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Abstract

An extended Vogan diagram is an extended Dynkin diagram with a diagram involution, such that
the vertices fixed by the involution can be painted or unpainted. Every extended Vogan diagram
represents an almost compact real form of some affine Kac–Moody Lie algebra. Two diagrams may
represent isomorphic algebras, and in this case we say that the diagrams are equivalent. In this paper,
we classify the equivalence classes of extended Vogan diagrams, and provide a complete list of all
diagrams within each class. It gives a combinatorial classification of the isomorphic classes of almost
compact real forms of the affine Kac–Moody Lie algebras.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Extended Vogan diagram; Almost compact real form; Kac–Moody Lie algebra

1. Introduction

A Vogan diagram is a Dynkin diagram with a diagram involution, such that the vertices
fixed by the involution are either painted or unpainted. This terminology first appeared
in [7], and the Vogan diagrams represent the real forms of the complex simple Lie alge-
bras. Similarly, given a complex affine Kac–Moody Lie algebra, we can represent it with
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a diagram, known as the extended Dynkin diagram [6, Chapter 4]. We define the extended
Vogan diagrams as above, namely with an involution whose fixed points are painted or un-
painted. The equivalence classes of extended Vogan diagrams correspond to the isomorphic
classes of almost compact real forms [1,2]. In this paper, we classify all the equivalence
classes of extended Vogan diagrams, and give a complete list of all the diagrams within
each equivalence class. Consequently, this gives a combinatorial classification of the almost
compact real forms of affine Kac–Moody Lie algebras, which is parallel to the algebraic
classification given in [3].

Let gR be a real form of a complex affine Kac–Moody Lie algebra g. Fix an isomor-
phism from g to gR ⊗ C, and let the Galois group Γ = Gal(C/R) act on g. We identify gR
with the fixed points of Γ . We say that gR is almost compact if the nontrivial element of Γ

transforms a Borel subalgebra of g to the Borel subalgebra of the opposite sign. Suppose
that gR is an almost compact real form. By choosing a maximally compact Cartan subal-
gebra of gR which is stable under a Cartan involution, we can represent gR by an extended
Vogan diagram [1, Section 3].

In what follows, we recall the equivalence relation [1, (3.7.1)] on the extended Vogan
diagrams v. It considers v whose edges may be single, double with one arrow, triple with
one arrow. Namely we tentatively ignore A

(1)
1 (contains double edge with two arrows) and

A
(2)
2 (contains quadruple edge), and treat them separately later. If i is a painted vertex in v,

let Fi be the algorithm which reverses the colors of all the vertices j adjacent to i, except
when j is a longer root joint to i by a double edge. Namely, define the neighborhood of
vertex i by

N(i) = {vertices adjacent to i}, (1.1)

excluding i itself. Then Fi(v) is the diagram given by

Fi : Reverse the colors of all j ∈ N(i), except when j is a longer root joint to i

by a double edge or when j is not fixed by the involution. (1.2)

The operation Fi corresponds to the reflection which sends the simple root i to −i. So v and
Fi(v) represent isomorphic Lie algebras. We say that two extended Vogan diagrams v and
w are equivalent if there is a sequence of operations v = v0 → v1 → ·· · → vk = w, where
each va → va+1 is either some algorithm Fi as given in (1.2), or a diagram automorphism.
This definition is justified by the following theorem.

Theorem 1.1 (Batra). Every extended Vogan diagram represents an almost compact real
form of an affine Kac–Moody Lie algebra. Two extended Vogan diagrams are equivalent if
and only if their corresponding algebras are isomorphic.

Proof. The first statement follows from [2, Theorem 5.2], and the second statement fol-
lows from [1, Theorem 5.2]. �

By this theorem, the equivalence classes of extended Vogan diagrams correspond to the
isomorphic classes of almost compact real forms of affine Kac–Moody Lie algebras. It al-
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lows us to use the diagrams to study the isomorphism of algebras. Nonequivalent diagrams
of A

(1)
n , B

(1)
n , C

(1)
n and D

(1)
4 are shown in [1]. In this paper, we give a complete list of all

the distinct equivalence classes, as well as all the diagrams within each class.
It is convenient to represent an equivalence class with a diagram with minimum number

of painted vertices. So the following theorem will be useful.

Theorem 1.2 (Borel and de Siebenthal). Every equivalence class of extended Vogan dia-
grams has a representative with at most two vertices painted.

Proof. The Borel and de Siebenthal theorem [4] says that every real form of a complex
simple Lie algebra can be represented by a Vogan diagram with at most one painted vertex.
In [5], we verify this theorem by using algorithms (1.2) and diagram automorphisms to
explicitly reduce every painting on a Dynkin diagram D to another painting with at most
one painted vertex.

Consider an extended Dynkin diagram given by a Dynkin diagram D, an extra vertex p,
and some extra edges joint to p. Since a painting on D is equivalent to another one with
at most one painted vertex, together with p, we obtain a painting with at most two painted
vertices. �

This theorem does not help to judge whether two diagrams are equivalent, or how to
reduce a diagram to another one with at most two painted vertices. For instance two dia-
grams, both with two painted vertices, could be nonequivalent to each other.

Clearly a diagram with trivial involution and no painted vertex is not equivalent to any
other diagram. So once and for all, we ignore such diagrams. In Tables 1 and 2 below,
we apply Theorem 1.2 and represent each equivalence class by a diagram with one or two
painted vertices. Tables 1 and 2 handle the diagrams with trivial and nontrivial involutions,
respectively. The tables give a complete list of all the diagrams within each equivalence
class. We shall label the vertices, so that an extended Vogan diagram is denoted by

(i1, . . . , ik) or (θ; i1, . . . , ik), i1 < i2 < · · · < ik. (1.3)

Here (i1, . . . , ik) has trivial diagram involution and vertices i1, . . . , ik painted; while
(θ; i1, . . . , ik) has diagram involution θ and vertices i1, . . . , ik painted. We also write (θ; ∅)

for the diagram with involution θ and no painted vertex.
In what follows, we explain the notations φ, c,B,M,ξ used in Table 1.
The notation φ shall be used very often. Given a diagram (i1, . . . , ik) where the painted

vertices are ordered by i1 < i2 < · · · < ik , we define

φ(i1, . . . , ik) = ik − ik−1 + · · · + (−1)k−1i1 =
k∑

p=1

(−1)k−pip. (1.4)

For a vertex i of a given diagram v, let c(i) denote the color of i in v, which can be
painted or unpainted.
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Table 1
Trivial diagram involution

Extended Dynkin diagram Representative diagram Equivalent diagrams

A
(1)
1

�
0

�
1

〈 〉 (0) (1).

(0,1)

A
(1)
n , n > 1 �

�

�
.
.
.

0 ��
�

���

n

1

(0,N), 1 � N � n+1
2 (i1, . . . , ik), k is even and φ = N, n − N.

(0) (i1, . . . , ik), k is odd.

B
(1)
n , n > 2

�
���
��
�

2
1

0

. . . �n – 1

〉 �
n

(1) c(0) 	= c(1).

(N), N � 2 c(0) = c(1) and φ = N.

(0,1) (0,1,2), (k, k − 1), k � 3.

C
(1)
n , n > 1 (0) c(0) 	= c(n).

�� 10

〉 . . . �n – 1

〈 �
n (N), N � n

2 c(0) = c(n) = ◦ and φ = N, n − N.

(0, n) c(0) = c(n) = •.

D
(1)
n , n > 4

�2 . . . �n – 2��
�

�� �

n – 1

n

���
��
�1

0

(0) c(0) 	= c(1), c(n − 1) = c(n) or c(0) = c(1), c(n − 1) 	= c(n).

(0, n) c(0) 	= c(1) and c(n − 1) 	= c(n).

(0,1) (0,1,2), (n − 2, n − 1, n), (k − 1, k), 3 � k � n − 2.

(N), 2 � N � n
2

v 	= (0,1,2); c(0) = c(1) and c(n − 1) = c(n),

φ = N, n − N.

E
(1)
6 �

y1

�
y2

�
c0

� �
x2

�
�
z2

z1

x1

(x1) M is odd.

(x2) M is even and B is odd.

(x1, y1) M,B are even.

E
(1)
7 �

1

�
2

�
3

�
4

�
7

�
5 6

�
� 0

(1) φ is odd.

(2) φ and ξ are even.

(0) φ = 0,4 and ξ is odd.

(1,7) φ = 2,6 and ξ is odd.

E
(1)
8 �

1

�
2

�
3

�
4

�
7

�
8

�
5 6

�
� 0 (1) (5), (0,N), N = 4,8.

(7) (2), (3), (0,6).

(8) (0), (4), (6), (0,N), N = 1,2,3,5,7.

F
(1)
4

�
1

�
2

�
3

�
4

〉 �
5

(1) (1 � i1, . . . , ia � 3,4 � ia+1, . . .), φ(i1, . . . , ia) is odd.

(2) (1 � i1, . . . , ia � 3,4 � ia+1, . . .), φ(i1, . . . , ia) is even (	= 0).

(4) (1 � i1, . . . , ia � 3,4 � ia+1, . . .), φ(i1, . . . , ia) = 0.

G
(1)
2 �

1

�
2

�
3

〉 (1) φ is odd.

(2) φ is even.

A
(2)
2 �

0

�
1

〈 (0)

(1) (0,1).

A
(2)
2n

, n > 1 (0) (i1, . . . , ik), i1 = 0.

�� 10

〉 . . . �n – 1

〉 �
n

(N), 1 � N � n (i1, . . . , ik), i1 	= 0 and φ = N .

A
(2)
2n−1, n > 2

�1 . . . �n – 2��
�

�� �

n – 1

n

�0 〉

(0) c(0) = • and c(n − 1) = c(n).

(n) c(0) = ◦ and c(n − 1) 	= c(n).

(N), 1 � N � n
2 φ = N, n − N and c(0) = ◦, c(n − 1) = c(n).

(0, n) c(0) = • and c(n − 1) 	= c(n).
(continued on next page)
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Table 1 (continued)

Extended Dynkin diagram Representative diagram Equivalent diagrams

D
(2)
n+1, n > 1 (0,N), 1 � N � n (i1, . . . , ik), φ = N and k is even.

�� 10

〈 . . . �n – 1

〉 �
n

(N), 0 � N � n
2 (i1, . . . , ik), φ = N, n − N and k is odd.

E
(2)
6�

1

�
2

�
3

�
4

〈 �
5

(1) (i1, . . . , ik), ik � 3 and φ is odd.

(2) (i1, . . . , ik), ik � 3 and φ is even.

(4) (i1, . . . , ik), ik � 4 and φ is even.

(5) (i1, . . . , ik), ik � 4 and φ is odd.

D
(3)
4 �

1

�
2

�
3

〈 (1) φ is odd.

(2) φ is even.

For a Vogan diagram v in E
(1)
6 , let

B(v) = number of branches which contain painted vertices in v,

and

M(v) = number of painted odd vertices in v.

So 0 � M(v) � 4. More explanations for B(v) and M(v) are given in (3.1) and (3.2).
For a Vogan diagram v in E

(1)
7 , we write

v = (s, i1, . . . , ia, ia+1, . . . , ik), (1.5)

where 1 � i1 < · · · < ia � 4 < ia+1 < · · · < ik � 7, and s ⊂ {0}. In this case, let

ξ =
{∑a

p=1(−1)a−pip, if the vertex 0 is unpainted,∑a
p=1(−1)a−pip + 1, if the vertex 0 is painted.

