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Abstract

Most incremental mining and online mining algorithms concentrate on finding asso-

ciation rules or patterns consistent with entire current sets of data. Users cannot easily

obtain results from only interesting portion of data. This may prevent the usage of

mining from online decision support for multidimensional data. To provide ad-hoc,

query-driven, and online mining support, we first propose a relation called the multidi-

mensional pattern relation to structurally and systematically store context and mining

information for later analysis. Each tuple in the relation comes from an inserted dataset

in the database. We then develop an online mining approach called three-phase online

association rule mining (TOARM) based on this proposed multidimensional pattern

relation to support online generation of association rules under multidimensional con-

siderations. The TOARM approach consists of three phases during which final sets of
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patterns satisfying various mining requests are found. It first selects and integrates

related mining information in the multidimensional pattern relation, and then if neces-

sary, re-processes itemsets without sufficient information against the underlying data-

sets. Some implementation considerations for the algorithm are also stated in detail.

Experiments on homogeneous and heterogeneous datasets were made and the results

show the effectiveness of the proposed approach.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Data mining technology has become increasingly important in the field of

large databases and data warehouses. This technology helps discover nontriv-

ial, implicit, previously unknown, and potentially useful knowledge [3,12,19],

thus aiding managers in making good decisions. Mining association rules from

transaction databases is the most interesting and popular of the various types

of databases and mined knowledge. It discovers relationships among items

such that the occurrence of certain items in a transaction implies the occurrence

of certain other items in the same transaction [2,4].
Previous works on mining association rules can be classified into batch

mining [4,5,10,20,27–29,31,34,36] and incremental mining approaches

[6,13,14,16,22,33,35] according to their processing methods. Most focus on

finding association rules or patterns in specified parts of databases that satisfy

specified criteria (such as minimum support and minimum confidence)

[7,9,18,26,30]. Some contexts (circumstances) such as region, time, and branch

are usually ignored in mining requests. However, decision-makers frequently

must consider diverse aspects of problems [17,18]. They may need to analyze
market demands, customer preferences, locals, and short-term/long-term

trends. They may also want to understand changes in discovered patterns or

rules in various dimensions. Some examples are shown below.
Scenario 1. A decision-maker may know what product combinations sold last

August were popular, and want to know what product combinations sold last

September were also popular.
Scenario 2. A decision-maker may know from a transaction database that

people often buy beer and diapers together, and want to know under what cir-

cumstances (e.g., place, month, or branch) this pattern is significant or, con-

versely, under what circumstances this pattern becomes insignificant.
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Scenario 3. A decision-maker may want to know how the mined patterns this

year differ from those found last year, e.g., what new patterns have appeared

and what old patterns have disappeared.
Scenario 4. A marketing analyst may want to analyze all first-quarter

data from branches in Los Angeles and San Francisco over the last five

years.
Scenario 5. A marketing analyst may want to know what patterns are signif-

icant when the minimum support is increased from 5% to 10%.

The examples above all require more context information to describe the

problem domain. A mining algorithm that can handle relevant context infor-

mation in mining requests will thus help decision-makers consider various

aspects of problems in diverse ways.

In this paper, we attempt to extend the concept of effectively utilizing pat-

terns previously discovered to support online generation of association rules

under multidimensional considerations. We first propose the multidimensional

pattern relation to structurally and systematically store additional context

information and mining information for each inserted dataset. Conceptually,

a multidimensional pattern relation is similar to a data warehouse for OLAP

[11,23,37], except that it is used to store mined patterns but not data. We then

develop a three-phase online association rule mining (TOARM) approach

based on the proposed multidimensional pattern relation to effectively and

efficiently satisfy diverse mining requests. It consists of three main phases,

candidate itemset generation, candidate itemset reduction, and association rule

generation. The candidate itemset generation phase selects tuples that satisfy

the context constraints in mining requests and generates candidate itemsets

from the matching tuples. The candidate itemset reduction phase then calcu-

lates upper-bound supports for the candidate itemsets and uses two pruning

strategies to reduce the number of candidates. Finally, the association rule

generation phase finds final large itemsets and derives association rules from

them. Experimental results show the effectiveness of the proposed TOARM

approach.
The remainder of this paper is organized as follows. Related work is re-

viewed in Section 2. An overview of the proposed methodology is given in Sec-

tion 3. The multidimensional pattern relation used in this paper is defined in

Section 4. Some relevant properties of multidimensional online mining are sta-

ted and proven in Section 5. The TOARM algorithm is proposed in Section 6.

Implementation considerations for the algorithm are stated in Section 7.

Experimental results are presented and discussed in Section 8. Conclusions

and future work are given in Section 9.
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2. Related work

Mining association rules from transaction databases has recently become

one of the most interesting and popular research topics in data mining. An

association rule indicates a relationship among items such that the occurrence

of certain items in a transaction implies the occurrence of certain other items in
the same transaction. The process of mining association rules can be roughly

divided into two tasks [4]: finding large itemsets and generating interesting asso-

ciation rules. The first task discovers itemsets in a given database that satisfy a

user-specified minimum support criterion. It is used to obtain the statistically

significant patterns. The second task finds association rules in the large itemsets

that satisfy a user-specified minimum confidence criterion. Since the first task is

very time-consuming compared to the second one, the major challenges in min-

ing association rules thus focus on how to reduce the search space and decrease
the computation time required for the first task. Some famous mining algo-

rithms, such as Apriori [4], DIC [10], DHP [31], Partition [34], Sampling

[28], GSP [5], and FP-Growth [20,36], were proposed to achieve this purpose.

