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This paper presents a novel power-aware motion estimation architecture for bat-

tery-powered multimedia devices. As the battery status changes, the proposed architec-
ture adaptively performs graceful tradeoffs between power consumption and compres-
sion quality. The tradeoffs are considered to be graceful in that the proposed architecture 
is scalable with changing conditions and the compression quality is slightly degraded as 
the available energy is depleted. The key to such tradeoffs lies in a content-based sub-
sample algorithm, first proposed in this paper. As the available energy decreases, the al-
gorithm raises the subsample rate for maximizing the battery lifetime. Differently from 
the existing subsample algorithms, the content-based algorithm first extracts edge pixels 
from a macro-block and then subsamples the remaining low-frequency part. By doing so, 
we can alleviate the aliasing problem and, thus, limit the quality degradation as the sub-
sample rate increases. Given a power consumption mode, the proposed architecture first 
performs edge extraction to generate a turn-off mask and then uses the turn-off mask to 
reduce the switch activities of processing elements (PEs) in a semi-systolic array. The 
reduction of switch activities results in significant power consumption savings. To 
achieve a high degree of scalability and qualified power-awareness, we use an adaptive 
control mechanism to set the threshold value for edge determination and make the reduc-
tion of switch activities rather stationary. As shown by experimental results, the archi-
tecture can dynamically operate in different power consumption modes with little quality 
degradation according to the remaining capacity of the battery pack while the power 
overhead of edge extraction is kept under 0.8% 
 
Keywords: motion estimation, image processing, VLSI architecture, video compression, 
power-aware system 
 
 

1. INTRODUCTION 
 

Motion estimation (ME) has been notably recognized as the most critical part of 
many video compression applications, such as MPEG standards and H.26x [1], since it 
tends to dominate the computational and hence power requirements. With increasing 
demand for battery-powered multimedia devices, an ME architecture that can be flexible 
in both power consumption and compression quality is highly required. This requirement 
is driven by the user-centric perspective [2]. Basically, users have two views on using 
portable devices. Sometimes, users want extremely high video quality at the cost of re-
duced battery lifetime. At other times, users want acceptable quality with extended bat-
tery lifetime. This paper, therefore, presents a novel power-aware ME architecture that 
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uses a content-based subsample algorithm, which can adaptively perform tradeoffs be-
tween power consumption and compression quality as the battery status changes. The 
proposed architecture is driven by a content-based subsample algorithm that allows the 
architecture to work in different power consumption modes with acceptable quality deg-
radation. Since the control mechanism and data sequences in different power consump-
tion modes are the same in the architecture, the power-aware algorithm can switch power 
consumption modes very smoothly on the fly. The block diagram shown in Fig. 1 illus-
trates a typical application of the proposed power-aware ME architecture. The host proc-
essor monitors the remaining capacity of the battery pack and switches power consump-
tion modes. According to the power mode, the power-aware architecture sets the sub-
sample rate and calculates the motion vector (MV) for motion compensation. Note that 
most portable multimedia devices, in practice, have a battery monitor unit and power 
management subroutines. The host processor and battery monitor unit should not be con-
sidered as the overhead of using the power-aware architecture. 

 
Fig. 1. The system block diagram of a portable, battery-powered multimedia device. 

 
Many published papers have presented efficient algorithms for VLSI implementa-

tion of motion estimation, based on either high performance or low power design. How-
ever, most of them cannot dynamically adapt the compression quality to different power 
consumption modes. Among these proposed algorithms, the Full-Search Block-Matching 
(FSBM) algorithm with the Sum of Absolute Difference (SAD) criterion is the most 
popular approach to motion estimation because of its good quality. It is particularly at-
tractive when extremely high quality is required. Many types of architectures have been 
proposed for the implementation of FSBM algorithms [3-6]. However, they require a 
huge number of comparison/difference operations and result in a large computation load 
and high power consumption. To reduce the computational complexity of FSBM, re-
searchers have proposed various fast algorithms. They either reduce the number of search 
steps [7-12] or simplify the calculation of the error criterion [13-16]. By combining 
step-reduction and criterion-simplification, some proposed two-phase algorithms balance 
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the performance between complexity and quality [17-19]. They first use FSBM with a 
simplified matching criterion to generate candidate vectors and then select the best mo-
tion vector from among these candidates using the SAD criterion. These fast-search al-
gorithms successfully improved the block matching speed while limiting the quality 
degradation, thus achieving low power implementation. However, a low power imple-
mentation is not necessarily a power-aware system in that a power-aware system should 
adaptively modify its behavior according to the change of the power/energy status and 
achieve a balance between quality and battery life [20]. The requirement of ME algo-
rithms to be suitable for power-aware designs is high degree of scalability in perform-
ance tradeoffs. Unfortunately, the fast algorithms mentioned above do not meet this re-
quirement. 

