three

important contributions: (1) it represents various rule sets that are derived from different sources and encoded as a fixed-length bit string in the

knowledge encoding phase; (2) it uses three criteria (accuracy, coverage, and fitness) to select an optimal set of rules from a large population in the

knowledge extraction phase; (3) it applies genetic operations to generate optimal rule sets in the knowledge integration phase. The experiments

prove that the rule sets derived by the proposed approach is more accurate than other machine learning algorithm.
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1. Introduction

Developing an expert system requires construction of a

complete, correct, consistent, and concise knowledge base. The

knowledge base construction always involves interaction and

dialogue between domain experts and knowledge engineers.

Therefore, acquiring and integrating multiple knowledge

inputs from many experts or by various knowledge-acquisition

techniques plays an important role in building an effective

knowledge-based systems (Baral, Kraus, & Minker, 1991;

Boose & Bardshaw, 1987).

Currently for most of the trading activity models, the traders

predefine the trading strategy rule set by heuristic expertise,

and the major tasks are focused on the learning module (Liao &

Chen, 2001). There are many machine learning approaches

have been applied by learning module developers, including

inductive logic programming, decision tree (e.g. ID3 and

C4.5), deductive reasoning (e.g. expert system), fuzzy logic,

neural networks, genetic algorithm (GA), and learning

classifier systems (LCS). The including inductive logic
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programming methods are based on predicate calculus and

performance is very well (Kovalerchuk & Vityaev, 2000), but

they are hard to be understood and implemented. The decision

tree methods are based on supervised learning and apply the

information gain theory to discriminate the attributes to

construct a minimal-attributes decision tree. However, they

could not precisely handle the exceptional situations (Giarra-

tano & Riley, 1998). Traditional expert systems could get a

very good trading performance based on a high quality

knowledge base. However, it is always difficult to be acquired

by human experts (Giarratano & Riley, 1998). Fuzzy logic is

used to clarify the ambiguous situations, but it is difficult to

design a reasonable membership function (McIvor, McClos-

key, Humphreys, & Maguire, 2004). Neural networks have

been used in financial problems for a long time (Hashemi,

Blanc, Rucks, & Rajaratnam, 1998; Trippi & Desieno, 1992;

Wang, 2003). Unfortunately, the learned environment patterns

of neural networks are like to be embedded into a black box,

which is hard to explain. Simple genetic algorithm has also

been used in financial problems popularly (Oh, Kim, & Min,

2005; Shin & Sohn, 2003). The only weak point is that GA

seems result in a single rule and tries to apply for any

environment states.

On the other hand, knowledge integration can be thought of

as a multi-objective optimization problem (Yuan & Zhuang,

1996). Due to the huge searching space, the optimization

problem is often very difficult to solve. A genetic algorithm is
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Fig. 1. System architecture of XCS classifier system.
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usually used to discover a desirable but not necessarily an

optimal set of rules. The application of a GA in search of an

optimal rule set for machine learning is known as Genetic Based

Machine Learning (GBML). Awell-knownGBML architecture

is the so-called LCS developed byHolland, (1975); Holland and

Reitman, (1978). More recent GBML architectures are the

Extended Classifier System (XCS) developed by Wilson,

(1996), the Anticipatory Classifier System by Stolzmann,

(2000), and EpiCS by Holme (Holmes, 1996).

Our research objective therefore was to employ the XCS

technique, which can effectively integrate multiple rule sets

into one centralized knowledge base. The rest of this paper is

organized as follows. Section 2 describes the system

architecture of the XCS-based model. We then present the

knowledge encoding methodology in Section 3. Section 4

briefs on how the knowledge extraction methodology for

reinforcement. The knowledge integration methodology is

explained in Section 5. Traditional experimental results are

reported in Section 6. Section 7 shows the model could get a

remarkable trading profit in real security trade market. Finally,

we make our conclusion and discuss future work in Section 8.
Fig. 2. Algorithm of XCS-based knowledge integration (XCS-KI).
2. System architecture

The system architecture is shown in Fig. 1. It is an

implementation version of the general framework of the

Wilson’s XCS classifier system. The algorithm of the XCS-

based knowledge integration (XCS-KI) is shown in Fig. 2. At

first, the system initializes the classifier set which is originally

empty and will be covered by new classifiers automatically.