Among them, the Apriori algorithm, which is the most well known, utilizes a

level-wise candidate generation approach to reduce its search space such that

only large itemsets found in the previous level are treated as seeds for generat-

ing candidate itemsets in the current level. This level-by-level property can

greatly reduce the number of itemsets considered in a mining process. Many
later algorithms were based on this property and attempted to further reduce

candidate itemsets and I/O costs. For example, the Partition algorithm pro-

posed by Savasere et al. reduces I/O costs by partitioning a database into small

chunks that can be loaded into main memory [34]. The algorithm scans a data-

base only twice to find large itemsets. It generates the set of all potentially large

itemsets in each chunk during the first pass, and then counts their global sup-

port during the second pass. Comprehensive overviews can be found in [12,19].

Researchers have recently developed incremental mining algorithms for
maintaining association rules without re-processing the entire database when-

ever it is updated. Examples include the FUP-based algorithms proposed by

Cheung et al. [13,14], the adaptive algorithm proposed by Sarda and Srinivas

[33], the incremental mining algorithm based on the concept of pre-large item-

sets proposed by Hong et al. [22], and the incremental updating technique

based on the concept of negative border proposed by Thomas et al. [35] and

Feldman et al. [16]. The common idea among these approaches is that previ-

ously mined patterns are stored in advance for later use. When new transac-
tions are inserted or old records are deleted, a large part of the final results

can be obtained by comparing the patterns mined from the newly inserted

transactions or deleted records with the pre-stored mined knowledge. Only a

small portion of the patterns need be re-processed against the entire database,

thus saving much computation time. Among the approaches mentioned above,
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the FUP-based algorithms [13,14] store the previously mined large itemsets for

later maintenance. Some other approaches utilize pre-large itemsets [22]

and negative borders [16,35] to enlarge the amount of pre-stored mined infor-

mation, further improving maintenance performance at the expense of storage

space.

Researchers have also developed online mining algorithms to obtain re-
quired sets of patterns without re-processing the entire database whenever

user-specified thresholds are changed. Examples are the OLAP-style algorithm

proposed by Aggarwal and Yu [1] and the Carma algorithm proposed by Hider

[21]. The OLAP-style algorithm is quite similar to a typical incremental mining

algorithm that utilizes previously mined patterns to save on I/O and computa-

tion. It first stores primary itemsets based on a low minimum support criterion

in a latticed data structure, and then responds to users� queries with higher min-

imum support criteria by processing the lattice. It thus preprocesses the data
just once, but can efficiently handle multiple user queries. The Carma algo-

rithm attempts to provide intermediate results as feedback to users while dat-

abases or minimum support thresholds are being changed. Users are thus able

to dynamically adjust thresholds according to intermediate results. The Carma

algorithm uses two runs. During the first run, it constructs a lattice composed

of all potential large itemsets from the transactions. Each itemset in the lattice

uses a lower bound and an upper bound to record its possible support range.

When a mining request is input, itemsets in the lattice whose support ranges
cover or are larger than the new minimum support threshold are output to

the second run. During the second run, the Carma algorithm finds the precise

support for each itemset from the first run to determine whether it is truly

large.

All of the incremental mining and online mining algorithms mentioned

above seek sets of association rules or patterns consistent with the entire set

of data present at time of search. They do not consider the contexts (circum-

stances) such as region, time, and branch in mining requests. Users cannot
easily obtain association rules or patterns from only interesting portions of

data. This may produce additional rules that are irrelevant and uninterest-

ing to users. Constraint-based and multidimensional mining techniques

[7,9,17,18,24,26,30,32] which allow users to specify constraints as a guidance

have thus been developed to extract interesting knowledge from a data ware-

house or a database. For example, Kamber et al. [24] proposed a famous ap-

proach that allowed users to specify the predicates that appear in antecedent

and consequent parts of association rules. Their approach mined rules directly
from data stored in data warehouses. Different from their approach, this paper

systematically mines association rules from each incoming dataset and stores

the rules with relevant context information in a structural repository for later

mining requests. Specifically, the proposed TOARM approach gets the multi-

dimensional association rules mainly from stored patterns, while the previous
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multidimensional mining approaches get the rules from data in data ware-

houses.

Interestingly, many large organizations have multiple databases distributed

at different branches. Traditional data mining algorithms may put all data

from different databases in a common repository for centralized analysis. This

kind of mining causes some problems. The collected data may be too huge to
be coped with. Besides, some useful rules or patterns regarding local databases

may be lost. As a result, multi-database mining has recently been recognized as

an important research topic and some studies [25,38,39] on mining association

rules over multi-databases have been proposed. These approaches mined rules

or patterns at different databases and gathered the mined results. They did not,

however, maintain a repository to systematically and structurally store the

mining information and related context information for later flexible analysis.