The authors in [21, 22] presented subsample algorithms that significantly reduce the 
computation cost with low quality degradation. The reduction of the computation cost 
implies a savings in power consumption. Since the power consumption can be reduced 
by simply increasing the subsample rate, the subsample algorithms have a high degree of 
scalability and are very suitable for power-aware ME architectures. However, applying 
subsample algorithms for power-aware architectures may suffer from aliasing problem in 
the high frequency band. The aliasing problem degrades the compression quality rapidly 
as the subsample rate increases. To alleviate this problem, we extend traditional subsam-
ple algorithms to obtain a content-based algorithm, called the content-based subsample 
algorithm (CSA). In this algorithm, we first use edge extraction techniques to separate 
the high-frequency band from a macro-block and then subsample the low-frequency band 
only. By combining the edge pixels and subsample pixels, the algorithm generates a 
turn-on mask for the architecture to limit the switch activities of processing elements 
(PEs) in a semi-systolic array. By doing so, we can achieve significant power consump-
tion savings and limit the quality degradation as the subsample rate increases. Because 
the number of high-frequency pixels varies with different video clips, we use an adaptive 
control mechanism to set a threshold value for edge determination and make the number 
of masked pixels stationary for a given power mode. 

The CSA can be used in most existing ME architectures by turning off PEs accord-
ing to the subsample rate. In this paper, we present a semi-systolic architecture with 
gated PEs. The proposed architecture shows that the CSA algorithm can dynamically 
alter the subsample rate as the power consumption mode changes. As shown by experi-
mental results, the proposed architecture can work in different power consumption modes 
with acceptable and smooth quality degradation while keeping the power overhead of 
edge extraction under 0.8%. 

The rest of the paper is organized as follows. In section 2, we introduce the back-
ground of the power-aware paradigm. Section 3 presents subsample algorithms in detail. 
Section 4 describes the proposed power-aware architecture and gives experimental re-
sults. Finally, in section 5, we draw conclusions of this work. 

2. BACKGROUND 

2.1 Battery Properties 

One may simply consider a battery as a capacitor in which the charge capacity is 
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linearly proportional to the output voltage. However, in practice, the behavior of a battery 
is less than ideal due to the variation in voltage and capacity. Two other important prop-
erties of batteries are the rate capacity effect and recovery effect [23]. The first effect 
means that the capacity of a battery is dependent on the discharging rate, and the second 
one means that a battery with an intermittent load may have a larger capacity than one 
with a continuous load. Fig. 2 (a) illustrates the rate capacity effect by plotting the cell 
voltage of two different discharging loads as time advances. As shown by the curves, 
when the load is halved the battery life can be more than two times longer. Fig. 2 (b) 
shows the recovery effect, in where the reduction of the load causes a raise of the voltage. 
Therefore, one can extend the battery lifetime by gradually stepping down the power 
dissipation. The Intel SpeedStep technology, for instance, which is widely used in 
mobile CPUs, adopts the same strategy to extend the battery lifetime [24]. This technol-
ogy changes the power consumption mode by scaling down the supplied voltage and 
operating frequency, hence degrading the performance in order to increase the battery 
lifetime. 

  
(a) The rate capacity effect [25].                   (b) The recovery effect. 

Fig. 2. Non-ideal battery properties. 

 
From these two properties of batteries, we can learn two things. First, we can reduce 

the load to achieve a longer battery lifetime because halving the current can more than 
double the battery lifetime. Second, optimal performance can be achieved when the bat-
tery is fully charged because the battery capacity can be recovered later by reducing the 
load. These properties provide strong motivation for developing power-aware designs 
and reason out the requirement of power-aware architecture − high degree of scalability 
in energy-quality tradeoffs. 
 
2.2 Power Model 
 

One can consider the major power consumption of a CMOS gate i as in Eq. (1), 
where Ci is the output capacitance, fi is the operation frequency, ri(0 ↔ 1) is the switch 
activity of gate i, α and κ are constants: 

 
2 (0 1).

igate i i DD i iP C f V C rα κ= ⋅ ⋅ ⋅ = ⋅ ⋅ ↔                                 (1) 

For an execution unit EUj in a VLSI system, the power consumption can be com-
puted using Eq. (2), where Ngate,j is the gate count of EUj: 

,

1

(0 1).
gate j

j

N
j j

EU i i
i

P C rκ
=

= ⋅ ⋅ ↔∑                                         (2) 
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After considering the activity of execution units, the total power consumption can 
be expressed as in Eq. (3) and approximated as in Eq. (5) by assuming that the switch  
activities are uniform within an execution unit; that is, (0 1) (0 1),  (0k k k

i ir r r↔ = ↔ ∀   

↔ 1). Since the average output capacitances of each execution unit ( )k
avgC  are nearly the 

same as the average output capacitances of the total system (Cavg), the total power con-
sumption can be approximated to Eq. (8). Therefore, we can obtain an approximate 
power estimation model as shown in Eq. (9), where εgp is defined as the gate power coef-
ficient. In this paper, we use the gate power coefficient as the unit for estimating power 
dissipation: 

inactive active
j k

j k

total EU EU
EU EU

P P P
∀ ∀

= +∑ ∑                                  (3) 

, ,

inactive 1 active 1

0 (0 1)
gate j gate k

j k

N N
j k k

i i i
EU i EU i

C C rκ κ
∀ = ∀ =

= ⋅ + ⋅ ↔∑ ∑ ∑ ∑               (4) 
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r Nε
∀
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3. SUBSAMPLE ALGORITHMS 
 
3.1 Generic Subsample Algorithm  
 

Many published papers have presented efficient algorithms for VLSI implementa-
tion of motion estimation [1, 3, 5, 6, 15, 19]. The FSBM algorithm with the SAD crite-
rion is the most popular approach to motion estimation because of its good quality and 
regular data path. The algorithm uses Eqs. (10) and (11) to compare each current 
macro-block (CMB) with all the reference macro-blocks (RMB) in the search area to 
determine the best match and the motion vector is found in Eq. (11): 