Here, we assume that all knowledge sources are represented by

rules, since almost all knowledge derived by knowledge

acquisition (KA) tools, or induced by machine learning (ML)

methods may easily be translated into or represented by rules.

After the next new run of the system, the initialization stage

will load the learned classifier rule sets that are ready to be run.

In the knowledge encoding phase, the system detects the

state of the environment, and encodes each rule among a rule
set into the condition message of a bit-string structure. Then,

the system generates the match set from the classifier set which

contains the classifiers matched to the condition message.

Next, the system produces a prediction array according to the

prediction accuracy of matched classifiers, and generates an

action set. After that, the system determines the winner action

with the highest accuracy, and then executes this winner action

within that environment.

In the knowledge integration phase, the system will obtain

the rewards from the environment after executing an action,

and then goes through the process of credit/rewards allocation

to the classifiers in the action set of the previous step.
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In the knowledge integration phase, the system instantly

starts the learning procedure after the process of credit/rewards

apportionment for each activity. In the meantime, the system

triggers the GA to implement the evolutionary module, i.e. the

GA contains selection, crossover, and mutation activities.

Finally, it will report the execution performance, and store

learning classifier set for the reapplication in the next activity

requirements.

3. Knowledge encoding phase

We use a pure binary string to do the genetic coding. A

classification rule can be coded since one chromosome consists

of several segments. Each segment corresponds to either an

attribute in the condition part (the IF part) of the rule or to a

class in the conclusion part (the THEN part) of the rule. Each

segment consists of a string of genes that takes a binary value

of 0 or 1. Each gene corresponds to one linguistic term of the

attribute or class. To improve the clarity of the coding, we use a

semicolon to separate segments and a colon to separate the IF

part and the THEN part.

In this paper we use a well-known example for deciding

what sport to play according to ‘Saturday Morning Problem’ to

demonstrate the process of encoding representation (Quinlan,

1986; Yuan & Shaw, 1995). Three sports {Swimming,

Volleyball, Weight_lifting} are to be deciding of four attributes

{Outlook, Temperature, Humidity, Wind}. The attribute Out-

look has three possible values {Sunny, Cloudy, Rain}, attribute

Temperature has three possible values {Hot, Mild, Cool},

attribute Humidity has two possible values {Humid, Normal},

and attribute Wind has two possible values {Windy,

Not_windy}. Also, assume that a rule set RSq from a

knowledge source has the following three rules:

rq1: IF (Outlook is Sunny) and (Temperature is Hot) THEN

Swimming;

rq2: IF (Outlook is Cloudy) and (Wind is Not_windy) THEN

Volleyball;

rq3: IF (Outlook is Rain) and (Temperature is Cool) THEN

Weight_lifting;

The intermediate representation of these rules would then

be:

r 0q1: IF (Outlook is Sunny) and (Temperature is Hot) and

(Humidity is Humid or Normal) and (Wind is Windy or
Fig. 3. Bit-string repre
Not_windy) THEN Swimming;

r 0q2: IF (Outlook is Cloudy) and (Temperature is Hot or Mild

or Cool) and (Humidity is Humid or Normal) and (Wind is

Not_windy) THEN Volleyball;

r 0q3: IF (Outlook is Rain) and (Temperature is Cool) and

(Humidity is Humid or Normal) and (Wind is Windy or

Not_windy) THEN Weight_lifting.

The tests with underlines are dummy tests. Also, r 0qi is

logically equivalent to rqi, for iZ1, 2, 3. After translation, the

intermediate representation of each rule is composed of four

attribute tests and one class pattern.

After translation, each intermediate rule in a rule set is ready

for being encoded as a bit string. Each attribute test is then

encoded into a fixed-length binary string whose length is equal

to the number of possible test values. Each bit thus represents a

possible value. For example, the set of legal values for attribute

Outlook is {Sunny, Cloudy, Rain}, and three bits are used to

represent this attribute. Thus, the bit string 110 would represent

the test for Outlook being ‘Sunny’ or ‘Cloudy’. With this

coding schema, we can also use the all-one string 111 (or

simply denoted as #) to represent the wildcard of ‘don’t care’.