(1.6)

For example, let v = (0,1,3,4,7) be a diagram for E
(1)
7 . Then φ(v) = 7−4+3−1+0 = 5

and ξ = 4 − 3 + 1 − 0 + 1 = 3 (the last +1 in the above equation is due to the vertex 0
being painted).

In Table 2, there are several cases where equivalent diagrams can be obtained by replac-
ing θ with other σ via diagram automorphisms. For instance, consider the first diagram
which deals with A

(1)
n , n even. Here θ fixes 0 and θ(i) = n + 1 − i. If we rotate the indices

by one unit, we obtain σ which fixes n and σ(i) = n − 1 − i. But clearly the diagrams
resulting from θ and σ can be identified. So we exclude such diagrams because they are
obvious (but require messy notations). The same happen for other A

(1)
n , D

(1)
n (replacing

0 ↔ 1 with n − 1 ↔ n) and E
(1)
6 (permuting xi , yi , zi ).

The classification in Tables 1 and 2 is consistent with the classification of the almost
compact real forms of affine Kac–Moody Lie algebras in [3, pp. 487–494]. For example,
the equivalences classes for A

(1)
1 given in [3, p. 487] are τ0τ1, τ0 and ρ. And the corre-

sponding classes are represented by (0,1), (0) in Table 1 and (θ; ∅) in Table 2.
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Table 2
Nontrivial diagram involution

Extended Dynkin diagram with nontrivial θ Representative diagram Equivalent diagrams

A
(1)
n , n even (θ; ∅)

�
0
��
�

�� � . . .

n

1

. . .

�

� n+2
2

n
2


 

�

�
(θ;0)

A
(1)
n , n odd

�
0
��
�

�� � . . .

n

1

. . .

�

�

��
��� n+1

2

n+3
2

n−1
2

���−→��� ���
��	←−

(θ; ∅)

A
(1)
n , n odd

�

�

�

�

�

� . . .
0

n . . .

�

�n+1
2

n−1
2


 
 (θ; ∅)

A
(1)
n , n odd (θ; ∅)

�
0
��
�

�� � . . .

n

1

. . .

�

�

��
��� n+1

2

n+3
2

n−1
2


 
 (θ;0) (θ; n+1
2 ).

(θ;0, n+1
2 )

B
(1)
n , n > 4 (θ; ∅)

�
���
��
�

2
1

0

. . . �n – 1

〉 �
n
 (θ;N) N = 2,3, . . . , n (θ;v), φ = N.

C
(1)
n , n > 3 (θ; ∅)

��
10

〉 . . . �
n – 1

〈 �
	

	

n

� �
(θ; n

2 ), n even

D
(1)
n , n > 4 (θ; ∅)

�2 . . .

←−−→

←−−→
�n – 2��

�

�� �

n – 1

n
���
��
�1

0
(θ; n

2 ), n even

D
(1)
n , n > 4 (θ; ∅)

�2 . . .
 �n – 2��
�

�� �

n – 1

n
���
��
�1

0

(θ;N), 2 � N � n+1
2 or N = n (θ;v), φ = N .

D
(1)
n , n > 4 (θ; ∅)

�2 . . .
 � 
n – 2��
�

�� �

n – 1

n
���
��
�1

0

(θ;N), 2 � N � n
2 (θ;v), φ = N.

(continued on next page)
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Table 2 (continued)

Extended Dynkin diagram with nontrivial θ Representative diagram Equivalent diagrams

E
(1)
6

�
��
��c0 �

 �x2 x1

� �

�� z2

y2

z1

y1

(θ; ∅)

(θ;x1)

(θ;x2)

E
(1)
7

�
��
��4 �


 0

��

�1

7

�

�� 3

5

2

6

(θ; ∅)

(θ;0)

A
(2)
2n−1, n > 2 (θ; ∅)

�1 . . . �n – 2��
�

�� �

n – 1

n

� 
0

〉 (θ;N), 0 � N � n−1
2 (θ;v), φ = N.

D
(2)
n+1, n > 1 (θ; ∅)

��
10

〈 . . . �
n – 1

〉 �
	

	

n

� �
(θ; n

2 ), n even

Our arguments are divided into the following sections. In Section 2, we consider the
classical nontwisted diagrams for A

(1)
n , B

(1)
n , C

(1)
n and D

(1)
n . In Section 3, we consider

the exceptional nontwisted diagrams for E
(1)
6 , E

(1)
7 , E

(1)
8 , F

(1)
4 and G

(1)
2 . In Section 4, we

consider the twisted diagrams for A
(2)
n , D

(2)
n , E

(2)
6 and D

(3)
4 . There are two propositions for

E
(1)
7 and E

(1)
8 which treat the Dynkin diagrams purely from a graph theoretic viewpoint.

Their arguments are lengthy and less relevant, so we place them in Appendix A to keep the
rest of the paper fluent.

2. Classical nontwisted diagrams

We consider the extended Vogan diagrams for A
(1)
n , B

(1)
n , C

(1)
n and D

(1)
n . Nonequivalent

diagrams of A
(1)
n , B

(1)
n , C

(1)
n and D

(1)
4 are given in [1]. In this section, we show that the

diagrams in [1] (as well as general D
(1)
n ) exhaust all the equivalence classes, and describe

the other diagrams which are equivalent to each of them.

2.1. A
(1)
1

We start with A
(1)
1 . Recall that the operation Fi in (1.2) does not cover the cases A

(1)
1

and A
(2)
2 . We now treat A

(1)
1 , leaving A

(2)
2 for Section 4 later. Let

�
α0

�
α1

〈 〉

be the diagram for A
(1).
1
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Proposition 2.1. There are three mutually nonequivalent nontrivial diagrams of A
(1)
1 given

by {α0 painted alone}, {α0, α1 painted} and {involution α0 ↔ α1}.

Proof. Recall that the Cartan matrix of A
(1)
1 is

( 2 −2
−2 2

)
, and the positive roots are [6, p. 93]

Δ+ = {
(k − 1)α0 + kα1, kα0 + (k − 1)α1, kα0 + kα1, where k = 1,2, . . .

}
.

It implies that

α0, α0 + α1,2α0 + α1 ∈ Δ+. (2.1)

Suppose now that α0 is painted. The operation Fα0 corresponds to the effect on the diagram
due to the Weyl reflection rα0 which sends α0 to −α0. By [6, p. 86],

rα0(α1) = α1 − (−2)α0 = 2α0 + α1. (2.2)

The coefficient −2 in the above equation comes from the Cartan matrix.
Let c(·) denotes “the color of,” which could be painted or unpainted. The almost com-

pact real form determines the colors of all real roots, though only the colors of simple roots
are indicated on the extended Vogan diagrams. Suppose that we regard the two colors as
the two element group with “unpainted” being the identity. Then whenever i, j, i + j are
roots, they satisfy c(i) + c(j) = c(i + j). For example, the sum of two painted roots is
unpainted, and so on.

Since α0 is painted, by (2.1), c(α0 + α1) 	= c(α1), and also c(2α0 + α1) 	= c(α0 + α1).
So c(2α0 + α1) = c(α1). Together with (2.2), we conclude that Fα0 does not change the
color of α1. By symmetry of the diagram, clearly the diagram with α0 painted alone is
equivalent to the one with α1 painted alone. The proposition follows. �

By the above proposition, we have proved the information for A
(1)
1 in Tables 1 and 2. Let

X be a type of complex simple or affine Kac–Moody Lie algebra. Let V (X) and V (θ;X)

respectively denote the diagrams with trivial diagram involution (with at least one painted
vertex) and with diagram involution θ . We write

(i1, . . . , ik) ∈ V (X) and (θ; i1, . . . , ik) ∈ V (θ;X), i1 < i2 < · · · < ik,

where i1, . . . , ik are the painted vertices. Here we label the vertices as in Tables 1 and 2.
Define the function φ on V (X) by (1.4).

2.2. A
(1)
n , n > 1

The diagram of A
(1)
n is a loop with vertices 0,1, . . . , n in this order.

Proposition 2.2. Let v = (i1, . . . , ik) ∈ V (A
(1)
n ). Then

v ∼
{

(0,N) ∼ (0, n + 1 − N) if k is even and φ(v) = N or n + 1 − N;
(0) if k is odd.
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Proof. By Theorem 1.2, v is equivalent to another diagram with at most two painted ver-
tices. Further, each Fi preserves the parity of the number of painted vertices in v. So if v

has odd number of painted vertices, it is equivalent to a diagram with one painted vertex.
By rotating the diagram of A

(1)
n , it is clear that all the diagrams with one painted vertex are

equivalent to one another.
Next we consider the case where v has even number of painted vertices. For the proof

of this proposition (only), we modify the requirement for the notation (i1, . . . , ik) in (1.3)
by allowing i1 � i2 � · · · � ik . In this notation, a vertex appears odd number of times if
and only if it is painted. So for instance (1,1,2) and (2,2,2) refer to the same diagram
with vertex 2 painted. Observe that φ of (1.4) remains well defined in this convention. As
we shall see, it allows us to express Fi easily. Note that k is even.

For ir 	= 0, n,

φ · Fir (v) = φ(i1, . . . , ir−1, ir − 1, ir , ir + 1, ir+1, . . . , ik)

= φ(ir+1, . . . , ik) + (−1)k−r
(
(ir + 1) − ir + (ir − 1) − φ(i1, . . . , ir−1)

)
= φ(v). (2.3)

If we can apply Fn to v = (i1, . . . , ik), then ik = n and so

φ · Fn(v) = φ(0, i1, . . . , ik−1, n − 1, n) = n + 1 − φ(v). (2.4)

If we can apply F0 to v = (i1, . . . , ik), then i1 = 0 and so

φ · F0(v) = φ(0,1, i2, . . . , ik, n) = n + 1 − φ(v). (2.5)

The last equation uses the fact that k is even.
We conclude from (2.3)–(2.5) that

v ∼ w ⇔
{

φ(v) = φ(w) or
φ(v) = n + 1 − φ(w).

(2.6)

By Theorem 1.2, v is equivalent to some diagram with two painted vertices i and j .
By (2.6), |j − i| is either φ(v) or n + 1 − φ(v). But both cases represent equivalent dia-
grams, via diagram automorphisms. For instance the diagrams v = (1,3) and w = (1, n)

are equivalent, with φ(w) = n + 1 − φ(v). This proves the proposition. �
As explained in the proof, the diagrams with odd number of painted vertices form an

equivalence class. Proposition 2.2, together with (2.6), show that two Vogan diagrams v

and w with even number of painted vertices are equivalent if and only if φ(v) = φ(w) or
φ(v) = n + 1 − φ(w). This leads to all the information for V (A

(1)
n ) in Table 1.

We next consider V (θ;A(1)
n ). If n is even (i.e. odd number of vertices), then up to

diagram automorphisms, θ has only one possibility 1 ↔ n, 2 ↔ n − 1, . . . where 0 is fixed
by θ . So there are two equivalence classes, given by vertex 0 being painted or unpainted. If
n is odd (i.e. even number of vertices), then up to diagram automorphisms, there are three
cases for θ :
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�
0

��
�

�� � . . .

n

1

. . .