1 1

0 0

( ,  ) | ( ,  ) ( ,  ) |,
N N

i j

SAD u v S i u j v R i j
− −

= =
= + + −∑ ∑  − p ≤ u, v ≤ p − 1.             (10) 
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The motion vector is found using Eq. (11): 
 

, 1min ( , )( ,  ) | ,
p u v p SAD u vMV u v

− ≤ ≤ −
=

�����

                                      (11) 

where the macro-block size is N-by-N and R(i, j) is the luminance value at (i, j) of the 
current macro-block (CMB). S(i + u, j + v) is the luminance value at (i, j) of the reference 
macro-block (RMB), which offsets (u, v) from the CMB in the search area 2p-by-2p. 

Much research has addressed subsample techniques for motion estimation in order 
to reduce the computation load of FSBM [21, 22]. Liu and Zaccarin, pioneers in devel-
oping subsample algorithms, applied 4-to-1 subsampling to FSBM and significantly re-
duced the computational load. As shown by simulation results, the 4-to-1 subsample al-
gorithm reduces the computational load significantly while keeping the quality similar to 
that with exhaustive search [21]. Here, we will present a generic subsample algorithm in 
which the subsample rate ranges from 4-to-1 to 1-to-1. The generic subsample algorithm 
uses Eq. (12) as a matching criterion, called the subsample sum of absolute difference 
(SSAD), where SM8:m is the subsample mask for the subsample rate 8-to-m as shown in 
Eq. (13): 

1 1

8: 8:
0 0

( ,  ) | ( ,  ) [ ( ,  ) ( ,  )] |,
N N

m m
i j

SSAD u v SM i j S i u j v R i j
− −

= =
= ⋅ + + −∑ ∑   

for − p ≤ u, v ≤ p − 1,             (12) 
 

SM8:m(i, j) = BM8:m(i mod 4, j mod 4).                                  (13) 
 

The subsample mask SM8:m is generated from a basic mask as shown in Eq. (14): 

8:

( 2) ( 5) ( 2) ( 6)
( 3) ( 7) ( 4) ( 8)

,
( 2) ( 5) ( 2) ( 6)
( 3) ( 7) ( 4) ( 8)

m

u m u m u m u m
u m u m u m u m

BM
u m u m u m u m
u m u m u m u m

− − − − 
 − − − −=  − − − −
 

− − − −  

                     (14) 

where u(n), is a step function; that is,  

1, for 0
( ) .

0, for 0

n
u n

n

≥
=  <

 

For example, consider the subsample rate 8-to-6. The subsample mask SM8:6 can be 
expressed in Eq. (15) and is illustrated in Fig. 3: 

8:6

1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 .1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0

SM

 
 
 
 =  
 
 
 
 

                                       (15) 
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Fig. 3. The subsample mask of the subsample rate 8-to-6. 

 
Given a subsample mask, the computational cost of the SSAD calculation can be 

lower than that of the SAD calculation. Since a reduction of computational cost implies 
reduced power consumption, the generic subsample algorithm allows the system power 
to scale with the changing subsample rate. The higher the subsample rate, the greater 
the number of inactive execution units (EUs). Accordingly, the power consumption of 
the system is proportional to the inverse of the subsample rate. Due to its flexibility in 
achieving an energy-quality tradeoff, the generic subsample algorithm is suitable for 
implementing power-aware architectures. However, the algorithm suffers from the 
aliasing problem in the high frequency band. The aliasing problem will degrade the 
MV quality and result in considerable quality degradation when the high-frequency 
band is messed up. 
 
3.2 Content-Based Subsample Algorithm 
 

As mentioned above, the generic subsample algorithm suffers from the aliasing 
problem due to the high subsample rate, leading to considerable quality degradation be-
cause the high frequency band is messed up. To alleviate this problem, we propose using 
the content-based subsample algorithm (CSA), which only subsamples the low-fre- 
quency band. The CSA procedure is shown in Fig. 4. We first use edge extraction to 
separate high-frequency pixels (or edge pixels) from a macro-block and then subsample 
the remaining pixels (or low-frequency pixels). The determination of edge pixels starts 
with gradient filtering. Three popular gradient filters [26] were also used here to execute 
the content-based algorithm; they are the high-pass gradient filter, the Sobel gradient 
filter, and the morphological gradient filter. Eqs. (16) to (18) show the calculations of the 
three gradient filters: 
 
High-Pass Gradient Filter: 

Ghpf(i, j) = |MF(HPFmask, R)(i, j)|,                                     (16) 

where 
1 1 1
1 8 1 .
1 1 1

maskHPF
− − − 
 = − −
 − − − 
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// frame: t 
Input current and reference frames, W × H; 
for (y = 0; y < W/N; y++) { 

for (x = 0; x < H/N; x++) { 
Perform gradient filtering; 
Calculate the edge threshold: 

threshold = m1
t(x, y) ⋅ max{G(i, j)} + (1 − m1

t(x, y)) ⋅ min{G(i, j)} 
Determine edge pixels and edge mask; 
Generate content-based subsample mask (GSM); 
edge_cnt = total edges of CSM; 
// update threshold parameter for the next frame 
m1

t+1(x, y) = m1
t(x, y) + Kp ⋅ (csm_cnt − trg_cnt); 

if (m1
t+1(x, y) < 0) {m1

t+1(x, y) = 0}; 
if (m1

t+1(x, y) > 1) {m1
t+1(x, y) = 1}; 