It is thus not easy for them to provide enough online decision support for the
scenarios given in Section 1.
3. Overview of the proposed methodology

We first propose a relation called the multidimensional pattern relation to

structurally and systematically store context information and mining informa-

tion for later analysis. Each tuple in the relation comes from an inserted dataset
in a database. We then develop an online mining approach called three-phase

online association rule mining (TOARM) based on the proposed multidimen-

sional pattern relation to support online generation of association rules under

multidimensional considerations. Although the proposed approach is based on

the concept of effectively utilizing patterns previously discovered, the TOARM

approach with the multidimensional pattern relation is not intended to deal

with the incremental problems, but with the multidimensional mining requests.

The multidimensional pattern relation is conceptually similar to a data
warehouse for OLAP [11,23,37]. Both preprocess the underlying data in ad-

vance, integrate related context information, and store the results in a central-

ized structural repository for later use and analysis. The multidimensional

pattern relation consists of two major types of information for providing ad-

hoc, query-driven, and online mining support. One is context information such

as region, time, and branch for diverse decision support, and the other is min-

ing information such as number of transactions and previously mined patterns

for efficient online mining. The multidimensional pattern relation is thus used
to store mined patterns instead of data.

Assume data is inserted or deleted in a block during a time interval such as a

month. Whenever a new block of data is inserted into a database, significant

patterns are mined from this dataset based on an initial minimum support

and act as the mining information. The mining information along with
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corresponding context information is then stored in the pre-defined multidi-

mensional pattern relation. On the other hand, when an old block is deleted

from the database, its corresponding context information and mining informa-

tion are also removed from the multidimensional pattern relation. Fig. 1 shows

an example of a database consisting of blocks of data from various branches

from 2002/1 to 2002/12. The context information and the mining information
along with each block of data form a tuple in the corresponding multidimen-

sional pattern relation. When a new block of data from the Los Angeles branch

in 2003/1 is inserted, it is first stored in the underlying database. The significant

patterns for this block are mined and then stored with other context informa-

tion in the multidimensional pattern relation.

Unlike the summarized information on fact attributes in a data warehouse,

the mined patterns in the multidimensional pattern relation cannot be directly

aggregated to satisfy users� mining requests. Assume the minimum support in a
mining request is always greater than or equal to that used to obtain the mining

information in the multidimensional pattern relation. The proposed TOARM

approach consists of three phases to find the final sets of patterns under mul-

tidimensional considerations. TOARM first selects and integrates related

mining information in the multidimensional pattern relation, and then, if
No. Region Branch Tim e No_Trans No_Patterns Pattern_Sets

… … … … … …
… CA San

Francisco
Oct-02 10000 5 (A,10% ),(B,11% ),(C,9% )

,(AB,8% ),(AC,7% )

… CA San Nov-02 15000 3 (A,5% ),(B,7% ),(C,5% )
… CA San Dec-02 12000 2 (A,5% ),(C,9% )

… … … … … … …

… CA Los Angeles Oct-02 20000 … …
… CA Los Angeles Nov-02 25000 2 (A,5% ),(C,6% )
… CA Los Angeles Dec-02 30000 4 (A,6% ),(B,6% ),(C,9% ),(

AB,5%)

… … … … … … …
… NY New York Oct-02 … … …

… … … … … … …

… CA Los Angeles Jan-03 … …

2002/1
San Francisco

……
2003/1

Los Angeles

New block

Multidimensional 
pattern relation

2002/12
San Francisco

2002/1
New York

2002/1
Los Angeles

2002/12
Los Angeles

……

…… 2003/1
Los Angeles

Database

Fig. 1. A database and its corresponding multidimensional pattern relation.
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necessary, re-processes itemsets without sufficient information against the

underlying datasets.
4. The multidimensional pattern relation

In this section, we formally define the multidimensional pattern relation for

storing context information and mining information for later analysis. First,

a relation schema R, denoted by R(A1,A2, . . .,An), is made up of a relation

name R and a list of attributes A1, A2, . . ., An. Each attribute Ai is associated

with a set of attribute values, called the domain of Ai and denoted by dom(Ai).

A relation r of the relation schema R(A1,A2, . . .,An) is a set of tuples

{t1, t2, . . ., tm}. Each tuple ti is an ordered list of n values hvi1,vi2, . . .,vini, where

each value vij is an element of dom(Aj).
A multidimensional pattern relation schema (MPR) is a special relation

schema for storing mining information. An MPR consists of three types of

attributes: identification (ID), context, and content. There is only one identifica-

tion attribute for an MPR. It is used to uniquely label tuples. Context attri-

butes describe the contexts (circumstances) of an individual data block,

gathered together from a specific business viewpoint. Examples of context attri-

butes are region, time, and branch. Content attributes describe available min-

ing information discovered from each individual data block by a batch-mining
algorithm. Examples of content attributes are number of transactions, number

of mined patterns, and the set of previously mined large itemsets with supports.

The set of all patterns, with supports, previously mined from an individual

data block is called a pattern set (ps) in this paper. Assume the minimum sup-

port is s and l large itemsets are discovered in a data block. A pattern set can be

represented as ps = {(xi, si) j si P s and 1 6 i 6 l}, where xi is a large itemset and

si is its support. The pattern set is thus an essential content attribute of an

inserted block of data.
A multidimensional pattern relation schema MPR with n1 context attributes

and n2 content attributes can be represented as MPRðID;CX1;CX2;
. . . ;CXn1

;CN1;CN2; . . . ;CNn2
Þ, where ID is an identification attribute, CXi,

1 6 i 6 n1, is a context attribute, and CNi, 1 6 i 6 n2, is a content attribute.