�

�

��
�

�� n+1
2

n+3
2

n−1
2

�
���−→�

���
�
���

�
��	←−

�




�

�

�

� . . .
0

n . . .

�

�
n+1

2

n−1
2


 
 �
0

��
�

�� � . . .

n

1

. . .

�

�

��
�

�� n+1
2

n+3
2

n−1
2


 


(a) (b) (c)

In cases (a) and (b), θ has no fixed point. In case (c), θ has fixed points 0 and n+1
2 . So

case (c) has three equivalence classes represented by (θ; ∅), (θ;0) and (θ;0, n+1
2 ). This

completes the discussion for V (θ;A(1)
n ) in Table 2.

In our labeling for X = A,B,C,D, if we omit vertex 0 and its adjacent edges in X
(1)
n ,

then we obtain the Dynkin diagram for Xn. This idea allows us to apply the results of [5]
in the following manner. Suppose that S is a collection of extended Vogan diagrams, and
S is closed under each Fi . To study S, we shall often omit one or two vertices (especially
vertices 0 and n) from each diagram in S, and denote the resulting Vogan diagrams by T .
The bijection π :S → T is an isomorphism in the sense that Fi · π(v) = π · Fi(v) and
φ(v) = φ · π(v) for all v ∈ S. In this way, we can apply the results of [5] on T to S. We
first recall some results of [5].

Proposition 2.3.

(a) In An and Bn, (i1, . . . , ik) ∼ (
∑k

p=1(−1)k−pip).
(b) In Cn, if ik = n, then (i1, . . . , ik) ∼ (n).
(c) In Dn, (i1, . . . , ik, n − 1) ∼ (n − 1), (i1, . . . , ik � n − 2) ∼ (

∑k
p=1(−1)k−pip) and

(i1, . . . , ik, n − 1, n) ∼ (1 + ∑k
p=1(−1)k−pip).

Proof. Part (a) follows from [5, Proposition 2.3], part (b) follows from [5, Proposition 2.4],
and part (c) follows from [5, Proposition 2.5]. �
2.3. B

(1)
n , n > 2

Given a Vogan diagram, recall that c(i) denote the color of vertex i in that diagram. The
vertices of B

(1)
n are labeled as follows:

�

�
�

�

�
�

�
2

1

0

. . . �
n − 1

〉 �
n

Proposition 2.4. Let v ∈ V (B
(1)
n ). Then

v ∼
⎧⎨
⎩

(φ(v)) if c(0) = c(1) and φ(v) 	= 1; (a)
(0,1) if c(0) = c(1) and φ(v) = 1; (b)

(1) if c(0) 	= c(1). (c)
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Proof. We prove parts (a) and (b) simultaneously. Let S ⊂ V (B
(1)
n ) be the diagrams with

vertices 0,1 having the same color. It is preserved by all the Fi . By ignoring vertex 0, we
obtain an isomorphism π :S → V (Bn). Recall from [5] that in Bn, the distinct equivalence
classes are represented by (1), (2), . . . , (n), where v ∼ (φ(v)). We conclude that in S, the
equivalence classes are (0,1), (2), (3), . . . , (n), with

v ∼
{

(φ(v)) if φ(v) > 1,
(0,1) if φ(v) = 1.

We next consider part (c), where vertices 0 and 1 have opposite colors. If we ignore
vertex n and think of the diagram as in V (Dn), then Proposition 2.3(c) says that the colors
of 2,3, . . . , n − 1 are irrelevant. Namely all the diagrams in {v ∈ V (Dn); c(0) 	= c(1)} are
equivalent to one another. In particular if we let vertex n − 1 be painted and apply Fn−1,
then the color of vertex n is irrelevant too. We conclude that all the diagrams in part (c) are
equivalent to one another. This completes the proof. �

By Proposition 2.4, to prove all the information for V (B
(1)
n ) in Table 1, it remains only

to show that the diagrams (0,1), (1), (2), . . . , (n) are not equivalent to one another. The
diagram (1) is obvious, because the colors of vertices 0 and 1 remain different under all
the Fi . For the other diagrams, we use the function φ of (1.4). The computation similar
to (2.3) shows that φ · Fi(v) = φ(v). Since the values of φ on (0,1), (2), (3), . . . , (n) are
different, they are not equivalent to one another. This proves all the cases for V (B

(1)
n ) in

Table 1.
The only possible nontrivial diagram involution for B

(1)
n is given by 0 ↔ 1, fixing the

other vertices. In this case the arguments are similar to Proposition 2.4(a), and the equiv-
alence classes are represented by diagrams with only one vertex painted from 2,3, . . . , n,
respectively.

2.4. C
(1)
n , n > 1

The vertices of C
(1)
n , n > 1, are labeled as follows:

��
10

〉 . . . �
n − 1

〈 �
n

Proposition 2.5. Let v ∈ V (C
(1)
n ). Then

v ∼
⎧⎨
⎩

(φ(v)) ∼ (n − φ(v)) if 0, n are unpainted; (a)
(0) ∼ (n) if exactly one of 0, n is painted; (b)

(0, n) if 0, n are painted. (c)

Proof. We first consider part (a), namely the diagrams v with vertices 0, n unpainted. Since
0, n are long, they remain unpainted under any Fi . So by ignoring vertices 0 and n, such
diagrams are isomorphic to An−1. By Proposition 2.3(a), v ∼ (φ(v)) ∼ (n − φ(v)). This
proves part (a).
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Next we consider part (b), where exactly one of 0, n is painted. Without loss of gener-
ality, let S be the diagrams with 0 unpainted and n painted. Once again the colors of 0 and
n remain unchanged under any Fi . Let

T = {
v ∈ V (Cn); vertex n of v is painted

}
. (2.7)

By ignoring vertex 0, we obtain an isomorphism between S and T . By Proposition 2.3(b),
the diagrams in T are all equivalent to (n). Therefore, the diagrams in S are all equivalent
to (n). By symmetry of the diagram, (0) ∼ (n) in V (C

(1)
n ).

The argument for part (c) is similar to part (b). Namely by ignoring the painted vertex 0,
the diagrams with 0, n painted can be identified with T of (2.7). By applying Proposi-
tion 2.3(b) again, it follows that the diagrams in part (c) are all equivalent to (0, n). The
proof follows. �

By Proposition 2.5, to prove the information for V (C
(1)
n ) in Table 1, we only have to

show that the diagrams (0), (0, n) and {(N); 1 � N � n
2 } are not equivalent to one another.

The colors of vertices 0 and n remain the same under all the Fi , so (0) and (0, n) are not
equivalent to the other diagrams in this list. As for {(N); 1 � N � n

2 }, apply the function φ

of (1.4) to them. Similar to the computation in (2.3), if v is a diagram with vertices 0 and n

unpainted, then φ · Fi(v) equals φ(v) or n − φ(v) for all i = 1, . . . , n − 1. So the diagrams
in {(N); 1 � N � n

2 } are not equivalent to one another. This proves the information for

V (C
(1)
n ) in Table 1.

In C
(1)
n , the only nontrivial diagram involution is the reflection 0 ↔ n, 1 ↔ n − 1, . . . .

If n is odd (i.e. even number of vertices), then the involution has no fixed point and so all
vertices remain unpainted. If n is even (i.e. odd number of vertices), then the involution
has exactly one fixed point at vertex n

2 . In this case there are two equivalence classes, given
by n

2 painted or unpainted.

2.5. D
(1)
n , n > 4

As before, c(i) denotes the color of vertex i. The vertices of D
(1)
n are labeled as follows:

�
2

. . . �
n − 2

�
��

�

�
�� �

n − 1

n

�
��

�

�
��

�1

0

Proposition 2.6. Let v ∈ V (D
(1)
n ). Then

v ∼

⎧⎪⎪⎨
⎪⎪⎩

(φ(v)) ∼ (n − φ(v)) if c(0) = c(1), c(n − 1) = c(n), φ(v) 	= 1;
(a)

(0,1) if c(0) = c(1), c(n − 1) = c(n), φ(v) = 1;
(0) if c(0) = c(1), c(n − 1) 	= c(n) (or vice versa); (b)

(0, n) if c(0) 	= c(1), c(n − 1) 	= c(n). (c)
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Proof. We first prove part (a). Let S denote the diagrams v in which c(0) = c(1) and
c(n − 1) = c(n). By ignoring vertices 0 and n, we see that S is isomorphic to V (An−1).
By Proposition 2.3(a),

v ∼
{

(φ(v)) ∼ (n − φ(v)) if φ(v) 	= 1,
(0,1) if φ(v) = 1.

By symmetry of the diagram, (0,1) ∼ (n − 1, n). This proves (a).
We next prove part (b). Without loss of generality, we may consider the Vogan diagrams

S in which c(0) = c(1) and c(n− 1) 	= c(n). So S is closed under each Fi . Let T ⊂ V (Dn)

be the diagrams where c(n − 1) 	= c(n). By ignoring vertex 0, we obtain an isomorphism
S → T . By Proposition 2.3(c), the diagrams in T are all equivalent to (1) ∈ V (Dn). There-
fore all the diagrams in S are equivalent to (1). By diagram automorphisms, they are also
equivalent to (0), (n − 1) and (n). This completes the proof for (b).

Next we prove (c). Let S be the diagrams with c(0) 	= c(1) and c(n − 1) 	= c(n). Then
S is closed under each Fi . The argument for Proposition 2.3(c) can be used to show that
each v ∈ S is equivalent to some w ∈ S whose vertices 2,3, . . . , n − 2 are unpainted. For
instance if v = (0,3,4, n), we may perform F3, F2, F1 and obtain w = (1, n). We conclude
that all the diagrams in S are equivalent to (1, n). By diagram automorphisms, they are also
equivalent to (0, n − 1), (0, n) and (1, n − 1). This proves (c). �

We now prove the information for V (D
(1)
n ) in Table 1. If v and w belong to different

parts of Proposition 2.6(a), (b) and (c) (for example if vertices 0 and 1 have the same color
in v but different colors in w), then they are inequivalent. Since each of parts (b) and (c)
consists of a single equivalence class, it suffices to show that in (a), the diagrams in

{
(0,1)

} ∪
{
(N); 2 � N � n

2

}
(2.8)

are mutually not equivalent. We modify φ of (1.4) by ignoring vertex n, so for instance
φ(4,6, n) = 6 − 4 = 2. By a computation similar to (2.3), φ · Fi(v) = φ(v) or n − φ(v). If
v and w are distinct diagrams chosen from (2.8), then φ(w) is neither φ(v) nor n − φ(v).
So the diagrams in (2.8) are mutually not equivalent. This proves all the information for
V (D

(1)
n ) in Table 1.

Next we consider V (θ;D(1)
n ) in Table 2. Up to diagram automorphisms, there are three

cases for θ ,

�
2

. . .