// find MV 
SSADmin(x, y) = ∞; 

for (u = − p; u < p; u++) { 
for (v = − p; v < p; v++) { 

1 1

0 0

( ,  ) | ( ,  ) ( ( ,  ) ( ,  )) |;
N N

i j

SSAD u v CSM i j S i u j v R i j
− −

= =
= ⋅ + + −∑ ∑    

if SSADmin(x, y) > SSAD(u, v) 
{SSADmin(x, y) = SSAD(u, v); MV(x, y) = (u, v);} 

} // for loop index v 
} // for loop index u 

} // for loop index x 
} // for loop index y 

Fig. 4. The content-based subsample algorithm. 

 
Sobel Gradient Filter: 

Gsobel(i, j) = |MF(SXmask, R)(i, j)| + |MF(SYmask, R)(i, j)|,                    (17)  

where 
1 2 1 1 0 1

0 0 0  and 2 0 2 .
1 2 1 1 0 1

mask maskSX SY
− − − −   
   = = −
   −   

 

Morphological Gradient Filter: 

Gmorphological = (R ⊕ B) − (R � B),                                    (18) 

where 
0 0 0
0 0 0 ,
0 0 0

B
 
 =
 
 

 and the operations “⊕” and “�” denote morphological dilation  

and erosion.  
 
In Eqs. (16) and (18), the MF(⋅) function is the mask filter operation as shown in 

Eq. (19): 
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1 1

1 1

( , )( ,  ) ( 1,  1) ( ,  ),
p q

MF M R i j M p q R i p j q
=− =−

= + + ⋅ + +∑ ∑                  (19) 

where M is a 3-by-3 mask and R(i, j) is the luminance value at (i, j). 
After obtaining the gradients, G, instead of using a constant threshold, we use a 

floating threshold to determine the edge pixels of the CMB. The floating threshold makes 
edge extraction more robust when video content varies. Eq. (21) shows the calculation of 
the floating threshold: 

 
threshold = m1

t(x, y) ⋅ max{G(i, j)} + (1 − m1
t(x, y)) ⋅ min{G(i, j)}, for 0 ≤ m1

t ≤ 1, (20) 
 

where m1
t(x, y) is the threshold parameter of macro-block (x, y) in the t-th frame. 

Following the threshold setting step, the algorithm uses the threshold value to pick 
the edge pixels and produce the edge mask as shown in Eq. (21): 

1, for ( ,  )
( ,  ) .

0, otherwise

G i j threshold
EdgeMask i j

≥
= 


                          (21) 

Finally, the contend-based subsample mask (CSM) is generated by merging the edge 
mask and the subsample mask, as shown in Eq. (22). In Eq. (22), the operator ∨ means 
logic a OR operation. According to the calculation of the CSM, the subsample rate in the 
CSA (CSR), denoted as Rs, is N2-to-csm_cnt, where csm_cnt is the number of 1’s in CSM 
and N2 is the macro-block size. Fig. 5 shows an example of a CSM where the subsample 
rate is 64-to-27: 

CSM(i, j) = SM8:m(i, j) ∨ EdgeMask(i, j), 0 ≤ i, j ≤ N − 1.                   (22) 

 
High Frequency Band            Low Frequency Band 

(edge-pixels)                (background-pixels) 

 
Content-Based Subsample Mask (CSM) 

Fig. 5. The components of a content-based subsample mask (CSM). 
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Once the CSM is generated, the algorithm can then determine the motion vection 
(MV) with the content subsample sum of the absolute difference (CSSAD) criterion. The 
CSSAD criterion is similar to SSAD mentioned in section 3.1 and shown in Eq. (23):  

1 1

8: 8:
0 0

( ,  ) | ( ,  ) [ ( ,  ) ( ,  )] |,
N N

m m
i j

CSSAD u v CSM i j S i u j v R i j
− −

= =
= ⋅ + + −∑ ∑   

for − p ≤ u, v ≤ p − 1.          (23) 
 
The results of simulation show that the CSA can significantly reduce the computa-

tion complexity with little quality degradation. However, there will exist a non-stationary 
problem with CSA when a power-aware architecture is implemented if the designer uses 
constant threshold parameters m1

t and statically sets the floating threshold for a given 
power mode. Since different video clips with the same threshold parameters will have 
different subsample rates, setting the threshold value without considering the content 
variation of the video clip will make the subsample rate non-stationary; that is, power 
consumption will not converge within a narrow range for a given power mode. The di-
vergence of power consumption can result in a poor power-awareness. To solve this 
non-stationary problem, we use an adaptive control mechanism to adaptively adjust the 
threshold parameters so that the subsample rate can be stationary. The adaptive control 
mechanism used here is a run-time process that adjusts the threshold parameters fittingly 
according to the difference between the current subsample rate and the desired subsample 
rate (or target subsample rate). 

 
Fig. 6. A block diagram of the edge-extraction unit with an adaptive control mechanism. 