Assume the multidimensional pattern relation mpr to be an instance of a given

MPR that includes the tuples {t1, t2, . . ., tm}. Each tuple ti ¼ ðidi; cxi1; cxi2;
. . . ; cxin1

; cni1; cni2; . . . ; cnin2
Þ in mpr indicates that for the block of data identi-

fied by the contexts cxi1, cxi2, . . ., and cxin1
, the mined information contains

cni1, cni2, . . ., and cnin2
.

Example 1. Table 1 shows a multidimensional pattern relation with the initial

minimum support set at 5%. ID is the identification attribute, Region, Branch,

and Time are context attributes, and No_Trans, No_Patterns, and Pattern_Sets



Table 1

A multidimensional pattern relation with minimum support = 5%

ID Region Branch Time No_Trans No_Patterns Pattern_Sets

(itemset, support)

1 CA San Francisco 2003/10 10,000 7 (A,10%), (B,11%),

(C,9%), (AB,8%), (AC,7%),

(BC,6%), (ABC,6%)

2 CA San Francisco 2003/11 15,000 3 (A,5%), (B,7%), (C,5%)

3 CA San Francisco 2003/12 12,000 2 (A,5%), (C,9%)

4 CA Los Angeles 2003/10 20,000 4 (A,8%), (B,6%), (C,7%),

(AC,6%)

5 CA Los Angeles 2003/11 25,000 2 (A,5%), (C,6%)

6 CA Los Angeles 2003/12 30,000 4 (A,6%), (B,6%), (C,9%),

(AB,6%)

7 NY New York 2003/10 18,000 3 (B,8%), (C,7%), (BC,6%)

8 NY New York 2003/11 18,500 2 (B,8%), (C,6%)

9 NY New York 2003/12 19,000 5 (A,5%), (B,9%), (C,8%),

(D,6%), (BC,6%)
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are content attributes. The Pattern_Sets attribute records the sets of large

itemsets mined from previous data blocks. For example, the tuple ID = 1

shows that seven large itemsets, {(A, 10%), (B, 11%), (C,9%), (AB, 8%),

(AC,7%), (BC, 6%), and (ABC, 6%)}, were discovered from 10,000 transactions

and in the contexts of Region = CA, Branch = San Francisco, and Time = 2003/

10. The other tuples have similar meanings.
5. Multidimensional online mining for association rules

The goal of online mining is to find association rules satisfying the con-

straints in mining requests. The flexibility of mining requests can be increased
by using the proposed multidimensional pattern relation. In this paper, an

online mining approach called three-phase online association rule mining

(TOARM) is proposed to carry out mining tasks with a multidimensional pat-

tern relation. TOARM first selects tuples from the relation that satisfy the con-

straints in mining requests. It then integrates the mined information in these

tuples and outputs them to users. Before describing the TOARM approach,

we first formally define the problem to be solved and some related terminology.

Some lemmas are also derived and proven.
Assume mpr = {t1, t2, . . ., tm} is a multidimensional pattern relation based on

an initial minimum support s. Given a mining request q with the set of contexts

cxq, the new minimum support sq (sq P s), and the new minimum confidence

confq, the proposed algorithm will effectively and efficiently derive association
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rules satisfying sq, confq, and cxq. A tuple with cxq in a multidimensional pat-

tern relation is called a matched tuple. Let ti denote the ith tuple in a multidi-

mensional pattern relation, ti.trans the number of transactions in ti, ti.ps the

pattern set in ti, and ti.sx the actual support of an itemset x in ti. Lemma 1 is

easily derived as follows.

Lemma 1. For each itemset x satisfying sq and cxq in a mining request q, there

exists at least a matched tuple t, such that t.sx satisfies sq.
Proof. We prove the lemma by contradiction. If ti.sx < sq for each matched
tuple ti, thenX

ti2matched tuples

ti.trans � ti.sx <
X

ti2matched tuples

ti.trans � sq.

It implies that the itemset x does not satisfy sq, contradicting the claim that x

satisfies sq. Thus, there must exist at least a matched tuple t with t.sx P sq. h

According to Lemma 1, an itemset with support greater than or equal to sq

in at least one matched tuple is a possible candidate. The following lemma

about candidate itemsets can thus be derived.

Lemma 2. Each itemset x satisfying sq and cxq in a mining request q must be

among the candidate itemsets obtained by collecting the ones whose supports are
greater than or equal to sq in at least one matched tuple.
Example 2. For the multidimensional pattern relation given in Table 1,

assume that a mining request q calls for getting the patterns under the contexts
cxq of Region = CA and Time = 2003/11–2003/12 and satisfying the minimum

support sq = 5.5%. The matched tuples are shown in Table 2. According to

Lemma 2, the set of candidate itemsets is {{A}, {B}, {C}, {AB}}, which is

the union of the itemsets appearing in the pattern sets with supports greater

than 5.5%.
Table 2

Matched tuples in Example 2

ID Region Branch Time No_Trans No_Patterns Pattern_Sets

(itemset, support)

2 CA San Francisco 2003/11 15,000 3 (A,5%), (B,7%), (C,5%)

3 CA San Francisco 2003/12 12,000 2 (A,5%), (C,9%)

5 CA Los Angeles 2003/11 25,000 2 (A,5%), (C,6%)

6 CA Los Angeles 2003/12 30,000 4 (A,6%), (B,6%),

(C,9%), (AB,6%)
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The following relation can be derived for a candidate itemset x and its prop-

er subsets.