←−−→

←−−→
�

n − 2
��

�

�� �

n − 1

n

���

��

�1

0

�
2

. . . �
n − 2

��
�

�� �

n − 1

n

���

��

�1

0


 �
2

. . . �
n − 2

��
�

�� �

n − 1

n

���

��

�1

0


 


(a) (b) (c)

In (a), if n is odd, then there is no fixed point, so all vertices are unpainted. If n is even,
there is one fixed point n , so there are two classes represented by (θ; ∅) and (θ; n ).
2 2
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In (b), the diagram obtained by ignoring vertices 0 and 1 is simply Dn−1, so the distinct
equivalence classes are represented by {(θ;N); 2 � N � n+1

2 } ∪ {(θ;n)} [5].
In (c), the diagram obtained by ignoring vertices 0,1, n − 1, n is An−3, so the distinct

equivalence classes are represented by {(θ;N); 2 � N � n
2 } [5].

3. Exceptional nontwisted diagrams

In this section, we study the extended Vogan diagrams for E
(1)
6 , E

(1)
7 , E

(1)
8 , F

(1)
4

and G
(1)
2 . Observe that if σ is a diagram automorphism, then σ · Fi = Fσ(i) · σ . So given

a sequence of mixed Fi and σj , we can move the σj over the Fi and gather them. This
proves the following proposition.

Proposition 3.1. If diagrams v and w are equivalent, then there exist some Fi1, . . . ,Fik

and diagram automorphisms σj1, . . . , σjl
such that σjl

· . . . · σj1 · Fik · . . . · Fi1(v) = w.

3.1. E
(1)
6

Label the vertices of E
(1)
6 as follows:

�

y1

�

y2

�

c0

� �

x2

�

�

z2

z1

x1

Given a Vogan diagram v, let

B(v) = number of branches which contain painted vertices in v. (3.1)

In this definition we ignore vertex c0, except that B = 1 if c0 is the only painted vertex. For
example, B(c0) = B(c0, x1, x2) = 1, while B(x1, y1) = 2.

We say that a vertex is odd or even depending on whether there are odd or even number
of edges joined to it. Given a Vogan diagram v, let

M(v) = number of painted odd vertices in v. (3.2)

So 0 � M(v) � 4. For example, M(c0, x1, x2) = 2, due to the odd vertices c0 and x1.

Proposition 3.2. There are three equivalence classes of V (E
(1)
6 ), namely

Z1 = {
M(v) is odd

}
,

Z2 = {
M(v) is even and B(v) is odd

}
,

Z3 = {
M(v) is even and B(v) is even

}
.
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Proof. Observe that in E
(1)
6 , any vertex i has even number of adjacent odd vertices. There-

fore Fi preserves the parity of M . We conclude that Z1 and Z2 ∪ Z3 are both unions of
equivalence classes.

Direct manipulation with the various Fi shows that Z1 is indeed one equivalence class
by itself. We next check that each of Z2 and Z3 is preserved by the various Fi . Recall that
c0 is the central vertex. Clearly B is preserved by all the Fi except possibly Fc0 . So we
only need to consider Fc0(v) for diagrams v which contain c0.

First, consider Z2. Here M(v) is even and B(v) = 1,3. If B(v) = 1, then up to dia-
gram automorphisms, either v = (c0, x1) or v = (c0, x1, x2). In either case B(Fc0(v)) = 3.
If B(v) = 3, then up to diagram automorphisms v has three possibilities, namely
(c0, x1, y2, z2), (c0, x1, x2, y2, z2) and (c0, x1, y1, z1, s), where s ⊂ {x2, y2, z2}. In the first
two possibilities B(Fc0(v)) = 1, and in the third B(Fc0(v)) = 3. We conclude that Z2 is
preserved by all the Fi .

In Z3, M(v) = B(v) = 2; and in particular if c0 is painted, then v = (c0, x1, y2) or
v = (c0, x1, x2, y2) up to diagram automorphisms. It follows that B(Fc0(v)) = 2.

We conclude that each of Z2 and Z3 is preserved by all the Fi and so is a union of
equivalence classes. Direct manipulation with the various Fi shows that each of them is
indeed one equivalence class. The proposition is proved. �

The above proposition proves the information for V (E
(1)
6 ) in Table 1. The case with

nontrivial diagram involution θ is easy. Up to diagram automorphisms, θ is given by
{y1 ↔ z1 and y2 ↔ z2}. The fixed points of θ are x1, x2 and c0. From A3, we know that
there are three equivalence classes. They are represented by (θ; ∅), (θ;x1) and (θ;x2).

3.2. E
(1)
7

Label the vertices of E
(1)
7 as follows:

�

1

�

2

�

3

�

4

�

7

�

5 6

�

� 0

If v,w are equivalent diagrams,

a switching sequence 〈i1, . . . , ik〉 (3.3)

for (v,w) is a sequence of Fi1, . . . ,Fik such that Fik · . . . · Fi1(v) = w. For example
〈1,2,3〉 is a switching sequence for ((1), (3,4)). There is only one nontrivial diagram
automorphism on V (E

(1)
7 ) given by the reflection r(i1, . . . , ik) = (8 − ik, . . . ,8 − i1). So

by Proposition 3.1, if v,w ∈ V (E
(1)
7 ) are equivalent, then either s(v) = w or r · s(v) = w,

where s is a switching sequence. For a switching sequence s, let

ti = number of times entry i appears in s. (3.4)
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Lemma 3.3. (For diagrams with single edges only.) Let s be a switching sequence for
(v,w). Then vertex i has the same color in v and w if and only if

∑
j∈N(i) tj is even.

Here N(i) is the neighborhood of vertex i as defined in (1.1). The lemma is obvious
and we omit the proof. Lemma 3.3 will be useful when proving inequivalence of some
diagrams. Recall that φ and ξ are as defined in (1.4) and (1.6).

Lemma 3.4. Each Fi preserves the parities of φ and ξ .

Proof. As in (1.5), write v ∈ V (E
(1)
7 ) in the form v = (s, i1, . . . , ia, ia+1, . . . , ik), where

1 � i1 < · · · < ia � 4 < ia+1 < · · · < ik � 7, and s ⊂ {0}. First we show that each Fi

preserves the parity of φ. By using arguments similar to (2.3) and (2.4), it is clear that this
is true for 1 � i � 7. It remains to show that F0 also preserves the parity of φ. Suppose that
0 is painted. Since

φ · F0(v) = φ(0, i1, . . . , ia,4, ia+1, . . . , ik)

=
k∑

r=a+1

(−1)k−r (ir ) + (−1)k−a

(
4 −

a∑
p=1

(−1)a−pip

)

= φ(v) + (−1)k−a

(
4 − 2

a∑
p=1

(−1)a−pip

)
,

F0 preserves the parity of φ.
Next we show that each Fi preserves the parity of ξ . For i 	= 4, Fi preserves the value∑a
p=1(−1)a−pip and the color of vertex 0, and hence preserves the parity of ξ . Since F4

changes the colors of vertices 3 and 0, it follows that F4 also preserves the parity of ξ . This
proves the lemma. �

We shall show that V (E
(1)
7 ) consists of the following four equivalence classes,

Z1 = {φ is odd},
Z2 = {φ and ξ are even},
Z3 = {φ = 0,4 and ξ is odd},
Z4 = {φ = 2,6 and ξ is odd}. (3.5)

This will be proved using the next two propositions.

Proposition 3.5. Let v ∈ V (E
(1)
7 ). Then

(a) v ∈ Z1 ⇒ v ∼ (1),
(b) v ∈ Z2 ⇒ v ∼ (2),
(c) v ∈ Z3 ⇒ v ∼ (0),
(d) v ∈ Z ⇒ v ∼ (1,7).
4
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Proof. By Theorem 1.2, v is equivalent to a diagram of the form (k) or (0, k).
We first prove part (a). It suffices to show that the diagrams in {(k), (0, k); k is odd}

are mutually equivalent. Further, by symmetry of the diagram, it suffices to show that
(0,1) ∼ (7) ∼ (0,3) ∼ (5). We do this by giving their switching sequences:

(0,1) ∼ (7) by 〈1,2,3,4,5,6,7〉,
(7) ∼ (0,3) by 〈7,6,5,4,0〉,
(0,3) ∼ (5) by 〈3,2,1,4,3,2,5,4,3,0,4,5〉.

This proves part (a) as claimed.
For v ∈ Z2, v ∼ (k) where k is even. Since (2) ∼ (6) by symmetry of the diagram and

(2) ∼ (4) by 〈2,3,4,0,1,2,3,4〉, we have (2) ∼ (4) ∼ (6). This proves part (b).
The only possibilities of the form (k) and (0, k) are (0), (0,4) in Z3 and (0,2), (0,6)

in Z4. Clearly each pair of above diagrams are equivalent and since (0,6) ∼ (1,7) by
〈6,5,4,3,2,1〉, this proves parts (c) and (d). Hence we complete the proof. �
Proposition 3.6. Each Zi of (3.5) is a union of equivalence classes.

Proof. The diagram reflection preserves the parity of φ. So together with Lemma 3.4, we
have

{φ is even} � {φ is odd}.
It follows that Z1 and Z2 ∪ Z3 ∪ Z4 are unions of equivalence classes.

By Theorem 1.2 and Lemma 3.4, for any v ∈ Zi , there exists an even k 	= 0 such that

v ∈ Z2 ⇒ v ∼ (k),

v ∈ Z3 ∪ Z4 ⇒ v ∼ (0, k). (3.6)

We claim that

k1, k2 ∈ {2,4,6} ⇒ (k1) � (0, k2). (3.7)

Suppose otherwise, namely (k1) ∼ (0, k2) for some k1, k2 ∈ {2,4,6}. By Proposition 3.1,
there exists a switching sequence s and the reflection r such that

s(k1) = (0, k2) (3.8)

or r · s(k1) = (0, k2). In the latter case, we may replace k2 by 8 − k2 to eliminate r and
again obtain (3.8). Apply Lemma 3.3 to (3.8), we see that t4 is odd because vertex 0 changes
color, then t2 is odd because vertex 3 does not change color. This is a contradiction because
vertex 1 does not change color. This proves (3.7) as claimed.

In (3.7), ξ(k1) and ξ(0, k2) have different parities. So by (3.6) and (3.7), it follows
that Z2 and Z3 ∪ Z4 are both unions of equivalence classes. To complete the proof of the
proposition, it remains to prove that Z3 and Z4 are both unions of equivalence classes. By
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Proposition 3.5(c), (d), this will follow from (0) � (1,7). Unfortunately, and surprisingly,
its argument is much harder than other inequivalences, so we accept it for now, leaving
(0) � (1,7) for Appendix A. So Z3,Z4 are both equivalence classes. This completes the
proof. �

It follows from Propositions 3.5 and 3.6 that V (E
(1)
7 ) consists of the four equivalence

classes given in (3.5).
For E

(1)
7 , the nontrivial involution θ fixes vertices 0 and 4, with i ↔ 8 − i. Regarding

vertices 0 and 4 as type A2, there are two distinct classes represented by (θ; ∅) and (θ;0).

3.3. E
(1)
8

Next we study the equivalence classes of E
(1)
8 . Label the vertices of E

(1)
8 as follows:

�

1

�

2

�

3

�

4

�

7

�

8

�

5 6

�

� 0

Here the only diagram involution is the trivial one. We shall show that there are three
nontrivial equivalence classes represented by

(1), (7), (8). (3.9)

Proposition 3.7. The three diagrams (1), (7), (8) ∈ V (E
(1)
8 ) are mutually not equivalent.