 
Fig. 6 shows a block diagram of the adaptive control mechanism. Given the battery 

status, the host processor sets the power mode and the target subsample rate as well. The 
target subsample rate is N2-to-trg_cnt, where trg_cnt is the target number of 1’s in the 
CSM. Then, the controller recursively updates the threshold parameter, m1

t+1(x, y), based 
on the current m1

t(x, y) and the difference of csm_cnt and trg_cnt, as shown in Eq. (24): 
 

m1
t+1(x, y) = m1

t(x, y) + Kp ⋅ (csm_cnt − trg_cnt); 
if (m1

t+1(x, y) < 0) {m1
t+1(x, y) = 0};                                   (24) 

if (m1
t+1(x, y) > 1) {m1

t+1(x, y) = 1}; 
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where m1
t+1(x, y) is the threshold parameter of macro-block (x, y) in the (t + 1)-th frame 

and Kp is the control parameter. The control parameter Kp will affect the settling time and 
steady-state error of the subsample rate. 
 
3.3 Simulation Results 
 

Figs. 7 and 8 show the simulation results for four 352-by-288 MPEG clips with the 
parameters N = 16 and p = 32. The control parameter Kp was set as 0.3. The target sub-
sample rates were set to (4:1), (8:3), (2:1), (8:5), (4:3), (8:7), and (1:1); that is, the target 
subsample pixel counts were 64, 96, 128, 160, 192, 224, and 256, respectively. Note that 
the target subsample pixel counts were proportional to the power consumption. Thus, the 
figures can also be read as charts of power versus PSNR. The dashed lines indicate the 
results obtained using the generic subsample algorithm, and the solid lines indicate the 
results obtained using the content-based subsample algorithm with the three gradient 
filters. As shown by the results, the quality degradation due to the content-based algo-
rithm was less than that due to the generic subsample algorithm, and the type of gradient 
filter did not significantly affect the performance of the proposed algorithm. In addition, 
the adaptive control mechanism kept the subsample rate quite stationary. Tables 1 to 3 
show the CSR errors with four 40-frame clips. From the results shown in tables, the  

64 96 128 160 192 224 256
36.1

36.15

36.2

36.25

36.3

36.35
Weather

Sub−sample pixels of a marco−block(R
s
−1⋅N2)

P
S

N
R

 (
dB

)

+ : regular

* : morphological context−based

♦ : hpf context−based

o : Sobel context−based

    

64 96 128 160 192 224 256
26.68

26.7

26.72

26.74

26.76

26.78

26.8

26.82

26.84

26.86
Children

Sub−sample pixels of a marco−block(R
s
−1⋅N2)

P
S

N
R

 (
dB

)

+ : regular

* : morphological context−based

♦ : hpf context−based

o : Sobel context−based

 
Fig. 7. The quality degradation of the weather clip.  Fig. 8. The quality degradation of the children clip. 

Table 1. The CSR error of the content-based subsample algorithm 
(where the control parameter Kp = 0.3). 

Video Clip Weather News Table-Tennis Children 

Target CSR Average 
CSR 

CSR 
Error 

Average 
CSR 

CSR 
Error 

Average 
CSR 

CSR 
Error 

Average 
CSR 

CSR 
Error 

96 95.416 0.61% 95.366 0.66% 95.398 0.63% 95.490 0.53% 
128 127.521 0.37% 127.720 0.22% 127.467 0.42% 127.754 0.19% 
160 158.678 0.83% 159.795 0.13% 159.533 0.29% 159.430 0.36% 
192 188.037 2.06% 191.313 0.36% 191.429 0.30% 189.632 1.23% 
224 211.274 5.68% 221.224 1.24% 222.893 0.49% 216.001 3.57% 

The edge-extraction unit uses the high-pass gradient filter. 
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Table 2. The CSR error of the content-based subsample algorithm 
(where the control parameter Kp = 0.3). 

Video Clip Weather News Table-Tennis Children 

Target CSR Average 
CSR 

CSR 
Error 

Average 
CSR 

CSR 
Error 

Average 
CSR 

CSR 
Error 

Average 
CSR 

CSR 
Error 

96 94.985 1.06% 94.728 1.33% 95.361 0.67% 95.114 0.92% 
128 127.264 0.58% 127.688 0.24% 127.445 0.43% 127.304 0.54% 
160 157.104 1.81% 159.766 0.15% 159.415 0.37% 159.702 0.381% 
192 184.295 4.01% 191.183 0.43% 191.249 0.39% 188.451 1.85% 
224 207.612 7.32% 220.949 1.36% 222.685 0.59% 215.536 3.78% 

The edge-extraction unit uses the Sobel gradient filter. 

Table 3. The CSR error of the content-based subsample algorithm 
(where the control parameter Kp = 0.3). 

Video Clip Weather News Table-Tennis Children 

Target CSR Average 
CSR 

CSR 
Error 

Average 
CSR 

CSR 
Error 

Average 
CSR 

CSR 
Error 

Average 
CSR 

CSR 
Error 

96 97.072 1.12% 95.547 0.47% 96.040 0.04% 95.959 0.04% 
128 127.626 0.29% 127.718 0.22% 127.120 0.69% 127.267 0.57% 
160 157.401 1.62% 159.659 0.21% 158.986 0.63% 158.885 0.70% 
192 185.013 3.64% 191.477 0.27% 190.765 0.64% 189.279 1.42% 
224 209.300 6.56% 222.434 0.70% 222.405 0.71% 218.118 2.63% 

The edge-extraction unit uses the morphological gradient filter. 

 
average CSR error was as low as 1.12%, and the CSR error variance was as low as 
0.00024. Because the subsample rate could be kept nearly stationary with given target 
subsample rate and power mode, we conclude that the power-awareness of the proposed 
algorithm is very good, and that the CSA can be applied in a power-aware architecture. 
The results also show that the selection of Kp was proper for controlling the threshold 
parameters. The following section will further address on the selection of the control pa-
rameter. 
 