Continuing the above example, assume each intermediate rule

in RSq is to be encoded as a bit string. We may rewrite rule r 0q1
as (100; 100; ##; ##: 100). As a result, each intermediate rule in

RSq is encoded into a chromosome as shown in Fig. 3. It should

be mentioned that our coding method is suitable to represent

multi-value logic with OR relations among terms within each

attribute, and the AND relations among attributes. After

knowledge encoding, the genetic process chooses bit-string

rules for ‘mating’, gradually creating good offspring rules. The

offspring rules then undergo iterative ‘evolution’ until an

optimal or a nearly optimal set of rules is found.
4. Knowledge extraction phase

In the knowledge extraction phase, genetic operations and

credit assignment are applied at the rule level. In our approach,

the initial set of bit strings for rules comes from multiple

knowledge sources. Each individual within the population is a

rule, and is of fixed length. Good rules are then selected for

genetic operations to produce better offspring rules. The

genetic process runs generation after generation until certain

criteria have been met. After evolution, all the rules in a

population are then combined to form a resulting rule set.
sentation of RSq.
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4.1. Initial population

The GA requires a population of individuals to be initialized

and updated during the evolution process. In our approach, the

initial set of bit strings for rules comes from multiple

knowledge sources. Each individual within the population is

a rule, and is of fixed length. If all of rule sets have k rules, then

the initial population size is k.

4.2. The strength of a rule

The strength of the fitness of a rule can be measured jointly

by its coverage, accuracy, and relative contribution among all

the rules in the population (Liao & Chen, 2001). Let U be the

set of test objects. The coverage of a rule derived rule (ri) is

defined as follows

CgðriÞZ
jGU

ri
j

n
(1)

where GU
ri
is the set of test objects in U correctly predicted by ri.

The n is the number of objects in U. The coverage Cg(ri) is the

relative size of this condition set in the entire object space.

Obviously, the larger the coverage, the more general the rule is.

The accuracy of a rule ri is evaluated using test objects as

follows:

AcðriÞZ
jGU

ri
j

jGU
ri
jC jUKGU

ri
j

(2)

ðUKGU
ri
Þ is the set of test objects in U wrongly predicted by

ri. The accuracy of the rule is the measure indicating the degree

to which the condition set is the subset of the conclusion set, or

the truth that the condition implies the conclusion. Obviously,

the higher the accuracy, the better the rule is.

Since an object may be classified by many rules, we want to

measure the contribution of each rule in the classification of

each object. If an object is classified correctly by only one rule,

then this rule has full contribution or credit which equals 1. If
Table 1

A set of test objects

Case Outlook Temperature Humidity

Sunny Cloudy Rain Hot Mild Cool Humid Nor

1 1 0 0 1 0 0 1 0

2 1 0 0 1 0 0 0 1

3 0 1 0 1 0 0 0 1

4 0 1 0 0 1 0 0 1

5 0 0 1 1 0 0 0 1

6 0 1 0 0 0 1 1 0

7 0 0 1 0 0 1 0 1

8 0 1 0 0 0 1 0 1

9 1 0 0 1 0 0 1 0

10 1 0 0 0 0 1 0 1

11 1 0 0 1 0 0 1 0

12 0 1 0 0 1 0 0 1

13 1 0 0 0 1 0 0 1

14 0 1 0 0 1 0 0 1

15 0 0 1 0 0 1 1 0

16 1 0 0 0 1 0 0 1
an object is classified correctly by n rules, then these rules

should share the contribution, and thus each of them has only

1/n contribution. The contribution of a rule is the sum of its

contribution to correctly classify each object. The contribution

of a rule ri is defined as follows

CbðiÞZ
X
u2U

Jðri; uÞP
r 0

i
2R Jðr 0i ; uÞ

where

Jðr;uÞ Z
1 if u is correctly classified by rule r

0 otherwise

(
(3)

The R is the population of all the rules. The u is a test object

in U. The contribution measure captures the uniqueness of the

rule. A rule with high contribution is generally less overlapping

with other rules. Finally, we integrate all the quality measures

into a single fitness function. The fitness of a rule ri is defined

by Eq. (4)

FitðriÞZ ððAcðriÞK1=LÞCCgðriÞ=LÞCbðriÞ (4)

The L is the number of all possible classes. The Ac(ri) is

subtracted by 1/L represents the accuracy of random guessing

among L evenly distributed classes. The reason for making this

subtraction is that a useful rule should have more accuracy than

random guessing. We use 1/L as the weight for the coverage.