Lemma 3. If x is a candidate itemset, then "x 0 � x, x 0 is also a candidate

itemset.
Proof. If x 0 � x, then ti.sx0 P ti.sx for each tuple ti in a multidimensional pat-

tern relation. According to Lemma 2, if x is a candidate itemset, there must

exist at least a matched tuple t with t.sx P sq. Thus, t.sx0 P t.sx P sq for the

tuple t. x 0 is thus a candidate itemset. h

The appearing count Countappearing
x of a candidate itemset x is defined as the

count of x calculated from the matched tuples in which x appears. Thus

Countappearing
x ¼

X
ti2matched tuples and x2ti.ps

ti.trans � ti.sx. ð1Þ

The upper-bound count CountUB
�x of a candidate itemset x is defined as the

upper bound count of x calculated from the matched tuples in which x does

not appear. Thus

CountUB
�x ¼

X
ti2matched tuples and x62ti.ps

ðti.trans � s� 1Þ. ð2Þ

Let Match_Trans denote the number of transactions in the matched tuples.

Thus

Match Trans ¼
X

ti2matched tuples

ti.trans. ð3Þ

The upper-bound support sUB
x of a candidate itemset x is thus calculated as

sUB
x ¼ Countappearing

x þ CountUB
�x

Match Trans
. ð4Þ
Lemma 4. If x is a candidate itemset and sx is its actual support, then sx 6 sUB
x .
Proof

sx ¼
P

ti2matched tuplesti.trans � ti.sxP
ti2matched tuplesti.trans

¼
P

ti2matched tuples and x2ti.psti.trans � ti.sx þ
P

ti2matched tuples and x62ti.psti.trans � ti.sxP
ti2matched tuplesti.trans



C.-Y. Wang et al. / Information Sciences 176 (2006) 1752–1780 1763
6

P
ti2matched tuples and x2ti.psti.trans � ti.sx þ

P
ti2matched tuples and x 62ti.psðti.trans � s� 1ÞP

ti2matched tuplesti.trans

¼ Countappearing
x þCountUB

�x

Match Trans
¼ sUB

x .

Thus sx 6 sUB
x . h
Example 3. Continuing Example 2, the upper-bound supports of the four can-
didate itemsets {A}, {B}, {C}, and {AB}, are calculated as follows:
sUB
A ¼

Countappearing
A þCountUB

A

Match Trans

¼ 15;000 � 5%þ 12;000 � 5%þ 25;000 � 5%þ 30;000 � 6%

15;000þ 12;000þ 25;000þ 30;000

¼ 0.0537;

sUB
B ¼

Countappearing
B þCountUB

B

Match Trans

¼ 15;000 � 7%þ 30;000 � 6%þ 12;000 � 5%� 1þ 25;000 � 5%� 1

15;000þ 12;000þ 25;000þ 30;000

¼ 0.0573;

sUB
C ¼

Count
appearing
C þCountUB

C

Match Trans

¼ 15;000 � 5%þ 12;000 � 9%þ 25;000 � 6%þ 30;000 � 9%

15;000þ 12;000þ 25;000þ 30;000

¼ 0.0735;

and

sUB
AB ¼

Countappearing
AB þCountUB

AB

Match Trans

¼ 30;000 � 6%þ 15;000 � 5%� 1þ 12;000 � 5%� 1þ 25;000 � 5%� 1

15;000þ 12;000þ 25;000þ 30;000

¼ 0.0536.
Lemma 5. If x is a candidate itemset, then "x 0 � x, sUB
x0 P sUB

x .
Proof. If x 0 � x, then ti.sx0 P ti.sx for each tuple ti in a multidimensional pat-

tern relation. Therefore
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sUB
x0 ¼ Count

appearing
x0 þ CountUB

x0

� �.
Match Trans

¼
X

ti2matched tuples and x02ti.ps

ti.trans � ti.sx0

 

þ
X

ti2matched tuples and x0 62ti.ps

ðti.trans � s� 1Þ
!, X

ti2matched tuples

ti.trans

 !

¼
X

ti2matched tuples and x02ti.ps and x2ti.ps

ti.trans � ti.sx0

 

þ
X

ti2matched tuples and x02ti.ps and x62ti.ps

ti.trans � ti.sx0

þ
X

ti2matched tuples and x0 62ti.ps

ðti.trans � s� 1Þ
!, X

ti2matched tuples

ti.trans

 !

P
X

ti2matched tuples and x02ti.ps and x2ti.ps

ti.trans � ti.sx

 

þ
X

ti2matched tuples and x02ti.ps and x62ti.ps

ðti.trans � s� 1Þ

þ
X

ti2matched tuples and x0 62ti.ps

ðti.trans � s� 1Þ
!, X

ti2matched tuples

ti.trans

 !

