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Abstract

Aguiló-Gost [New dense families of triple loop Networks, Discrete Math. 197/198 (1999) 15–27] has presented a new type of
hyper-L tiles and used it to derive a new dense family of triple-loop networks. While Aguiló-Gost’s hyper-L tile seems to be a
promising tool for studying the triple-loop networks, we need to verify that the hyper-L tile producing good result is indeed the
MDD of some triple-loop network. In this paper, we give necessary and sufficient conditions for the existence of Aguiló-Gost’s
hyper-L triple-loop networks and we correct some flaws in [F. Aguiló-Gost, New dense families of triple loop networks, Discrete
Math. 197/198 (1999) 15–27].
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Multi-loop networks were first proposed by Wong and Coppersmith [6] for organizing multimodule memory services.
A multi-loop network ML(N; s1, s2, . . . , sd) has N nodes 0, 1, 2, . . . , N − 1 and dN links, i → (i + s1) mod N, i →
(i + s2) mod N, . . . , i → (i + sd) mod N, i = 0, 1, . . . , N − 1. Multi-loop networks are now being widely studied
because of their relevance to the design of some interconnection networks and communication networks. For details
of multi-loop networks, refer to [2,3,5].

A triple-loop network TL(N; s1, s2, s3) has N nodes 0, 1, 2, . . . , N − 1 and 3N links, i → (i + s1) mod N, i →
(i + s2) mod N, i → (i + s3) mod N, i = 0, 1, . . . , N − 1. It is an extension of the double-loop network DL(N; s1, s2)
with one more fixed step s3 for each node. It is well known [6] that DL(N; s1, s2) and TL(N; s1, s2, s3) are strongly
connected if and only if gcd(N, s1, s2)=1 and gcd(N, s1, s2, s3)=1, respectively. In this paper, we are only concerned
with strongly connected networks and if the parameters do not satisfy the above conditions, we simply say that the
corresponding network does not exist.

A minimum distance diagram MDD(v) for DL(N; s1, s2) is a 2-dimensional array which gives the shortest paths from
node v to every other node. Since DL(N; s1, s2) is node-symmetric, we need only study MDD(0), or simply, MDD.
Wong and Coppersmith [6] gave an O(N)-time construction of MDD by sequentially adding nodes to the diagram
which can be reached from node 0 in i steps for i = 0, 1, . . . , until every node appears exactly once. Fig. 1 illustrates
an MDD where each horizontal step signifies an s1-step and each vertical, an s2-step.
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Fig. 1. The MDD of DL(9; 1, 7).
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Fig. 2. The hyper-L tile.

It is well known that the MDD for a double-loop network is an L-shape which includes the degenerate form of a
rectangle. The L-shape plays a crucial role in proving many desirable properties for a double-loop network.

The MDD for a triple-loop network is a 3-dimensional array with each step in the xi-axis signifying an si-step.
Unfortunately, the MDD for a triple-loop network does not have a uniform nice shape like the L-shape, and this fact
has really hampered the study of triple-loop networks. Aguiló et al. [2] overcame this difficulty by skipping the triple-
loop network and going directly to a nice 3-dimensional shape which they called hyper-L tile. This hyper-L tile is
characterized by three parameters l, m, n, and is highly structured and symmetrical (see Fig. 2). Note that l, m, n are
integers, m�n�0, and l > m + n. They used the hyper-L tile to derive a dense family of triple-loop networks which
has the property

N(D)� 2
27 (D + 3)3 ≈ 0.074D3 + O(D2),

where N(D) is the maximum number of nodes in a triple-loop network for a fixed diameter D. Note that when a family
of triple-loop networks has a good N–D ratio, we say it is dense.