When there are more classes, the coverage should have less

weight because in this situation accuracywill bemore difficult to

achieve than coverage. Finally, the sum of the net accuracy and

the weighted coverage is multiplied by the Cb(ri) which

represents the rule’s competitive contribution in the population.
5. Knowledge integration phase

Genetic operators are applied to the population of rule sets

for knowledge integration. They could create new rules from

existing rules. There are two primitive genetic operators:
Windy Sports

mal Windy Not_Windy Swimming Volleyball W-Lifting

0 1 1 0 0

0 1 0 1 0

0 1 1 0 0

0 1 0 1 0

1 0 0 0 1

0 1 0 0 1

0 1 0 0 1

0 1 0 1 0

1 0 1 0 0

1 0 0 0 1

0 1 1 0 0

0 1 0 1 0

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

0 1 0 1 0
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Table 3

Two sets of rules generated by fuzzy ID3 and XCS algorithm

(A) Rule set T generated by the fuzzy ID3 method

Rule T1: IF (Temperature is Hot) and (Outlook is Sunny) THEN Swimming

Rule T2: IF (Temperature is Hot) and (Outlook is Cloudy) THEN Swimming

Rule T3: IF (Temperature is Mild) and (Wind is Windy) THEN W-lifting

Rule T4: IF (Temperature is Cool) THEN W-lifting

Rule T5: IF (Outlook is Rain) THEN W-lifting

Rule T6: IF (Temperature is Mild) and (Wind is Not_Windy) THEN Volleyball

(B) Rule set X generated by the XCS algorithm

Rule X1: IF (Outlook is Sunny or Cloudy) and (Temperature is Hot) THEN

Swimming

Rule X2: IF (Outlook is Rain) and (Temperature is Mild or Cool) and (Wind is

Windy) THEN W-lifting

Rule X3: IF (Outlook is Sunny or Cloudy) and (Temperature is Mild) and

(Humidity is Normal) and (Wind is Not_Windy) THEN Volleyball
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crossover and mutation. The detail operators are described as

follows.

The crossover operator exchanges string segments between

two parent chromosomes to generate two child chromosomes.

Continuing the above example, assume r1 and r2 are chosen as

the parents for crossover. Assume the crossover point is set on

their first and second segments.

Parent 1: (100; 100; ##; ##; 100)

Parent 2: (010; ###; ##; 01; 010)

Child 1: (010; ###; ##; ##; 100)

Child 2: (100; 100; ##; 01; 010)

The two newly generated offspring rules are then:

Child 1: IF (Outlook is Cloudy) then Swimming;

Child 2: IF (Outlook is Sunny) and (Temperature is Hot) and

(Wind is Not_windy) THEN Volleyball.

The mutation operator is randomly changes some elements

in a selected rule and leads to additional genetic diversity to

help the process escape from local-optimum ‘traps’. As an

example, the mutation on the second segment of the r1 is shown

as follows:

Existing: (100; 100; ##; ##: 100).

Mutated: (100; 001; ##; ##: 100) or (100; 010; ##; ##: 100)

or (100; 011; ##; ##: 100) or (100; 101; ##; ##:
Fig. 4. A 6-bit multiplexer.



Fig. 6. The evolution process.