3.4 Selection of the Control Parameter 
 

As mentioned in sections 3.3 and 3.4, we use an adaptive control mechanism to ob-
tain a stationary subsample rate while keeping the quality acceptable. However, if the 
control parameter is not properly selected, the settling time will be too long to achieve 
real-time switching, and the CSR error will be so large as to make the setting of the 
power consumption mode inaccurate and the power-awareness worse. The control pa-
rameter, Kp, in Fig. 6 is the major factor affecting the settling time and the CSR error. 
After four 30-frame video clips were simulated with 1:1 of the initial subsample rate 
and 8:5 of the target subsample rate, the effects of the Kp selections were as shown in 
Figs. 9 and 10. Obviously, the higher the value of Kp, the shorter the settling time and 
the worse the stability of the CSR. As shown by the results, the suitable range of Kp 
was from 0.1 to 0.5.  
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Fig. 9. The step response for varying Kp in the 

case of the weather clip. 
Fig. 10. The step response for varying Kp in the 

case of the children clip. 

4. THE POWER-AWARE ARCHITECTURE 
 
4.1 System Architecture 
 

According to the content-based subsample algorithm, we present a semi-systolic 
architecture in Fig. 11, which is based on existing architectures, such as that in [5]. The 
architecture contains an edge-extraction unit (EXU), an array of processing elements 
(PEs), a parallel adder tree (PAT), a shift register array (SRA), and a motion-vector se-
lector (MVS). Given the power consumption mode, the EXU extracts high-frequency (or 
edge) pixels from the current macro-block (CMB) and generates 0-1 content-based sub-
sample masks (CSM) for the PE array to disable or enable processing elements (PEs). 
The structure of the PE array, as shown in Fig. 12, is used to accumulate absolute pixel 
differences column by column while the parallel adder tree sums up all the results to gen-
erate the value of the CSSAD. The MVS then performs a compare-and-select operation 
to select the best motion vector. 

 
Fig. 11. The system block diagram. 
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Fig. 12. The architecture of the PE array and shift register array. 

 
Based on the semi-systolic architecture with the content-based subsample algorithm, 

the architecture dynamically disables some processing elements to reduce the power con-
sumption since we assume the major power consumption is mainly determined by the 
switch activity of the system [15]. After edge extraction is performed first, a threshold is 
set as the criterion for determining whether or not to enable/disable processing elements, 
thus dynamically changing the switch activities of the system to reduce the power con-
sumption. Fig. 13 shows the PE structure and indicates how the CSM disables/enables 
processing elements. The CSM disables the PE by using the block element (BE), imple-
mented by means of AND gates. The BEs can nullify the input signals of data path, 
which consists of the absolute difference unit (|a − b|) and the Adder unit. When a PE is 
disabled during a MV searching iteration, the circuits in the PE remain still until the next 
iteration starts; thus, the consumption of transient power can be reduced. 

 
Fig. 13. The structure of a PE. 

 
The edge-extraction unit contains two blocks: a gradient filter and a CSM generator. 

The gradient filter is implemented based on one of Eqs. (16) to (18). The proposed archi-
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tecture only requires that a single gradient filter be embedded. However, we will show all 
of their implementations for the purpose of estimating the overheads and making a com-
parison. Figs. 14 to 16 illustrate the implementations of high-pass, Sobel, and morpho-
logical gradient filters respectively. Multiplexers are used to prevent boundary errors 
from occurring with border pixels of the CMB. The black dot in each multiplexer indicates 
the switching path used when processing a border pixel. Fig. 17 shows the structure of 
the CSM generator. The CSM generator first determines the threshold according to the 
gradient values and the power mode, and then generates the CSM by OR-merging the 
regular subsample pattern and the edge pattern, as shown in Eqs. (21) and (22). 

 
Fig. 14. The architecture of the high-pass gradient filter. 

 
Fig. 15. The architecture of the Sobel gradient filter. 

 
Fig. 16. The architecture of the morphological gradient filter. 
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Fig. 17. The architecture of edge-determination and the CSM generator. 

 
4.2 Execution of Power-Aware ME 
 

Power-aware motion estimation is performed in five phases: the initial CMB phase, 
initial RMB phase, SAD calculation phase, filtering phase, and edge-determination phase. 
The initial CMB phase involves loading the CMB data into a PE array, while the initial 
RMB phase involves filling up the PE array with RMB data to start the SAD calculation. 
As shown in Fig. 18, the initial CMB phase and initial RMB phase are executed in paral-
lel with edge extraction; thus, the timing overhead of edge extraction is hidden by the 
initial phases. For p > 8, the timing overhead of edge extraction is zero. 

 
Fig. 18. The execution phases of the power-aware architecture. 