Proof. To prove this, we assume that a switching sequence exists between two diagrams
and derive a contradiction. By Lemma 3.3, we can prove inequivalence for most of them:

Suppose that there is a switching sequence for ((1), (8)). The colors of vertices 0, 4, 6
are unchanged. So t3 is even, which implies that t5 is even, which implies that t7 is even.
This is a contradiction because vertex 8 changes colors. The same arguments show that
there is no switching sequence for ((7), (8)). So we have

(1) � (8), (7) � (8).

Unfortunately, the remaining arguments for (1) � (7) require a lengthy proposition, and
we leave it for Appendix A. For the time being, we accept the fact that (1) � (7). �

In the next three propositions, we shall show that every other diagram in V (E
(1)
8 ) is

equivalent to one of (3.9).

Lemma 3.8.

(a) For q � 4 and p = 2,3, we get (p, q) ∼ (0,p−1, q−1) and (0,p, q) ∼ (p−1, q−1).
(b) For q � 4, (1, q) ∼ (0, q − 1) and (0,1, q) ∼ (q − 1).
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Proof. This follows directly from [5, Lemma 3.1]. Note that vertex 0 is denoted by the
notation ∗ in [5]. �

The next proposition simplifies a diagram of the form (α) or (0, α) to (3.9).

Proposition 3.9. The equivalence classes of (α) and (0, α) in E
(1)
8 are given by

(a) (1) ∼ (5) ∼ (0,4) ∼ (0,8),
(b) (7) ∼ (2) ∼ (3) ∼ (0,6),
(c) (8) ∼ (0) ∼ (4) ∼ (6) ∼ (0,N), for N = 1,2,3,5,7.

Proof. We prove this proposition by Lemma 3.8 and switching sequences. For part (a),

(5) ∼ (0,1,6) by Lemma 3.8(b)

∼ (1,5) by 〈0,1,3,4,5〉
∼ (0,4) by Lemma 3.8(b)

∼ (1) by 〈0,3,2,1〉
∼ (0,8) by 〈1,2,3,4,5,6,7,8〉.

For part (b),

(0,6) ∼ (1,7) by Lemma 3.8(b)

∼ (0,2,8) by Lemma 3.8(a)

∼ (7) by 〈0,3,4,5,6,7〉
∼ (0,1,8) by Lemma 3.8(b)

∼ (2) by 〈8,7,6,5,4,3,2〉
∼ (0,1,4) by 〈2,3,0〉
∼ (3) by Lemma 3.8(b).

For part (c),

(0,5) ∼ (1,6) by Lemma 3.8(b)

∼ (0,2,7) by Lemma 3.8(a)

∼ (6) by 〈0,3,4,5,6〉
∼ (0,1,7) by Lemma 3.8(b)

∼ (2,8) by Lemma 3.8(a)

∼ (0) by 〈8,7,6,5,4,3,0〉
∼ (0,3) by 〈0〉
∼ (1,4) by Lemma 3.8(b)

∼ (0,2,5) by Lemma 3.8(a)

∼ (4) by 〈0,3,4〉
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∼ (0,1,5) by Lemma 3.8(b)

∼ (2,6) by Lemma 3.8(a)

∼ (0,7) by 〈6,5,4,3,0〉
∼ (1,8) by Lemma 3.8(b)

∼ (0,2) by 〈8,7,6,5,4,3,2〉
∼ (0,1) by 〈0,2,1〉
∼ (8) by 〈1,2,3,4,5,6,7,8〉. �

By the above proposition, the only remaining problem is to simplify a diagram to (α)

or (0, α). We divide the diagrams into the following two cases:

(a)

{
(s,2,4), (s,1,3,4), (s,2,3,8), (s,1,2,8), (s,1,8),

(s,3,4 � j1, . . . , jl) where φ(j1, . . . , jl) = 5,

(b) diagrams which do not belong to (a).
(3.10)

In (3.10)(a), s ⊂ {0} depending on whether vertex 0 is painted. The reason for this division
is that we shall apply [5, Proposition 3.2] which is not valid for the special cases (3.10)(a).

Proposition 3.10. The diagrams (s, v) in (3.10)(a) are equivalent to (t,7), where t ⊂ {0}.
In the first row of (3.10)(a), s 	= t . In the second row of (3.10)(a), s = t .

Proof. Observe that the diagrams in the first and the second row of (3.10)(a) are equivalent
to (s,2,4) and (s,3,5), respectively. By [5, Proposition 3.5], (s,2,4) ∼ (t,3,5) ∼ (t,7)

where s 	= t . This completes the proof. �
By Propositions 3.9 and 3.10, we have solved the diagrams in (3.10)(a).
We now consider (3.10)(b). Denote a diagram v by

v = (s, i1, . . . , ia, ia+1, . . . , ik),

where 1 � i1 < · · · < ia � 3 < ia+1 < · · · < ik � 8 and s ⊂ {0}. Let I , J be defined by

I =
a∑

p=1

(−1)a−pip and J =
k∑

p=a+1

(−1)k−pip (3.11)

and let

α =
{

J − I if J > 4 or J = 4, k − a = 1,

9 − J − I if J < 4 or J = 4, k − a 	= 1.
(3.12)

In fact, there are only two cases for J = 4: v = (i1, . . . , ia,4) (with k − a = 1) and
v = (i1, . . . , ia,4,8) (with k − a = 2). Using I and α defined above, the next proposition
simplifies v to (α) or (0, α).
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Proposition 3.11. Let v = (s, i1, . . . , ik) be in (3.10)(b). Then v ∼ (t, α), where s = t if I

is even, and s 	= t if I is odd.

Proof. The proof follows from [5, Proposition 3.2]. �
By Propositions 3.9 and 3.11, we have solved the diagrams in (3.10)(b).
Propositions 3.7, 3.9, 3.10, 3.11 explain all the information for V (E

(1)
8 ) in Table 1 as

follows. Proposition 3.7 shows that there are at least three distinct classes, represented by
(1), (7), (8). The remaining propositions explain how any v ∈ V (E

(1)
8 ) is equivalent to one

of them. Namely, if v belongs to (3.10)(a), we apply Propositions 3.9 and 3.10. And if v

belongs to (3.10)(b), we apply Propositions 3.9 and 3.11.

3.4. F
(1)
4

Label the vertices of F
(1)
4 as follows:

�

1

�

2

�

3

�

4

〉 �

5

The only diagram involution is the trivial one. In the next proposition, we write a typical
v ∈ V (F

(1)
4 ) as

v = (v1, v2), v1 ⊂ {1,2,3}, v2 ⊂ {4,5}.
So v1 is a Vogan diagram of A3.

Proposition 3.12. Let v,w ∈ V (F
(1)
4 ) both contain painted vertices. Then v ∼ w if and

only if v1 ∼ w1.

Proof. In what follows, “F4” refers to the algorithm (1.2) on vertex 4, rather than the
diagram of type F4. Since there is no risk of confusion, we do not create extra notation to
distinguish them. Since (4) ∼ (4,5) ∼ (5), and since F4, F5 do not change the colors of
vertices 1, 2 and 3, the proposition obviously holds when v1 = ∅ or w1 = ∅. Therefore, in
what follows, we may assume that v1 	= ∅ and w1 	= ∅. By applying F4 and F5, obviously

(v1,4) ∼ (v1,4,5) ∼ (v1,5), (3.13)

for any v1. So we may assume that v2 = (5).
We first claim that

(v1, v2) ∼ (v1,∅). (3.14)

That is equivalent to prove that

(v1,5) ∼ (v1,∅). (3.15)



M.K. Chuah, C.C. Hu / Journal of Algebra 301 (2006) 112–147 133
Since v1 	= ∅, there exists a sequence s of operations involving F1 and F2 such that vertex
3 is painted in sv1 (if 3 is already painted in v1, we may take s = 1). Hence

(v1,5) ∼ (sv1,5). (3.16)

By applying F3, F4, F3 in that order,

(sv1,5) ∼ (sv1,∅). (3.17)

Apply s−1 to (sv1,∅), we get

(sv1,∅) ∼ (v1,∅). (3.18)

Then (3.16), (3.17) and (3.18) lead to (3.15). This proves (3.14) as claimed.
We are now ready to prove the proposition. Suppose that v1 ∼ w1. So there is a sequence

t of operations involving F1, F2, F3, such that t (v1) = w1. Since F3 may affect the color
of vertex 4, we have

t (v1, v2) = (w1, x),

for some x. By (3.14), (w1, x) ∼ (w1,∅) ∼ (w1,w2). It follows that v ∼ w.
Conversely, suppose that v ∼ w. Let r be a sequence of Fi such that r(v) = w. Let r1

be the subsequence of r obtained by removing all the F4 and F5 in r . Then r1(v1) = w1,
so v1 ∼ w1. This completes the proof of the proposition. �

The equivalence classes for v1 ∈ V (A3) and v2 ∈ V (A2) are well known. So Proposi-
tion 3.12 proves the information for V (F

(1)
4 ) in Table 1.

3.5. G
(1)
2

Since the effect of Fi on the Vogan diagrams of G
(1)
2 is the same as that of A3, the

equivalence classes of G
(1)
2 is that of A3 given in [5, Table 1]. That is, if we label the

vertices of G
(1)
2 by

�

1

�

2

�

3

〉

then there are two equivalence classes in V (G
(1)
2 ), namely

(1) ∼ (1,2) ∼ (2,3) ∼ (3) and (2) ∼ (1,3) ∼ (1,2,3).

Since the diagram is not symmetric, there is no nontrivial diagram involution.
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4. Twisted diagrams

In this section, we study the extended Vogan diagrams for A
(2)
n , D

(2)
n+1, E

(2)
6 and D

(3)
4 .

Here the only possible nontrivial θ are in A
(2)
2n−1 and D

(2)
n+1. We separate A

(2)
n into three

cases n = 2, even n > 2, odd n > 3.

4.1. A
(2)
2

Label the vertices of A
(2)
2 as follows:

�

α0

�

α1

〉

As mentioned before, type A
(2)
2 is not covered in (1.2). We now treat it separately.

Proposition 4.1. There are two inequivalent nontrivial diagrams of A
(2)
2 given by

{α0 painted alone} and {α1 painted alone}.

Proof. Similar to Proposition 2.1, we want to consider the effects of the Weyl reflections
rα0 , rα1 on the diagram. Recall that the Cartan matrix of A

(2)
2 is

( 2 −4
−1 2

)
, and the positive

roots are [6, p. 94]

Δ+ = {
4kα0 + (2k − 1)α1,4(k − 1)α0 + (2k − 1)α1, (2k − 1)α0 + kα1,

(2k − 1)α0 + (k − 1)α1,2kα0 + kα1; where k = 1,2, . . .
}
.

It implies that

α1, α0 + α1,2α0 + α1,3α0 + α1,4α0 + α1 ∈ Δ+. (4.1)

Suppose that α0 is painted. We claim that Fα0 does not change the color of α1. Since
the upper right entry of the Cartan matrix is −4, by [6, p. 86],

rα0(α1) = α1 − (−4)α0 = 4α0 + α1. (4.2)

Let c(·) denote “the color of,” as in Proposition 2.1. Since α0 is painted, by (4.1),
c(kα0 +α1) 	= c((k+1)α0 +α1) for all k = 0,1,2,3. Hence c(α1) = c(4α0 +α1). By (4.2),
we conclude that Fα0 does not change the color of α1, as claimed.