¼
X

ti2matched tuples and x2ti.ps

ti.trans � ti.sx

 

þ
X

ti2matched tuples and x62ti.ps

ðti.trans � s� 1Þ
!, X

ti2matched tuples

ti.trans

 !

¼ Countappearing
x þ CountUB

�x

� ��
ðMatch TransÞ ¼ sUB

x .

Thus, sUB
x0 P sUB

x . h
Lemma 6. If a candidate itemset x is contained in all matched tuples, then

sUB
x ¼ sx.
Proof. If x is contained in all the matched tuples, then

sUB
x ¼ Countappearing

x þ CountUB
�x

Match Trans
¼
P

ti2matched tuplesti.trans � ti.sxP
ti2matched tuplesti.trans

¼ sx. �
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Example 4. Continuing Examples 2 and 3, according to Lemmas 4 and 5,

candidate itemsets {A} and {AB} will be pruned since {AB} is a proper sup-

erset of {A} and the upper-bound support of {A} is less than sq (=5.5%).

According to Lemma 6, the candidate itemset {C} will be put into the set of

final large itemsets since it appears in all matched tuples and its support is

greater than 5.5%. Only the remaining candidate itemset {B} needs further
processing.
6. Three-phase online association rule mining (TOARM)

In this section, we propose the TOARM approach for carrying out mining

tasks with a multidimensional pattern relation. It consists of three main

phases, candidate itemset generation, candidate itemset reduction, and associa-

tion rule generation. The candidate itemset generation phase selects tuples that

satisfy the context constraints in mining requests and generates candidate

itemsets from matched tuples. The candidate itemset reduction phase then cal-

culates the upper-bound supports for the candidate itemsets and uses two
pruning strategies to reduce the number of candidates. Finally, the association

rule generation phase finds final large itemsets and derives association rules

from them. The proposed three-phase online mining approach is described

below.

The three-phase online association rule mining (TOARM) approach

Input: A multidimensional pattern relation based on an initial minimum sup-
port s and a mining request q with a context set cxq, a minimum sup-

port sq and a minimum confidence confq.

Output: A set of association rules satisfying the mining request q.

Phase 1 Candidate itemset generation:

(a) Select tuples satisfying cxq from the multidimensional pattern

relation.

(b) Gather the candidate itemsets appearing in the matched

tuples.
(c) Calculate Countappearing

x and CountUB
�x for each candidate itemset

x.
Phase 2 Candidate itemset reduction:

(a) Calculate the upper-bound support sUB
x for each candidate itemset

x using:

sUB
x ¼ Countappearing

x þ CountUB
�x

Match Trans
.



1766 C.-Y. Wang et al. / Information Sciences 176 (2006) 1752–1780
(b) Discard candidate itemset x and its proper supersets if sUB
x < sq.

(c) Put x into the set of large itemsets if sUB
x ¼ Count

appearing
x

Match Trans
and

sUB
x P sq.

Phase 3 Association rule generation:
(a) Check whether each remaining candidate itemset x is large by

scanning the underlying blocks of data for the matched tuples
in which x does not appear.

(b) Generate association rules satisfying the minimum confidence

confq from the set of large itemsets.
The TOARM approach considers only itemsets appearing in matched tuples

and satisfying minimum support as candidates. It also uses two pruning strat-

egies to reduce the number of candidate itemsets. It therefore only needs to re-

process the remaining candidate itemsets against the underlying blocks of data
for matched tuples in which they do not appear. For this reason, the cost of re-

processing underlying blocks of data by the TOARM approach is less than that

of typical batch mining or incremental mining approaches (experimental results

presented below show this).

Theorem 1. The TOARM approach can correctly obtain association rules in

response to an online mining request q as long as its minimum support sq is greater

than or equal to the initial minimum support s for getting the multidimensional
pattern relation.
Proof. According to Lemma 2, all candidate itemsets for q are collected in

Phase 1 of the TOARM approach. After that, the candidate itemsets whose

upper-bound supports are less than sq are pruned in Phase 2(b) of the TOARM

approach according to Lemmas 4 and 5. Also, the candidate itemsets which

appear in all the matched tuples can know their actual supports according to

Lemma 6. If they satisfy sq, they are put into the set of final large itemsets in
Phase 2(c) of the TOARM approach. Finally, the actual supports of the

remaining candidate itemsets can be found by Phase 3(a) of the TOARM

approach from the underlying blocks of data. The final large itemsets can then

be determined. The association rules can thus be derived by Phase 3(b) of the

TOARM approach. h
7. Implementation consideration

7.1. The data structure used for the TOARM approach

The TOARM approach utilizes a latticed data structure [1,21] to maintain

candidate itemsets. The lattice is constructed as follows. For each candidate
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itemset x, a corresponding vertex cx is built in the lattice C. Vertex cx consists

of two integers, Countappearing
x and CountUB

�x , that record, respectively, its

appearing and upper-bound counts. For any pair of vertices cx and cy corre-

sponding to candidate itemsets x and y, there is a directed edge from cx to

cy if x is a parent of y. An itemset x is said to be a parent of an itemset y if

y can be obtained by adding an item to x, and inversely, y is said to be a child
of x. Therefore, a candidate itemset may have more than one parent and more

than one child in the constructed lattice.