Fig. 5. The classifier format for a 6-bit multiplexer.
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100) or (100; 110; ##; ##: 100) or (100; 111; ##;

##: 100).
6. Experimental results

Two sample classification problems are used to illustrate the

performance of the XCS-KI algorithm. The first is the Saturday

Morning Problem, and the second is the Multiplexer Problem.
Table 4

The rules in the 48th generation for the six-bit Multiplexer problem

Rule A1 A0 D0 D1 D2

On Off On Off On Off On Off On

1 1 1 1 1 1 1 1 1 1

2* 0 1 1 0 1 1 0 1 1

3 1 1 1 1 1 1 1 1 1

4* 0 1 1 0 1 1 1 0 1

5 1 1 1 1 1 0 1 0 1

6 1 1 1 0 1 1 1 0 1

7* 0 1 0 1 0 1 1 1 1

8 1 1 1 1 0 1 0 1 0

9 1 1 0 1 1 0 1 0 0

10* 1 0 0 1 1 1 1 1 1

11 1 0 1 1 1 1 0 1 0

12 1 1 1 0 1 1 1 1 1

13 0 1 0 1 1 1 1 1 1

14* 1 0 1 0 1 1 1 1 1

15* 0 1 0 1 1 0 1 1 1

16 0 1 0 1 1 1 1 1 1

17 1 1 1 0 1 1 0 1 0

18 1 0 1 0 1 1 1 1 1

19 0 1 1 1 1 1 0 1 0

20 1 0 1 1 0 1 1 1 0

21* 1 0 0 1 1 1 1 1 0

22 1 1 0 1 1 1 1 1 1

23* 1 0 1 0 1 1 1 1 1

24 1 1 1 1 0 1 1 1 1

25 1 0 1 1 0 1 1 1 0
They each have different structures and a different level of

difficulties.
6.1. Saturday Morning Problem

We use the ‘Saturday Morning Problem’ to generate sample

data based on existing rules and then test if the hidden rules can

be discovered from the sample data by a learning algorithm.

The training data is shown in Table 1.

To apply our algorithm, the population size is fixed to 200.

The initial population consists of 16 rules converted from 16

cases, and 184 rules randomly generated. In each generation,

20% of the population is selected for reproduction. The

crossover probability is 0.8, and the mutation probability is

0.04. For selecting the replacement candidate, the sub-

population size is 20 and initial fitness is 0.01.

The number of rules extracted from the population

decreases through generations. The final rule set extracted

from the 28th generation consists of three rules. The three rules

with * are the rules extracted from the population. They are

listed in Table 2 along with 12 other rules that have high fitness

values. Table 2 also shows the accuracy and coverage of these

rules. They all have approximately the highest coverage.

Finally, among them the rule with the highest fitness value,

0.22, is selected. The final rule set is denoted as set X which

consists of rules X1–X3, and is listed in Table 3(B). For

comparison, another set of rules is generated by using the

Fuzzy Decision Tree Induction method (Yuan & Shaw, 1995)
D3 v Accuracy Coverage Fitness

Off On Off On Off

1 1 1 1 0 0.33 1.00 3.10

1 1 1 0 1 0.99 0.85 2.54

1 1 1 0 1 0.45 1.00 2.26

1 1 1 1 0 0.94 0.81 1.87

1 1 1 0 1 0.74 0.78 1.81

1 0 1 1 0 0.85 0.65 1.72

1 1 1 0 1 0.97 0.74 1.65

1 1 1 0 1 0.55 0.67 1.63

1 1 1 1 0 1.00 0.25 1.60

0 1 1 1 0 1.00 0.88 1.44

1 0 1 0 1 0.68 0.45 1.33

1 1 1 1 0 0.77 0.84 1.18

0 1 0 1 0 0.71 0.39 1.06

1 1 0 1 0 0.92 0.91 1.01

1 1 1 1 0 1.00 0.93 0.97

0 1 1 0 1 1.00 0.52 0.92

1 0 1 0 1 0.94 0.63 0.79

0 0 1 1 0 0.96 0.41 0.72

1 0 1 0 1 0.96 0.82 0.67

1 1 0 1 0 0.91 0.83 0.61

1 1 1 0 1 0.99 0.75 0.55

1 0 1 0 1 0.99 0.80 0.52

1 0 1 0 1 0.89 0.78 0.48

1 0 1 0 1 0.72 0.23 0.37

1 1 0 0 1 0.51 0.81 0.33



Table 5

Format of classifiers

Condition Action

(percentage change of close copq1) lop1 a

(percentage change of ADI copq2) lop2
(percentage change of RSI copq3) lop3
(percentage change of MACD cop4q4)
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from the same set of sample data. It is denoted as rule set T

which consists of rules T1–T6 and is listed in Table 3(A).