 
4.3 Experimental Results 
 

Table 4 shows the synthesis results obtained using the TSMC 1P4M 0.35um cell li-
brary, where the symbol Rs denotes the content-based subsample rate and εgp is the gate 
power coefficient defined in Eq. (9). Compared with the general semi-systolic architec-
ture [5], the edge extraction unit (EXU) of the proposed architecture has the major  



POWER-AWARE MOTION ESTIMATION ARCHITECTURE 

 

815 

 

Table 4. Power analysis of the power-aware architecture. 

EUi PE array SRA PAT + MVS EXU 
 AD + Adder Other    

Gate Count Gi 117,760 58,708 44,640 1,800 17,121 
ri(0↔1) 4p2Rs

-1=4096Rs
-1 4p2=4096 4p2=4096 4p2=4096 N2=256 

Pi
consumption 4.8e8 ⋅ Rs

-1 2.4e8 1.8e8 7.37e6 4.38e6 

( )all
consumption gpP ε  4.8e8 ⋅ Rs

-1 + 4.3e8 

N = 16 and p = 32. Cell library: TSMC 0.35um process. 

 
overhead for the power-aware function. As mentioned above, we used one of the three 
gradient filters here to implement the EXU. As for the synthesis results, the gate counts 
of the three gradient filters were 595.33, 793.77, and 727.63, respectively. The variance 
of these values is very small compared to the overall gate count of the EXU. For instance, 
the gate count of EXU with the high-pass filter was equal to 14745. This number is much 
larger than the variance. This means that the selection of a gradient filter does not affect 
the overhead estimation very much. Therefore, we used the high pass filter to estimate 
the performance overhead caused by the EXU. From Table 4, one can see that the area 
overhead of EXU was 7.68%, while the worst-case power overhead was only 0.8% when 
the subsample rate was 4-to-1 for motion estimation with N = 16 and p = 32. 

Fig. 19 shows the results for the video clip “table-tennis” under switching of the 
power consumption mode. The target subsample pixel count was reduced by 48 every 40 
frames, and the control parameter Kp was set to 0.3. The results show that the adaptive 
control mechanism could enable the power consumption to reach the target level within 
10 frames. According to the battery properties described in section 2, the curve shows 
that our power-aware architecture can extend the battery lifetime by gradually degrading 
the quality. A, B, C, and D correspond to the switching points in Fig. 2 (b), respectively. 
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Fig. 19. An application involving switching of the power mode  in the case of the video clip “ta-

ble-tennis.” 
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5. CONCLUSIONS 
 

Motivated by the battery properties and the power-aware paradigm, this paper has 
presented an architecture-level power-aware technique based on a novel content-based 
subsample algorithm. When the battery capacity is full, the proposed ME architecture 
turns on all the PEs to provide the best compression quality. In contrast, when the battery 
capacity is short for full operation, instead of exhibiting an all-or-none behavior, the pro-
posed architecture shifts to a lower power consumption mode by disabling some PEs in 
order to extend the battery lifetime with little quality degradation. Switching of power 
consumption mode can be smoothly accomplished; thus, the proposed architecture makes 
it possible to switch the power consumption mode with acceptable quality degradation. 
Although edge extraction plays a crucial role to dynamically adjusting the power con-
sumption mode, it does not introduce much power dissipation and the timing overhead 
can be neglected. As shown by the simulation results, the proposed algorithm success-
fully improves the compression quality of the generic subsample algorithm and switches 
the power consumption mode by adaptively adjusting the threshold parameters. 

REFERENCES 
 
1. P. Raghavan and C. Chakrabarti, “Battery-friendly design of signal processing algo-

rithms,” in Proceedings of the IEEE Workshop on Signal Processing Systems, 2003, 
pp. 304-309. 

2. M. J. Chen, L. G. Chen, and T. D. Chiueh, “One-dimensional full search motion es-
timation algorithm for video coding,” IEEE Transactions on Circuits and Systems for 
Video Technology, Vol. 4, 1994, pp. 504-509. 

3. B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block motion 
vectors,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 3, 
1993, pp. 148-157. 

4. H. W. Cheng and L. R. Dung, “EFBLA: a two-phase matching algorithm for fast 
motion estimation,” Advances in Multimedia Information Processing − PCM, LNCS 
2532, 2002, pp. 112-119. 

5. D. Linden, Handbook of Batteries, 2nd ed., McGraw-Hill, Inc., New York, 1995. 
6. R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison Wesley, New 

York, 1993. 
7. C. H. Hsieh and T. P. Lin, “VLSI architecture for block-matching motion estimation 

algorithm,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 2, 
1992, pp. 169-175. 

8. K. Sauer and B. Schwartz, “Efficient block motion estimation using integral projec-
tions,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 6, 
1996, pp. 513-518. 

9. J. R. Jain and A. K. Jain, “Displacement measurement and its application in inter-
frame image coding,” IEEE Transactions on Communications, Vol. COM-29, 1981, 
pp. 1799-1808. 

10. J. N. Kim, S. C. Byun, Y. H. Kim, and B. H. Ahn, “Fast full search motion estimation 
algorithm using early detection of impossible candidate vectors,” IEEE Transactions 



POWER-AWARE MOTION ESTIMATION ARCHITECTURE 

 

817 

 

on Signal Processing, Vol. 50, 2002, pp. 2355-2365. 
11. T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishigura, “Motion compensated in-

terframe coding for video conferencing,” in Proceedings of the IEEE National Tele-
communication Conference, Vol. 4, 1981, pp. G5.3.1-G5.3.5. 