Next, suppose that α1 is painted. We claim that Fα1 reverses the color of α0. Since the
lower left entry of the Cartan matrix is −1, by [6, p. 86],

rα1(α0) = α0 − (−1)α0 = α0 + α1.

Since α1 is painted, c(α0) 	= c(α0 + α1). So Fα reverses the color of α0 as claimed.
1
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We conclude that there are two nontrivial equivalence classes, represented by {α0 painted
alone} and {α1 painted alone}. Note that {α0 and α1 painted} is equivalent to {α1 painted
alone}, via Fα1 . This proves the proposition. �
4.2. A

(2)
2n , n > 1

Next we consider Vogan diagrams of A
(2)
2n , n > 1. Label the vertices as follows:

��
10

〉 . . . �
n − 1

〉 �
n

Throughout this section, φ denotes the function defined in (1.4).

Proposition 4.2. Let v ∈ V (A
(2)
2n ). Then

(a) v ∼ (0), if the vertex 0 is painted in v,
(b) if the vertex 0 is not painted in v, then v ∼ (φ(v)), 1 � φ(v) � n.

Proof. Since the vertex 0 represents the longest root, part (a) follows from Proposi-
tion 2.3(b). Next suppose that the vertex 0 is not painted in v. Since vertex 0 remains
unpainted under any Fi , we can ignore it and regard the remaining diagram as a diagram
of Bn. Hence (b) follows from Proposition 2.3(a). This completes the proof. �

Similar to the argument in (2.3), F1, . . . ,Fn preserve φ. Therefore, the diagrams
{(N); 1 � N � n} in Proposition 4.2(b) are mutually not equivalent. This proves the infor-
mation for V (A

(2)
2n ) in Table 1.

4.3. A
(2)
2n−1, n > 2

We label the vertices of A
(2)
2n−1 as follows:

�
1

. . . �
n − 2

�
��

�

�
�� �

n − 1

n

�
0

〉

We shall show that V (A
(2)
2n−1) consists of the following four equivalence classes,

Z1 = {
c(n − 1) = c(n) and 0 is painted

}
,

Z2 = {
c(n − 1) 	= c(n) and 0 is painted

}
,

Z3 = {
c(n − 1) = c(n) and 0 is unpainted

}
,

Z4 = {
c(n − 1) 	= c(n) and 0 is unpainted

}
.
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Proposition 4.3. If v ∈ Zi , w ∈ Zj and i 	= j , then v � w.

Proof. Notice that Fi preserves the color of the long root 0. Moreover, if a diagram v

satisfies c(n − 1) = c(n) or c(n − 1) 	= c(n), then the same property is satisfied by all the
diagrams equivalent to v. �
Proposition 4.4. Let v ∈ V (A

(2)
2n−1). Then

(a) v ∈ Z1 ⇒ v ∼ (0),
(b) v ∈ Z2 ⇒ v ∼ (0, n),
(c) v ∈ Z3 ⇒ v ∼ (φ(v)) ∼ (n − φ(v)),
(d) v ∈ Z4 ⇒ v ∼ (n).

Proof. Consider parts (a) and (b), where 0 is painted in v. By Theorem 1.2, v is equivalent
to a diagram w with at most two painted vertices. In part (a), w ∈ Z1 by Proposition 4.3, so
w = (0) or w = (0, k) for some k � n − 2. Using the arguments in [5, Proposition 2.4(b)],
we see that (0) ∼ (0, k) for k � n − 2. This proves (a). In part (b), w ∈ Z2 by Proposi-
tion 4.3, so w = (0, n − 1) or w = (0, n). This proves (b).

Next we prove (c), (d) simultaneously. Since the vertex 0 is long, the color of 0 does not
change under any Fi . So we can ignore vertex 0 and its adjacent edges and regard it as a
diagram of Dn. Hence (c), (d) follow from Proposition 2.3(c) and we are done. �

By Proposition 4.3, each Zi is a union of equivalence classes. Proposition 4.4 says
that in addition, each of Z1, Z2 and Z4 is an equivalence class. In Z3, we see that
φ ·Fi(v) equals φ(v) or n−φ(v), so the distinct equivalence classes in Z3 are represented
by {(N); 1 � N � n

2 }. This proves all the information for V (A
(2)
2n−1) in Table 1.

For A
(2)
2n−1, the only nontrivial involution is given by θ(n − 1) = n. Regarding vertices

0, . . . , n − 2 as type Cn−1, there are n+3
2 distinct classes represented by (θ; ∅) and (θ;N),

0 � N � n−1
2 .

4.4. D
(2)
n+1, n > 1

Label the vertices of D
(2)
n+1 as follows:

��
10

〈 . . . �
n − 1

〉 �
n

Proposition 4.5. Let v = (i1, . . . , ik) ∈ V (D
(2)
n+1), n > 1. Then

v ∼
{

(φ(v)) ∼ (n − φ(v)) if k is odd;
(0, φ(v)) if k is even.

Furthermore, {(0), (n)} form an equivalence class.
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Proof. We first claim that φ · Fi(v) = φ(v) for all i. By the same argument as in (2.3), we
have φ · Fi(v) = φ(v) for i 	= 0, n. Since 0 and n are short, F0 and Fn do not change the
colors of their neighborhoods. So φ · Fi(v) = φ(v) for all i = 0, . . . , n as claimed.

By Theorem 1.2, v is equivalent to some diagram w with one or two painted vertices.
Further, each Fi preserves the parity of the number of painted vertices in v. So if v has odd
(respectively even) number of painted vertices, then w has one (respectively two) painted
vertex. Also, φ(v) = φ(w). The equivalence of (φ(v)) and (n − φ(v)) follows from the
symmetry of the diagram. And the last statement is obvious since vertices 0 and n are short.
So we complete the proof. �

Regarding the subdiagram with 1, . . . , n − 1 as type An−1, it follows that the diagrams
in {(N); 0 � N � n

2 } ∪ {(0,N); 1 � N � n} are mutually not equivalent. So together with
Proposition 4.5, this proves the information for V (D

(2)
n+1) in Table 1.

In D
(2)
n+1, the only nontrivial diagram involution is the reflection 0 ↔ n, 1 ↔ n − 1, . . . .

If n is odd (i.e. even number of vertices), then the involution has no fixed point and so all
vertices remain unpainted. If n is even (i.e. odd number of vertices), then the involution
has exactly one fixed point at vertex n

2 . In this case there are two equivalence classes, given
by n

2 painted or unpainted.

4.5. E
(2)
6

Label the vertices of E
(2)
6 as follows:

�

1

�

2

�

3

�

4

〈 �

5

In the next proposition, we write a typical v ∈ V (E
(2)
6 ) as

v = (v1, v2), v1 ⊂ {1,2,3}, v2 ⊂ {4,5}.

So v1 is a Vogan diagram of A3.

Proposition 4.6. Let v = (v1, v2) ∈ V (E
(2)
6 ). Then there are four equivalence classes of

V (E
(2)
6 ), given by

(1) ∈ {v2 = ∅ and φ(v) is odd},
(2) ∈ {v2 = ∅ and φ(v) is even},
(4) ∈ {v2 	= ∅ and φ(v) is even},
(5) ∈ {v2 	= ∅ and φ(v) is odd}.

Proof. By direct computations, we see that each Fi preserves the parity of φ(v). Suppose
that v ∼ w ∈ V (E

(2)
). Since vertex 4 is longer than vertex 3, v2 = ∅ if and only if w2 = ∅.
6
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So each of the four subsets in the proposition is a union of equivalence classes. Direct
manipulations show that their diagrams are equivalent to (1), (2), (4) and (5), respectively.
Hence the proposition follows. �
4.6. D

(3)
4

By the same arguments as in G
(1)
2 , if we label the vertices of D

(3)
4 by

�

1

�

2

�

3

〈

then the equivalence classes are given by

(1) ∼ (1,2) ∼ (2,3) ∼ (3) and (2) ∼ (1,3) ∼ (1,2,3).
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Appendix A

In this section, we show that (0) � (1,7) in E
(1)
7 , and that (1) � (7) in E

(1)
8 . This will

complete the proofs of Propositions 3.6 and 3.7. We have isolated these remaining steps
into two propositions here, because their arguments are very lengthy and purely computa-
tional. It would be nice to replace them with more concise and instructive arguments.

Recall that we define the switching sequence 〈i1, . . . , ik〉 in (3.3). Define the lexico-
graphic ordering on the set of all switching sequences as follows. Given s = 〈i1, . . . , ik〉
and u = 〈j1, . . . , jl〉, we declare that s < u by

s < u ≡
{

k < l, or
k = l, i1 = j1, . . . , ia = ja and ia+1 < ja+1 for some a.

(A.1)

The following lemma on switching sequences will be useful. We omit the proof, which
is obvious. Recall that N(i) is the neighborhood of vertex i, as defined in (1.1).

Lemma A.1.

(a) If s = 〈. . . , i, j1, . . . , jr , i, . . .〉 and ja 	= i for all a, then N(i) appears even number of
times in j1, . . . , jr .

(b) If s = 〈. . . , i, j, . . .〉 and the vertices i, j are not adjacent, then they can be inter-
changed and s = 〈. . . , j, i, . . .〉.
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Proposition A.2. In E
(1)
7 , (0) is not equivalent to (1,7).

Proof. Since the diagram reflection fixes (0) and (1,7), by Proposition 3.1, it suffices to
show that there is no switching sequence for ((0), (1,7)). Suppose otherwise, let s be a
switching sequence for ((0), (1,7)) which is minimum in the sense of (A.1). We now start
our series of arguments to obtain a contradiction. By Lemma 3.3,

∑
j∈N(i)

tj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t4 is odd for i = 0;
t2 is odd for i = 1;
t6 is odd for i = 7;
t0 + t3 + t5 is even for i = 4;
ti−1 + ti+1 is even for other i.

We will often make use of t4. So denote it by

m = t4

and note that m is odd. Write

s = 〈0,41,X1, Y1,Z1,42,X2, . . . ,4m,Xm,Ym,Zm〉,
Xi ⊂ {0}, Yi ⊂ {1,2,3}, Zi ⊂ {5,6,7}.

Here 4i denotes the ith time entry 4 appears in s. For example if s starts with
〈0,4,3,2,5,4, . . .〉, then the ordered sets satisfy X1 = ∅, Y1 = {3,2}, Z1 = {5} and so
on. We claim that

Yi = 〈3,2,1〉, 〈3,2〉, 〈3〉,∅ for all i = 1, . . . ,m,

Zi = 〈7,6,5〉, 〈6,5〉, 〈5〉,∅ for all i = 1, . . . ,m − 1. (A.2)

Note that nonempty Yi has to start with 3. This is because if Yi starts with q < 3, then
by Lemma A.1(b), s = 〈. . . ,4i ,Xi, q, . . .〉 = 〈. . . , q,4i ,Xi, . . .〉. This contradicts the as-
sumption that s is a minimum switching sequence (A.1). Similarly, if Zi ends with p > 5,
then by Lemma A.1(b), s = 〈. . . , p,4i+1, . . .〉 = 〈. . . ,4i+1,p, . . .〉 again contradicts the
assumption that s is a minimum switching sequence. The need for consecutive decreasing
integers in Yi and Zi comes from the fact that s is minimum. This proves (A.2).