Recently, Aguiló-Gost [1] presented a new type of hyper-L tiles which is characterized by three parameters h, m, n,
and is also highly structured and symmetrical (see Figs. 3(a) and 4). Aguiló-Gost used it to derive a new dense family
of triple-loop networks which has the property

N(D)� 1485
273 D3 ≈ 0.075D3 + O(D2). (1.1)

For convenience, call this hyper-L tile the hyper-L1 tile, let HL1(h, m, n) denote a hyper-L1 tile with parameters
h, m, n, and call a triple-loop network whose MDD is HL1(h, m, n) an HL1(h, m, n) triple-loop network.

While the hyper-L and the hyper-L1 tiles seem to be promising tools for studying the triple-loop networks, we must
be able to verify that those hyper-L tiles producing good results are indeed the MDDs of some triple-loop networks.
In [4], Chen et al. have proposed necessary and sufficient conditions for the existence of hyper-L triple-loop networks
(see [2] also). In this paper, we will give necessary and sufficient conditions for the existence of hyper-L1 triple-loop
networks.
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Fig. 3. The hyper-L1 tile. (a) The hyper-L1 tile proposed by Aguiló-Gost [1]. (b) Two edges labelled n in (a) are actually not of length n.

Fig. 4. A hyper-L1 tile with h = 3, m = 3, n = 1; it is the MDD of TL(161; 2, 117, 7).

2. Preliminary

Let a | b (a � b) denote b is divisible (not divisible) by a. It is well known that

Lemma 1. If m and n are integers, not both zero, then there exist integers a and b such that am − bn = gcd(m, n).

We now prove that

Lemma 2. If a, m, b, n are integers, not all zero, such that am − bn = 1, then gcd(a, n) = 1.

Proof. Assume that am − bn = 1 and gcd(a, n) = k. Then k | a and k | n. Thus k | am − bn = 1. So k = 1. �

The following lemma will be used in the remaining discussions.

Lemma 3. If m and n are integers, not both zero, and gcd(m, n) = 1, then there exist integers a and b such that
am − bn = 1 and gcd(a, 2m + n) = 1.
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Proof. By Lemma 1, there exist integers a and b such that am − bn = 1. By Lemma 2, we have

gcd(a, n) = 1. (2.1)

If gcd(a, 2m + n) = 1, then we are done. In the following, assume that gcd(a, 2m + n) = d > 1. Let a = pd and
2m + n = qd. Then gcd(p, q) = 1. Since gcd(m, n) = 1, we have

gcd(2m + n, n) = gcd(2m, n) =
{

1 if n is odd,
2 if n is even.

If gcd(2m + n, n) = 1, then clearly gcd(qd, n) = 1 and thus gcd(d, n) = 1. Now suppose that gcd(2m + n, n) = 2.
Then gcd(qd, n) = 2; therefore gcd(d, n) = 1 or gcd(d, n) = 2. If gcd(d, n) = 2, then 2 | a and we have gcd(a, n)�2;
this contradicts with (2.1). From the above, we have

gcd(d, n) = 1. (2.2)

Let q = st , where s is the largest factor of q such that

gcd(s, d) = 1. (2.3)

That is, s (t) contains those prime factors of q that are relative prime (not relative prime) to d. (For example, if q=22 ·32 ·7
and d = 2 · 32, then s = 7 and t = 22 · 32.) Then

gcd(s, t) = 1. (2.4)

Since gcd(p, q) = 1 and q = st , we have

gcd(p, s) = 1. (2.5)

Since t contains those prime factors of q that are not relative prime to d, by Eq. (2.2), we have

gcd(t, n) = 1. (2.6)

Let

a′ = a + sn and b′ = b + sm.

Then a′m − b′n = (a + sn)m − (b + sm)n = am − bn = 1 and

gcd(a′, 2m + n) = gcd(a + sn, 2m + m) = gcd(pd + sn, qd)

= gcd(pd + sn, q) (by Eqs. (2.2) and (2.3)) = gcd(pd + sn, st)

= gcd(pd + sn, s) (by Eqs. (2.4) and (2.6)) = 1 (by Eqs. (2.3) and (2.5)).