Example 5. Consider the candidate itemsets illustrated in Example 2. The

lattice constructed according to the candidate itemsets is illustrated in Fig. 2,

where the vertex labeled ‘‘Null’’ denotes the greatest lower bound of the lattice.
7.2. Phase 1: Candidate itemset generation

Two scans are needed in this phase to construct the lattice and calculate the

appearing and upper-bound counts of the candidate itemsets. The first scan

checks the multidimensional pattern relation and the second scan checks only
the matched tuples. During the first scan, tuples satisfying the context con-

straints given in the mining request are selected, and all the itemsets in the

matched tuples with supports greater than or equal to the minimum support

are collected and used to construct a corresponding lattice. During the second

scan, the Countappearing
x and CountUB

�x values of each candidate itemset x are

accumulated as each matched tuple is processed. After all matched tuples have

been processed, the phase then generates all candidate itemsets with appearing
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Fig. 2. Lattice constructed according to the candidate itemsets in Example 2.
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and upper-bound counts corresponding to the mining request. The algorithm

for this proposed phase is described below.

Phase 1: The candidate-itemset-generation algorithm

Input: A multidimensional pattern relation based on an initial minimum sup-

port s, and a mining request q with a set of contexts cxq and a mini-
mum support sq.

Output: A lattice C recording information on candidate itemsets.

Step 1: Set C = ; and Match_Trans = 0, where C is used to maintain the set of

candidate itemsets and Match_Trans is used to store total number of

transactions in the matched tuples processed.

Step 2: For each tuple t in the given multidimensional pattern relation, do the

following substeps:

Step 2-1: If t satisfies cxq, put it in the matched set and do Step 2-2.
Step 2-2: For each itemset x 2 t.ps, if x 62 C and t.sx P sq, put x into

C, set Countappearing
x ¼ 0, CountUB

�x ¼ 0, and add appropriate

edges to its parents and children.
Step 3: For each tuple t in the matched set, do the following substeps:

Step 3-1: Set ProcessedSet = ;, where ProcessedSet is a set used to

store the processed itemsets in C.

Step 3-2: For each itemset x 2 t.ps, if x 2 C, set Countappearing
x ¼

Countappearing
x þ t.trans � t.sx and ProcessedSet = Processed

Set [ {x}.

Step 3-3: If jProcessedSetj5 jCj, for each remaining itemset x 2 C,

set CountUB
�x ¼ CountUB

�x þ t.trans � s� 1.

Step 3-4: Set Match_Trans = Match_Trans + t.trans.
Step 4: Output C to Phase 2.

After Step 4, a lattice recording the candidate itemsets, and appearing and
upper-bound counts from the given multidimensional pattern relation is generated.
Example 6. Consider the matched tuples in Table 2 and the mining request in

Example 2. After the first scan, the candidate-itemset-generation algorithm

constructs a lattice, as shown in Fig. 3. When processing the first tuple in Table

2 during the second scan, the algorithm updates the information on the

candidate itemsets {A}, {B} and {C} in the lattice. The updated lattice after

first-tuple processing is shown in Fig. 4.
7.3. Phase 2: Candidate itemset reduction

In this phase, the proposed level-wise candidate-itemset-reduction algorithm
uses two pruning strategies to reduce the number of candidate itemsets in the
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lattice. The proposed algorithm first checks candidate 1-itemsets that contain

only one item. If the upper-bound support of a 1-itemset is less than the min-

imum support in the mining request, the first pruning strategy removes it and

all its proper supersets from the lattice. If a 1-itemset appears in all matched

tuples, and its upper-bound support is greater than or equal to the minimum

support in the mining request, the second pruning strategy puts it in the set
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of final large itemsets and also removes it from the lattice. This procedure

is then repeated for all itemsets containing two or more items until all

candidate itemsets in the lattice have been processed. The candidate-itemset-

reduction algorithm then produces a smaller set of candidate itemsets for

further processing in Phase 3. The proposed algorithm for this is described

below.

Phase 2: The candidate-itemset-reduction algorithm

Input: The lattice C from Phase 1 and a minimum support sq.

Output: A pruned lattice C.

Step 1: Set k = 1, where k is used to store the number of items in the candidate

itemset currently being processed.

Step 2: Do the following substeps for each itemset x 2 Ck:

Step 2-1: Calculate the upper-bound support sUB
x using the formula:
sUB
x ¼ Countappearing

x þ CountUB
�x

Match Trans
.

Step 2-2: If sUB
x < sq, set C ¼ C � fyjy 2 C and x � yg.

Step 2-3: If sUB
x ¼ Count

appearing
x

Match Trans
and sUB

x P sq, then set L = L [ {x} and

C = C � {x}.

Step 3: Set k = k + 1.

Step 4: Repeat Steps 2 to 3 until all candidate itemsets have been processed.

Step 5: Return C.

7.4. Phase 3: Association rule generation

After Phase 2, all remaining candidate itemsets in the lattice have sufficient
upper-bound support values but do not appear in at least one matched tuple.