We also claim that

i ∈ Yk,Yk+1 ⇒ i − 1 ∈ Yk for i = 2,3,

i ∈ Zk,Zk+1 ⇒ i + 1 ∈ Zk+1 for i = 5,6. (A.3)

Suppose that Yk and Yk+1 contain i, where i is 2 or 3. By Lemma A.1(a), we need N(i) =
{i − 1, i + 1} to appear even number of times between i ∈ Yk and i ∈ Yk+1. By (A.2)
or 4k+1, we know that i + 1 ∈ Yk+1 definitely appears, so it forces Yk to contain i − 1. This
proves the first part of (A.3). Similarly, suppose that Zk and Zk+1 contain i, where i is 5
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or 6. By Lemma A.1(a), we need N(i) = {i − 1, i + 1} to appear even number of times
between i ∈ Zk and i ∈ Zk+1. By (A.2) or 4k , we know that i − 1 ∈ Zk definitely appears,
so it forces Zk+1 to contain i + 1. This completes the proof for (A.3) as claimed. We shall
repeatedly apply (A.3) in future arguments.

Consider s = 〈. . . ,4i ,Xi, Yi,Zi,4i+1, . . .〉 for i = 1, . . . ,m − 1. Since each Xi , Yi , Zi

contains exactly one element of N(4) = {0,3,5}, it follows from Lemma A.1(a) that

for i = 1, . . . ,m − 1, exactly one of Xi,Yi,Zi is empty. (A.4)

It is clear that X1 = ∅. So by (A.4), Y1 and Z1 are nonempty. Applying Lemma A.1(a)
to N(0) = {4}, we conclude that

for odd i = 1, . . . ,m, Xi = ∅,

for odd i = 1, . . . ,m − 2, Yi,Zi 	= ∅. (A.5)

We claim that

for even i � m − 3, Yi 	= 〈3〉,
for even i � m − 1, Yi 	= 〈3,2,1〉. (A.6)

Suppose that Yi = 〈3〉 for some even i � m − 3. By (A.2) and (A.5), 3 ∈ Yi+1. By (A.3),
2 ∈ Yi , which is a contradiction. This proves the first part of (A.6). Next suppose that
Yi = 〈3,2,1〉 for some even i � m − 1. By (A.2) and (A.5), 3 ∈ Yi−1. So by (A.3),

3 ∈ Yi−1, Yi ⇒ 2 ∈ Yi−1, Yi ⇒ 1 ∈ Yi−1, Yi . (A.7)

The conclusion in (A.7) is impossible, because N(1) = {2} appears exactly once between
1 ∈ Yi−1 and 1 ∈ Yi . This completes the proof for (A.6).

There are three cases for Zm, namely 〈5,6,7〉, 〈6,7〉 and 〈7〉. We shall show that each
case leads to a contradiction.

Case (I). Zm = 〈5,6,7〉.

By (A.5), Xm = ∅. So Ym cannot contain 3 because vertex 4 is unpainted in (1,7).
By (A.2), Ym = ∅. Then Zm−1 = ∅, for otherwise 5 ∈ Zm−1,Zm, which contradicts
Lemma A.1(a). Therefore, by (A.4), we have

Xm−1, Ym−1 	= ∅, Zm−1 = ∅. (A.8)

We claim that

Ym−1 = 〈3〉, Ym−2 = 〈3,2,1〉, Ym−3 = ∅. (A.9)

By (A.2), (A.5) and (A.8), 3 ∈ Ym−2, Ym−1 and so 2 ∈ Ym−2. If 2 ∈ Ym−1, then 1 ∈ Ym−1
because Ym = ∅ and vertex 2 is unpainted in (1,7). But this is a contradiction because
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N(1) = {2} appears exactly once between 1 ∈ Ym−1 and 1 ∈ Ym−2. So Ym−1 cannot con-
tain 2, and we have proved the first part of (A.9). Since Ym−2 contains 2, and vertex 2 is
unpainted in (1,7), it forces 1 ∈ Ym−2, which proves the second part of (A.9). For the last
part of (A.9), assume that Ym−3 	= ∅. Then by (A.6), Ym−3 = 〈3,2〉, and so 2 ∈ Ym−2, Ym−3.
By (A.3), 1 ∈ Ym−3, which is a contradiction. This proves the last part of (A.9).

Next we claim that

Zm−2 = 〈7,6,5〉, Zm−3 = 〈6,5〉, Zm−4 = 〈5〉, Zm−5 = ∅. (A.10)

We first check that

Zm−2 	= ∅ ⇒ 5 ∈ Zm−2,Zm−3 ⇒ 6 ∈ Zm−2
Zm−4 	= ∅ ⇒ 5 ∈ Zm−4,Zm−3 ⇒ 6 ∈ Zm−3

}
⇒ 7 ∈ Zm−2, 7 /∈ Zm−3. (A.11)

In (A.11), Zm−2,Zm−4 	= ∅ follows from (A.5) and 5 ∈ Zm−3 because by (A.4) and by
(A.9), Zm−3 	= ∅. Other arguments follow from (A.3). Finally Zm−3 cannot contain 7 be-
cause otherwise N(7) = {6} appears exactly once between 7 ∈ Zm−3 and 7 ∈ Zm−2. This
explains (A.11). By (A.11), we have proved the first two parts of (A.10). If Zm−4 contains
6, then (A.3) forces 7 ∈ Zm−3, a contradiction. So by (A.2) and (A.5), Zm−4 = 〈5〉. For the
last part of (A.10), if Zm−5 	= ∅, then 5 ∈ Zm−5,Zm−4 and (A.3) implies that 6 ∈ Zm−4,
a contradiction. This completes the proof for (A.10).

We also claim that

Ym−4 = 〈3〉, Ym−5 = 〈3,2〉, Ym−6 = 〈3,2,1〉, Ym−7 = ∅. (A.12)

If 2 ∈ Ym−4, then together with (A.9), 2 ∈ Ym−4, Ym−2. We need N(2) = {1,3} to appear
even number of times between them, so 1 ∈ Ym−4, Ym−2. This is a contradiction, because
N(1) = {2} appears exactly once between 1 ∈ Ym−4 and 1 ∈ Ym−2. Therefore Ym−4 cannot
contain 2. Together with (A.5), we get Ym−4 = 〈3〉. By (A.5) and (A.10), Zm−5 = ∅, so
Ym−5 	= ∅. Together with (A.6), we get Ym−5 = 〈3,2〉. To prove that Ym−6 = 〈3,2,1〉, we
check that

Xm−6 = ∅ ⇒ Ym−6,Zm−6 	= ∅ ⇒ 3 ∈ Ym−6, Ym−5

⇒ 2 ∈ Ym−6, Ym−5 ⇒ 1 ∈ Ym−6. (A.13)

The first part of (A.13) follows from (A.4) and (A.5). This implies that 3 ∈ Ym−6. The rest
of (A.13) follows from (A.3). By (A.13), Ym−6 = 〈3,2,1〉. For the last part of (A.12), as-
sume that Ym−7 	= ∅. By (A.6), it implies that Ym−7 = 〈3,2〉. But by (A.3), 2 ∈ Ym−7, Ym−6
implies 1 ∈ Ym−7, a contradiction. Hence Ym−7 = ∅. This completes the proof for (A.12).

Repeating the arguments for (A.9), (A.10) and (A.12), we have:

Zm−4k−1 = ∅, Zm−4k−2 = 〈7,6,5〉, Zm−4k−3 = 〈6,5〉, Zm−4k−4 = 〈5〉,
Ym−4k−1 = 〈3,2〉, Ym−4k−2 = 〈3,2,1〉, Ym−4k−3 = ∅, Ym−4k−4 = 〈3〉,
X = 〈0〉, X = ∅, X = 〈0〉, X = ∅.
m−4k−1 m−4k−2 m−4k−3 m−4k−4
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Recall that m is odd. By the above conclusion for Xi , Yi and Zi , we have two possibilities
to start the switching sequence s:

(i) m ≡ 1 mod (4): s = 〈0,41,3,5,42,0,6,5,43,3,2,1,7,6,5,44, . . .〉,
(ii) m ≡ 3 mod (4): s = 〈0,41,3,2,1,7,6,5,42, . . .〉.

In (i), N(2) = {1,3} appears twice before 2 ∈ Y3. This is impossible, because after 3 ∈ Y3
appears, vertex 2 is unpainted. In (ii), 7 appears in Z1 while it is still unpainted. Both (i)
and (ii) lead to contradictions. Therefore, Case (I) with Zm = 〈5,6,7〉 is impossible. We
next proceed with Case (II).

Case (II). Zm = 〈6,7〉.

Vertex 0 is unpainted after 4m (also by (A.5)), so Xm = ∅, and therefore

Ym = 〈3,2,1〉. (A.14)

We claim that

Zm−1 = ∅. (A.15)

Suppose otherwise, namely Zm−1 	= ∅. By (A.2), 5 ∈ Zm−1. Then Zm−1 cannot contain
6, for otherwise N(6) = {5,7} appears exactly once between 6 ∈ Zm−1 and 6 ∈ Zm via
5 ∈ Zm−1. On the other hand, (A.2) and (A.5) imply that 5 ∈ Zm−2. Further, by (A.3),
5 ∈ Zm−2,Zm−1 implies 6 ∈ Zm−1. This is a contradiction. This proves (A.15).

By (A.2) and (A.15), 3 ∈ Ym−1. By (A.3) and Ym = 〈3,2,1〉,
3 ∈ Ym−1, Ym ⇒ 2 ∈ Ym−1, Ym ⇒ 1 ∈ Ym−1, Ym. (A.16)

But the conclusion of (A.16) is impossible, because N(1) = {2} appears only once between
1 ∈ Ym−1 and 1 ∈ Ym. By this contradiction, we have proved that Case (II) with Zm = 〈6,7〉
is impossible.

To complete the proof of this proposition, we check that the final case is also impossible.

Case (III). Zm = 〈7〉.

As before, Ym = 〈3,2,1〉. If Ym−1 	= ∅, then we obtain a contradiction by the same
argument as (A.16). Together with (A.4), we get

Xm−1 = 〈0〉, Ym−1 = ∅, Zm−1 	= ∅. (A.17)

We check that

Xm−2 = ∅ ⇒ 5 ∈ Zm−2,Zm−1 ⇒ 6 ∈ Zm−1

⇒ Zm−1 = 〈6,5〉 ⇒ Zm−2 = 〈5〉,Zm−3 = ∅. (A.18)



M.K. Chuah, C.C. Hu / Journal of Algebra 301 (2006) 112–147 143
Here Xm−2 = ∅ follows from (A.5). The next argument is due to (A.2) and (A.4). Also,
5 ∈ Zm−1 follows from (A.2) and (A.17). By (A.3), it leads to 6 ∈ Zm−1. Observe that
7 /∈ Zm−1, for otherwise N(7) = {6} appears once between 7 ∈ Zm−1 and 7 ∈ Zm. It fol-
lows that Zm−1 = 〈6,5〉. Then 6 /∈ Zm−2, for otherwise 7 ∈ Zm−1 due to (A.3). So by (A.2)
and (A.5), Zm−2 = 〈5〉. Finally Zm−3 = ∅, for otherwise if 5 ∈ Zm−3, then 6 ∈ Zm−2 due
to (A.3). This explains (A.18).