From Table 3, it is worth noting that the swimming rule X1

is equivalent to the combination of swimming rules T1 and T2.

The weight-lifting rule X2 is a little more specific than the

combination of rules T3, T4 and T5. The volleyball rule X3 is
Fig. 7. Stock price from January, 2000 to December, 2003 (by day

Fig. 8. Technical indicator from January
somehow more specific than T6 but is not fully covered by T6.

As a result, the rules generated by the XCS algorithm seem to

be both more accurate and more general.

6.2. Multiplexer problem

A simple experiment to demonstrate LCS is the 6-bit

multiplexer (Goldberg, 1989). A Boolean 6-bit multiplexer is

composed out of a 6 bit condition part (input) and a 1 bit action

part (output). Fig. 4 illustrates the 6-bit multiplexer. The first 2

bits of the input determine the binary address (00,01,10,11)

which will select 1 of the 4 data lines. The output is determined

by the value on the current selected dateline. Fig. 5 shows the

resulting classifier format for the 6-bit multiplexer. Where msb

is the most significant bit and lsb is the least.
). (Low: lowest price; High: highest price; Close: close price).

, 2000 to December, 2003 (by day).



Table 6

Experiment performance

Algorithm Experiment Profit

(%)

Accuracy

(%)

XCS-KI A: 20 Learning sub-steps 74.12 67.54

B: 50 Learning sub-steps 96.48 78.67

C: 80 Learning sub-steps 87.63 77.25

ID3 A: 20 Learning sub-steps 52.74 54.56

B: 50 Learning sub-steps 58.67 55.33

C: 80 Learning sub-steps 54.52 55.19

Fuzzy ID3 A: 20 Learning sub-steps 52.89 57.11

B: 50 Learning sub-steps 67.42 61.46

C: 80 Learning sub-steps 69.13 72.28

Neural network A: 20 Learning Sub-steps 66.41 68.79

B: 50 Learning Sub-steps 79.65 73.65

C: 80 Learning Sub-steps 78.73 71.55

Genetic algorithm A: 20 Learning sub-steps 61.41 68.79

B: 50 Learning sub-steps 67.65 73.65

C: 80 Learning sub-steps 71.73 71.55
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With our multi-value logic coding method, each input and

output has two values ‘On’ and ‘Off’ and thus can be

represented by a string of two bits. We use 10 to represent

‘On’, 01 to represent ‘Off’, and # to represent a wildcard ‘don’t

care’. As an example, (0;1;0;0;1;1) has an output of (0) because

the input at data line 01 is 0. The format for this example is (0;

1;0;0;1;1:0). It is clear that the input values of the data lines 00,

10 and 11 in this example are not needed to generate the output.

Further, the above case can then be represented as (01;10;01;

01;10;10:01). The whole behavior of the 6-bit multiplexer can

be summarized in the following eight rules:

Rule 1: (01;01;01;##;##;##:01)

Rule 2: (01;01;10;##;##;##:10)

Rule 3: (01;10;##;01;##;##:01)

Rule 4: (01;10;##;10;##;##:10)

Rule 5: (10;01;##;##;01;##:01)
Fig. 9. Equity curve of 20 in
Rule 6: (10;01;##;##;10;##:10)

Rule 7: (10;10;##;##;##;01:01)

Rule 8: (10;10;##;##;##;10:10)

Since there are six binary inputs and one binary output,

only a total of 64 different cases can be used for training.