12. Y. K. Lai and L. G. Chen, “A data-interlacing architecture with two-dimensional 
data-reuse for full-search block-matching algorithm,” IEEE Transactions on Circuits 
and Systems for Video Technology, Vol. 8, 1998, pp. 124-127. 

13. S. Lee and S. I. Chae, “Motion estimation algorithm using low-resolution quantiza-
tion,” IEE Electronic Letters, Vol. 32, 1996, pp, 647-648. 

14. J. H. Luo, C. N. Wang, and T. Chiang, “A novel all-binary motion estimation (ABME) 
with optimized hardware architectures,” IEEE Transactions on Circuits and Systems 
for Video Technology, Vol. 12, 2002, pp. 700-712. 

15. Mobile Pentium III Processor in BGA2 and Micro-PGA2 Packages Datasheet, Intel 
Corporation, pp. 55. 

16. P. Kuhn, Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Mo-
tion Estimation, Kluwer Academic Publishers, U.S.A., 1999. 

17. R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm for block motion 
estimation,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 4, 
1994, pp. 438-442. 

18. C. K. Cheung and L. M. Po, “Normalized partial distortion search algorithm for 
block motion estimation,” IEEE Transactions on Circuits and Systems for Video 
Technology, Vol. 10, 2000, pp. 417-422. 

19. S. Unsal and I. Koren, “System-level power-aware design techniques in real-time 
systems,” in Proceedings of the IEEE Special Issue on Real-Time Systems, Vol. 91, 
2003, pp. 1055-1069. 

20. W. Li and E. Salari, “Succesive elimination algorithm for motion estimation,” IEEE 
Transactions on Image Processing, Vol. 4, 1995, pp. 105-107. 

21. J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A novel unrestricted 
center-biased diamond search algorithm for block motion estimation,” IEEE Trans-
actions on Circuits and Systems for Video Technology, Vol. 8, 1998, pp. 369-377. 

22. J. C. Tuan, T. S. Chang, and C. W. Jen, “On the data reuse and memory bandwidth 
analysis for full-search block-matching VLSI architecture,” IEEE Transactions on 
Circuits and Systems for Video Technology, Vol. 12, pp. 61-72. 

23. V. L. Do and K. Y. Yun, “A low-power VLSI architecture for full-search block- 
matching motion estimation,” IEEE Transactions on Circuits and Systems for Video 
Technology, Vol. 8, 1998, pp. 393-398. 

24. K. M. Yang, M. T. Sun, and L. Wu, “A family of VLSI designs for the motion com-
pensation block-matching algorithm,” IEEE Transactions on Circuits and Systems 
for Video Technology, Vol. 36, 1989, pp. 1317-1325. 

25. W. Zhang, R. Zhou, and T. Kondo, “Low-power motion-estimation architecture 
based on a novel early-jump-out technique,” in Proceedings of the IEEE Interna-
tional Symposium on Circuits and Systems, Vol. 5, 2001, pp. 187-190. 

26. C. Zhu, X. Lin, and L. P. Chau, “Hexagon-based search pattern for fast block motion 
estimation,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 
12, 2002, pp. 349-355. 



HSIEN-WEN CHENG AND LAN-RONG DUNG 

 

818 

 

27. M. Bhardwaj, R. Min, and A. P. Chandrakasan, “Quantifying and enhancing power 
awareness of VLSI systems,” IEEE Transactions on Very Large Scale Integration 
Systems, Vol. 9, 2001, pp. 757-772.  

28. C. L. Su and C. W. Jen, “Motion estimation using MSD-first processing,” IEE Pro-
ceedings of Circuits, Devices and Systems, Vol. 150, 2003, pp. 124-133. 

 
 

Hsien-Wen Cheng (鄭顯文) was born in 1968. He received 
the B.S. degree in Control Engineering from National Chiao Tung 
University, Hsinchu, Taiwan, R.O.C. in 1992. He joined the 
AVerMedia Technologies Inc. from 1994 to 2001. He is currently 
working toward the Ph.D. degree in the Electrical and Control 
Engineer, National Chiao Tung University. His research interests 
are video/image compression, motion estimation, VLSI architec-
ture, and digital signal processing.  

 
 

 
 
Lan-Rong Dung (董蘭榮) was born in 1966. He received a 

B.S.E.E. and the Best Student Award from Feng Chia University, 
Taiwan, in 1988, an M.S. in Electronics Engineering from Na-
tional Chiao Tung University, Taiwan, in 1990, and Ph.D. in 
Electrical and Computer Engineering from Georgia Institute of 
Technology, in 1997. From 1997 to 1999 he was with Rockwell 
Science Center, Thousand Oaks, CA, as a Member of the Techni-
cal Staff. He joined the faculty of National Chiao Tung University, 
Taiwan in 1999 where he is currently an Associate Professor in 

the Department of Electrical and Control Engineering. He received the VHDL Interna-
tional Outstanding Dissertation Award celebrating in Washington DC in October, 1997. 
His current research interests include VLSI design, digital signal processing, hardware-  
software codesign, and System-on-Chip architecture. He is a member of Computer and 
Signal Processing societies of the IEEE.  

 
 
 