By Xm−2 = ∅ in (A.18), we have Ym−2 	= ∅. Since 3 ∈ Ym−2, Ym, and since Ym−1 = ∅,
it follows that 2 	 ∈Ym−2, because N(3) = {2,4} already appears twice between 3 ∈ Ym−2
and 3 ∈ Ym via 4m−1 and 4m. Therefore,

Ym−2 = 〈3〉. (A.19)

Since Zm−3 = ∅, by (A.4) and by (A.6),

Xm−3 = 〈0〉, Ym−3 = 〈3,2〉. (A.20)

By arguments similar to (A.16),

Xm−4 = ∅ ⇒ 3 ∈ Ym−4, Ym−3 ⇒ 2 ∈ Ym−4, Ym−3

⇒ 1 ∈ Ym−4 ⇒ Ym−4 = 〈3,2,1〉. (A.21)

If Ym−5 = 〈3,2〉, then 2 ∈ Ym−5, Ym−4 and (A.3) imply 1 ∈ Ym−5, a contradiction. So
Ym−5 	= 〈3,2〉. By (A.6),

Ym−5 = ∅. (A.22)

From (A.17) through (A.22), it follows that

Zm−4k−1 = 〈6,5〉, Zm−4k−2 = 〈5〉, Zm−4k−3 = ∅, Zm−4k−4 = 〈7,6,5〉,
Ym−4k−1 = ∅, Ym−4k−2 = 〈3〉, Ym−4k−3 = 〈3,2〉, Ym−4k−4 = 〈3,2,1〉.

So there are two possibilities, depending on the odd integer m:

(i) m ≡ 1 mod (4): s = 〈0,41,3,2,1,7,6,5, . . .〉,
(ii) m ≡ 3 mod (4): s = 〈0,41,3,5,42,0,6,5,43,3,2,1, . . .〉.

In (i), the entry 7 ∈ Z1 is impossible because vertex 7 is unpainted at that time. In (ii), the
entry 2 ∈ Y3 is impossible since vertex 2 is unpainted at that time (because its neighborhood
{1,3} appears exactly twice before it). This shows that Case (III) leads to a contradiction
too.

We have shown that each of the Cases (I)–(III) on Zm leads to a contradiction. There-
fore, there is no switching sequence between (0) and (1,7). This proves the proposi-
tion. �
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Proposition A.2 completes the proof of Proposition 3.6. Finally, we want to show that
the E

(1)
8 diagrams (1) and (7) are not equivalent. To achieve this, we consider the more

general diagram

�

1

�

2

�

3

�

n

. . .

� 0

Proposition A.3. In the above diagram,

(1) ∼ (n − 1) ⇔ n ≡ 2 (mod 4).

Proof. Suppose that there is a minimum switching sequence s for ((1), (n − 1)). We want
to show that n ≡ 2 (mod 4). We will follow the spirit of Proposition A.2. By Lemma 3.3,
it is easy to see that

(a) ti is even for odd i � n − 1,

(b) t2, t0 + t4, tn−2 + tn are odd,

(c) ti−1 + ti+1 is even for i 	= 3, n − 1,

(d) tn−1 is even.

(A.23)

In particular

m = t3

is even, and we write

s = 〈1,2,31,X1, Y1,Z1,32,X2, . . . ,3m,Xm,Ym,Zm〉,
Xi ⊂ {0}, Yi ⊂ {1,2}, Zi ⊂ {4, . . . , n}.

We proceed with arguments similar to (A.2). If Yi starts with 1, then by Lemma A.1(b),
s = 〈. . . ,3i ,Xi,1, . . .〉 = 〈. . . ,1,3i ,Xi, . . .〉 contradicts the assumption that s is minimum
(A.1). So

Yi = 〈2,1〉, 〈2〉,∅ for all i = 1, . . . ,m. (A.24)

If Zi ends with some p > 4, then by Lemma A.1(b), s = 〈. . . , p,3i+1, . . .〉 = 〈. . . ,3i+1,

p, . . .〉 again contradicts the assumption that s is minimum. So

Zi = 〈ki, ki − 1, ki − 2, . . . ,4〉,∅ for all i = 1, . . . ,m − 1. (A.25)

For nonempty Zi in (A.25), the need for consecutive decreasing integers comes from the
fact that s is minimum.
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From s = 〈. . . ,3i ,Xi, Yi,Zi,3i+1, . . .〉 and N(3) = {0,2,4}, we again see that

for i = 1, . . . ,m − 1, exactly one of Xi,Yi,Zi is empty. (A.26)

After 〈1,2,31,X1, . . .〉 in the beginning of s, vertex 2 is unpainted. So Y1 = ∅ and
X1,Z1 	= ∅. Since N(0) = {3} and X1 = 〈0〉, it follows that X2,X4, . . . are all empty.
Together with (A.26), we conclude that

Xi = ∅ for even i < m,

Yi,Zi 	= ∅ for even i � m − 2. (A.27)

Consider some odd i � m − 3. If Yi = 〈2〉, then by (A.27), N(2) = {3} appears ex-
actly once between 2 ∈ Yi and 2 ∈ Yi+1. This is a contradiction. If Yi = 〈2,1〉, then since
2 ∈ Yi−1, Yi , by the argument similar to (A.3), 1 ∈ Yi−1. This is a contradiction, because
N(1) = {2} appears exactly once between 1 ∈ Yi−1 and 1 ∈ Yi . We conclude that

for odd i � m − 3, Yi = ∅. (A.28)

Since s is a switching sequence for ((1), (n − 1)), we can directly check the end of s

that Xm and Ym are empty, and that Zm = 〈4,5, . . . , n − 1〉. If Zm−1 	= ∅, (A.25) implies
4 ∈ Zm−1, then N(4) = {3,5} appears exactly once between 4 ∈ Zm−1 and 4 ∈ Zm via 3m,
which is impossible. So together with (A.26), we conclude that

Xm−1, Ym−1 	= ∅, Zm−1 = ∅,

Xm = Ym = ∅, Zm = 〈4,5, . . . , n − 1〉. (A.29)

By (A.27), (A.28) and (A.29), we see that Yi is nonempty exactly for even i � m − 2,
or for i = m − 1. Recall that m is even. So t2 is the sum of m−2

2 (from the nonempty
Y2, Y4, . . . , Ym−2) and 2 (entry 2 appears right before 31 and in Ym−1). Namely t2 = m

2 +1.
By (A.23)(b), t2 is odd. We conclude that

m = 4k for some integer k. (A.30)

By (A.27), (A.28) and (A.29), we see that Xi is empty if and only if i is even. It follows
that

t0 = m

2
is even.

Therefore, by (A.23)(b) and by (A.23)(c), t4 = m − 1 is odd, and hence ti is odd for all
even 2 � i � n − 1. Together with (A.23)(a), we have

ti is odd ⇔ i is even and 2 � i � n − 1. (A.31)

By (A.23)(a), (d), n − 1 is odd, so n is even.
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By direct inspection at the beginning of s, we see that Z1 does not contain 5. Hence
Z1 = 〈4〉. Recall that Zi = 〈ki, ki − 1, . . . ,4〉 from (A.25). We claim that k1, k2, . . . is
strictly increasing, namely

ki−1 < ki (A.32)

for all 2 � i � m − 2. Suppose otherwise, namely ki � ki−1 for some i. Then N(ki) =
{ki ± 1} appears only once between ki ∈ Zi−1 and ki ∈ Zi , which is impossible. This
proves (A.32) as claimed.

We claim further that |Zi | = i, namely

Zi = 〈i + 3, i + 2, . . . ,4〉. (A.33)

This is proved inductively on i. We have seen from above that Z1 = 〈4〉. By (A.32), we
know that 5 � k2. But if 5 < k2, then 5, 6 are contained in all of Z2,Z3, . . . , this implies
that t5 = t6, which contradicts (A.31). So 5 = k2 and Z2 = 〈5,4〉. We continue this argu-
ment and see that if i +3 < ki , then i +3, i +4 are contained in all of Zi,Zi+1, . . . , leading
to the impossible ti+3 = ti+4. Hence i + 3 = ki . This proves (A.33) as claimed.

Recall that n is even. By (A.31), tn−2 is odd and hence (A.23)(b) implies that tn is even.
We claim that in fact tn = 0. Since n∈ Zm and Zm−1 = ∅ (by (A.29)), n appears even
number of times in Z1, . . . ,Zm−2. This is impossible, because (A.32) implies that n can
appear exactly once in Zm−2 if tn 	= 0. So tn = 0 as claimed.

By (A.23)(d), tn−1 is even, since n − 1 ∈ Zm, (A.32) implies that

Zm−2 = 〈n − 1, . . . ,4〉. (A.34)

By (A.33) and (A.34), m + 2 = n, together with (A.30) we have

n ≡ 2 (mod 4).

We have proved the first part of Proposition A.3; namely if (1) ∼ (n − 1), then n ≡
2 (mod 4).

Conversely, suppose that n ≡ 2 (mod 4). Then the minimum switching sequence for
((1), (n − 1)) is given by

〈1,2,31,X1, Y1,Z1, . . . ,3n−3,Xn−3, Yn−3,Zn−3,3n−2,Zn−2〉,

where

Xi =
{ 〈0〉, for odd i,

∅, for even i,

Yi =
{ 〈2〉, for even i � n − 4,

〈2,1〉, for i = n − 3,

∅, for odd i � n − 5,
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Zi =
{ 〈i + 3, i + 2, . . . ,4〉, for 1 � i � n − 4,

∅, for i = n − 3,
〈4,5, . . . , n − 1〉, for i = n − 2.

For example if n = 6, then the minimum switching sequence for ((1), (5)) is
〈1,2,3,0,4,3,2,1,5,4,3,0,2,3,4,5〉. This completes the proof of Proposition A.3. �

We remark that Proposition A.3 can be extended to

(1) ∼ (k) ⇔ k ≡ 1 (mod 4), 1 � k � n.

But for the purpose of this paper, we only need the weaker version presented by Propo-
sition A.3. By this proposition, it follows that (1) is not equivalent to (7) in E

(1)
8 . This

completes the proof of Proposition 3.7.

References

[1] P. Batra, Invariants of real forms of affine Kac–Moody Lie algebras, J. Algebra 223 (2000) 208–236.
[2] P. Batra, Vogan diagrams of real forms of affine Kac–Moody Lie algebras, J. Algebra 251 (2002) 80–97.
[3] H. Ben Messaoud, G. Rousseau, Classification des formes réelles presque compactes des algèbres de Kac–

Moody affines, J. Algebra 267 (2003) 443–513.
[4] A. Borel, J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment.

Math. Helv. 23 (1949) 200–221.
[5] M.K. Chuah, C.C. Hu, Equivalence classes of Vogan diagrams, J. Algebra 279 (2004) 22–37.
[6] V. Kac, Infinite Dimensional Lie Algebras, third ed., Cambridge Univ. Press, Cambridge, 1990.
[7] A.W. Knapp, Lie Groups Beyond an Introduction, second ed., Progr. Math., vol. 140, Birkhäuser, Boston,

2002.