Hence the lemma. �

3. Necessary and sufficient conditions

Aguiló-Gost [1] observed that HL1(h, m, n) tessellates the space. By studying the distribution of node 0 in the space,
Aguiló-Gost defined a matrix associated with HL1(h, m, n) as follows:

M1(h, m, n) =
(

n −m −m

n n + m −m

2h h 2h − n

)
.

They also claimed that the diameter of HL1(h, m, n) is given by

D(h, m, n) = max{3m + h + n, 2m + 2h + n, 3h + 3n} − 3. (3.1)

Note that two sides labelled length n in Fig. 3(a) (this figure is Fig. 5 in [1]) are actually not of length n; for
convenience, we have circled these two n’s. One of the two flaws can be verified by checking the lengths of the sides
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Fig. 5. Setting two of the edges labelled n in Fig. 3(a) to m − n.

of the topmost n×n square and the lengths of the sides of the rightmost m×h rectangle. The other edge label actually
can be anything; suppose it is k (see Fig. 3(b)). We now show that k = m − n is a better choice as far as the diameter
is considered. Let A, B, C, D be the four cells shown in Fig. 3(b), and let d(A), d(B), d(C), d(D) be the distance
between the origin and cell A, B, C, D, respectively. Then d(A) = 3h + 2n + k − 3, d(B) = m + 2h + 2n + k − 3,

d(C) = 2m + 2h + n − 3, and d(D) = 3m + h + n − 3. Clearly the diameter of HL1(h, m, n) is given by

D(h, m, n) = max{d(A), d(B), d(C), d(D)}.
One heuristic to derive a better D(h, m, n) is to let d(A) = d(B) = d(C) = d(D) and this occurs when k = m − n

and h = m. Thus k = m − n is a better choice as far as the diameter is considered. Fig. 5 shows the HL1(h, m, n) after
setting k = m − n.

In the remaining part of this paper, we assume k=m−n. Then d(A)=m+3h+n−3, d(B)=d(C)=2m+2h+n−3,

and d(D) = 3m + h + n − 3. Hence the diameter of HL1(h, m, n) is given by

D(h, m, n) = max{m + 3h + n, 2m + 2h + n, 3m + h + n} − 3 (3.2)

and the matrix associated with HL1(h, m, n) is given by

M1(h, m, n) =
(

n −m −m

n n + m −m

2h h h + m − n

)
.

Set M = M1(h, m, n) for easy writing. Recall that Aguiló-Gost [1] observed that HL1(h, m, n) tessellates the space.
By studying the distribution of node 0 in the space, Aguiló-Gost obtained

MT ×
(

s1
s2
s3

)
≡
(0

0
0

)
(mod N) or

MT ×
(

s1
s2
s3

)
=
(�

�
�

)
N for some integers �, �, �. (3.3)

Also, N = det M , i.e.,

N = (2m + n)(h(2m + n) + n(m − n)). (3.4)

We now give necessary and sufficient conditions for the existence of an HL1(h, m, n) triple-loop network.

Theorem 4. A necessary and sufficient condition for the existence of an HL1(h, m, n) triple-loop network is gcd(m, n)=
1 and 3�m − n.
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Proof. Suppose that gcd(m, n) = 1 and 3�m − n. Since gcd(m, n) = 1, by Lemma 3, there exist integers a and b such
that am− bn= 1 and gcd(a, 2m+n)= 1. Since gcd(a, 2m+n)= 1, a �= 0. Since gcd(m, n)= 1, gcd(m−n, m)= 1.

Since gcd(m, n) = 1 and 3�m − n and gcd(m − n, m) = 1, we have

gcd(m − n, 2m + n) = gcd(m − n, 3m) = gcd(m − n, 3) = 1. (3.5)

By Eqs. (3.3) and (3.4)(
s1
s2
s3

)
= (MT)−1

(�
�
�

)
N

=
(

h(2m + n) + (m − n)(m + n) −(h(2m + n) + n(m − n)) −h(2m + n)

m(m − n) h(2m + n) + n(m − n) −h(2m + n)

m(2m + n) 0 n(2m + n)

)(�
�
�

)
.