However, with a possible wildcard, we could have 37Z2187

different rules. The total number of different rule sets then is

22187. To determine the optimal set of rules in this huge

search space is not an easy task. We used the XCS-KI

algorithm to learn the rules. To apply our algorithm, the

population size is fixed to 200. In each generation, 20% of

the population is selected for reproduction. The crossover

probability is 0.8, and the mutation probability is 0.04. For

selecting the replacement candidate, the sub-population size

is 20 and the initial fitness is 0.01. The algorithm converges

quickly. The optimal set of eight best rules is extracted from

the 48th generation. For comparison, another set of eight best

rules is generated by using the Fuzzy Decision Tree

Induction method from the 68th generation. The number of

rules extracted in each generation is illustrated in Fig. 6.

During the evolution process it gradually decreases,

indicating the improvement of the rule set.

The optimal set of eight best rules was extracted from the

48th generation, which 17 other rules that have the highest

fitness values shown in Table 4. The eight rules with * are

the best rules extracted from the population. Notice that the

two rules with the highest fitness values are the most general

rules.
7. Empirical study and performance evaluation

7.1. Experiment design

The TSMC (Taiwan Semiconductor Manufacturing Com-

pany) stock listed in the Taiwan Stock Exchange is selected to
stant learning sub-steps.



Fig. 10. Equity curve of 50 instant learning sub-steps.
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verify the capability of our XCS-KI algorithm. Founded in

1987, TSMC is the world’s largest dedicated semiconductor

foundry. As the founder and leader of this industry,

manufacturing capacity of TSMC is currently about 4.3 million

wafers, while its revenues represent some 60% of the global

foundry market. In this experiment, the condition part of a

trading rule (classifier) consists of three comparisons con-

nected by two logical operators. Each comparison uses one of

the following four technical indicators:

† percentage change of close,

† percentage change of ADI (Average Directional Index),

† percentage change of RSI (Relative Strength Index), and

† percentage change of MACD (Moving Average Conver-

gence & Divergence).
Fig. 11. Equity curve of 80 in
The action part of a trading classifier is long, short, or

none representing corresponding action for the next trading

day. The format of classifiers in the model is shown in

Table 5, where cop’s stand for the comparison operators

(OZ, !), lop’s stand for the logical operators (AND, OR),

q’s stand for the thresholds and a stands for the action (long,

short, none).

The trading period of our experiment is from January

4, 2000 to December 29, 2003, with 1009 trading days.

We test three heuristically decided learning sub-steps.

Each setting runs three times to get its average

performance. Fig. 7 shows the basic stock price

information about TSMC. Furthermore, we calculate the

advance technical indicator to analyze the TSMC stock

price in Fig. 8.
stant learning sub-steps.
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7.2. Performance evaluation

In this experiment, profit and accuracy of the proposed

approach is compared to that of the other classification

methods (decision tree, fuzzy decision tree, neural network,

and genetic algorithm). The detail experiment performances

are summarized in Table 6. The profit is the accumulated

rate of return for each trading day. Figs. 9–11 show the

equity curves of 20, 50, and 80 instant learning sub-steps,

respectively. The results of these experiments can be

summarized as follows.

1. The average profit of experiment B of 50 instant learning

sub-steps is 96.48% is better than other machine learning

algorithms. It shows that the model really could get a

remarkable profit in the security trading problem.

2. The correct rate of experiment B is 78.67%, and all the

correct rates of these three experiments are better than

the correct rate of average random trading action strategy

(33.33%), and other machine learning algorithms. There-

fore, it proves the proposed approach is more accurate

than other machine learning algorithm.

3. The 50 instant learning sub-steps experiment is the best

one of these three experiments. It seems that too small

instant learning sub-steps could not learn the experience.

Besides, it proves the proposed approach has high

performance than other machine learning algorithm.
8. Conclusion

In this paper, we have shown how the knowledge encoding,

extraction, and integration methodology can be effectively

represented and addressed by the proposed XCS-KI algorithm.

The main contributions are: (1) it needs no human experts’

intervention in the knowledge integration process; (2) it is

capable of generating classification rules that can be applied

when the number of rule sets to be integrated increases; (3) it

uses three criteria (accuracy, coverage, and fitness) to apply the

knowledge extraction process which is very effective in

selecting an optimal set of rules from a large population. The

experiments prove that the rule sets derived by the proposed

approach are more accurate than other machine learning

algorithm.
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