Setting (�, �, �) = (a, 0, −b), we obtain the solution(
s1
s2
s3

)
=
(

h(a + b)(2m + n) + a(m − n)(m + n) mod N

bh(2m + n) + am(m − n) mod N

2m + n

)
.

Let

�(a) =
{−1 if a > 0,

1 if a < 0.

From (3.4), 2m + n | N . Therefore there exists an integer k1 such that

h(a + b)(2m + n) + a(m − n)(m + n) mod N = k1(2m + n) + �(a)a(m − n)(m + n)

and

0 < k1(2m + n) + �(a)a(m − n)(m + n) < N .

Also, there exists an integer k2 such that

bh(2m + n) + am(m − n) mod N = k2(2m + n) + �(a)am(m − n)

and

0 < k2(2m + n) + �(a)am(m − n) < N .

Therefore(
s1
s2
s3

)
=
(

k1(2m + n) + �(a)a(m − n)(m + n)

k2(2m + n) + �(a)am(m − n)

2m + n

)
.

Note that

gcd(s1, s2, s3)

= gcd(k1(2m + n) + �(a)a(m − n)(m + n), k2(2m + n) + �(a)am(m − n), 2m + n)

= gcd(a(m − n)(m + n), am(m − n), 2m + n)

= gcd(an(m − n), am(m − n), 2m + n)

= gcd(n(m − n), m(m − n), 2m + n) (by the fact that gcd(a, 2m + n) = 1)

= gcd(n, m, 2m + n) (by Eq. (3.5))

= gcd(m, n)

= 1.

So if gcd(m, n) = 1 and 3�m − n, then clearly gcd(N, s1, s2, s3) = gcd(s1, s2, s3) = 1 and TL(N; s1, s2, s3) exists.
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On the other hand, suppose

gcd(m, n) = d > 1 or 3 | m − n.

In the former case, each si , i = 1, 2, 3, is a linear combination of terms divisible by d. Furthermore, from (3.4), N is
also a linear combination of terms divisible by d. Hence

gcd(N, s1, s2, s3)�d > 1

and TL(N; s1, s2, s3) does not exist. In the latter case, since 3 | m − n, we have

gcd(2m + n, m − n) = gcd(3m, m − n) = r �3.

Therefore each si , i = 1, 2, 3, is a linear combination of terms divisible by r. Furthermore, from (3.4), N is also a linear
combination of terms divisible by r. Hence

gcd(N, s1, s2, s3)�r > 1

and TL(N; s1, s2, s3) does not exist. �

4. Applications

Aguiló-Gost [1] suggested the ratio h : m : n= 2 : 2 : 1 between the dimensions of HL1(h, m, n) and used this ratio
to derive (1.1). By Theorem 4, a HL1(6t, 6t + 1, 3t + 1) triple-loop network does not exist. HL1(6t + 1, 6t + 1, 3t)

and HL1(6t + 3, 6t + 3, 3t + 1) were used in Theorem 1 of [1] to derive (1.1). By Theorem 4, a HL1(6t + 1, 6t + 1, 3t)

triple-loop network and a HL1(6t + 3, 6t + 3, 3t + 1) triple-loop network do exist.
Aguiló-Gost [1] claimed that the number of nodes N(t) of HL1(6t + 1, 6t + 1, 3t) equals 1485t3 + 648t2 + 90t + 4

and the diameter D(t) of HL1(6t + 1, 6t + 1, 3t) satisfies D(t) ≤ 27t + 1. Aguiló-Gost then used N(t) and D(t) to
derive (1.1). Note that after correcting the two flaws in Fig. 3(a), we still have N(t) = 1485t3 + 648t2 + 90t + 4 and
we will have D(t) = 27t + 1. It is not difficult to verify that (1.1) still holds.
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