The proposed association-rule-generation algorithm thus must re-process the

underlying blocks of data for these tuples to get their actual supports. The sup-

port of a remaining itemset x in the lattice can easily be calculated using the

following formula:
sx
Countappearing

x þ Countappearing
�x

Match Trans
;

where Countappearing
�x ¼

P
ti2matched tuples and x62ti.psti.countx and ti.countx is the ac-

tual x count obtained by re-processing the block of data indicated by ti. The
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association-rule-generation algorithm also processes the remaining candidate

itemsets in a level-wise way. It first processes 1-itemsets in the lattice. If the ac-

tual support of a candidate 1-itemset is less than the minimum support in the

mining request, it and its proper supersets are removed from the lattice as in

Phase 2. Otherwise, the 1-itemset is a large itemset for the mining request. This

procedure is then repeated for itemsets with more items until all the remaining
itemsets in the lattice have been processed. After the final large itemsets have

been found, association rules can then easily be generated from them. The pro-

posed algorithm for this is described below.

Phase 3: The association-rule-generation algorithm

Input: The lattice C from Phase 2, a minimum support sq, and a minimum

confidence confq.
Output: A set of association rules satisfying the mining request q.

Step 1: Set k = 1, where k is used to store the number of items in the candidate

itemset currently being processed.

Step 2: For the underlying block of data Di indicated by each matched tuple

ti, if there is at least one remaining candidate itemset not appearing in

ti, do the following substeps.

Step 2-1: For each remaining candidate itemset x 2 Ck where x does

not appear in ti, count ti.countx by loading and rescanning
Di.

Step 2-2: Set Countappearing
�x ¼ Countappearing

�x þ ti.countx.
Step 3: For each x 2 Ck, calculate the actual support of x using this

formula:

sx ¼
Countappearing

x þ Countappearing
�x

Match Trans
.

Step 4: If sx < sq, then set C = C � {y jy 2 C and x � y}. Otherwise, set

L = L [ {x} and C = C � {x}.

Step 5: Set k = k + 1.

Step 6: Repeat Steps 2 to 5 until all the candidate itemsets have been

processed.

Step 7: Derive the association rules satisfying confq from the set of large item-

sets L.
8. Experiments

Before presenting the experimental results, we first describe the experimental

environments and the datasets used.
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8.1. Experimental environment and datasets used

Our experiments were conducted in Java on a workstation with dual XEON

2.8 GHz processors and 2048 MB main memory, running the RedHat 9.0 oper-

ating system. Several synthetic datasets and a real-world dataset called BMS-

POS [40] were used. The synthetic datasets were generated by a generator sim-
ilar to that used in [4], considering the parameters listed in Table 3. The gen-

erator first generated L maximal potentially large itemsets, each with an

average of I items. The items in the potentially large itemsets were randomly

chosen from the total N items according to their actual sizes. The generator

then generated D transactions, each with an average of T items. The items in

a transaction were generated according to the L maximal potentially large

itemsets in a probabilistic way. Details of the dataset generation process may

be found in [4].
The four groups of synthetic datasets generated and used in our experiments

are listed in Table 4, where datasets in the same group had the same D, T and I

values, but different L or N values. Each dataset was treated as a block of data

in the database. For example, Group 1 in Table 4 contained ten blocks of data,

from T10I8D10KL1 to T10I8D10KL10, each consisting of 10,000 transactions

averaging 10 items and generated according to 200–245 maximal potentially

large itemsets with an average size of 8 from a total of 100 items. Let a heter-

ogeneous dataset be defined as one in which the data subsets forming the tuples
in a multidimensional pattern relation have different items. Among the four

groups, Group 2 may be considered heterogeneous because its varied N values
Table 3

Parameters considered when generating datasets

Parameter Description

D Number of transactions

N Number of items

L Number of maximal potentially large itemsets

T Average size of items in transactions

I Average size of items in maximal potentially large itemsets

Table 4

The four groups of synthetic datasets

Group Size Datasets D T I L N

1 10 T10I8D10KL1 to T10I8D10KL10 10,000 10 8 200 to 245 100

2 10 T10I8D10KN1 to T10I8D10KN10 10,000 10 8 200 100 to 145

3 10 T20I8D100KL1 to T20I8D100KL10 100,000 20 8 400 to 490 200

4 5 T10I8D500KL1 to T10I8D500KL5 500,000 10 8 400 to 560 200
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yield different items. This group of datasets was used to show how our ap-

proach dealt with heterogeneous blocks of data.

The BMS-POS dataset contains several years of point-of-sale data from a

large electronics retailer. Each transaction in this dataset is a customer pur-

chase transaction consisting of all the product categories purchased at one

time. There are 515,597 transactions in the dataset. The number of distinct
items is 1657, the maximal transaction size is 164, and the average transaction

size is 6.5. This dataset was also used in the KDDCUP 2000 competition. In

our experiments, the fifth group of data consisted of ten equal-size data subsets

partitioned from the BMS-POS dataset.

8.2. Experimental results

Multidimensional pattern relations were first derived from each group of
datasets. These are summarized in Table 5.

Two batch-based mining algorithms, Apriori and Partition, and one incre-

mental mining algorithm, FUP, in addition to our proposed TOARM algo-

rithm, were run on Groups 1 to 5 along with various minimum supports in

the mining requests. The Partition algorithm partitioned the data sets accord-

ing to group size (the number of datasets in a group). The FUP algorithm trea-

ted each dataset in a group as a new addition of transactions. Execution times

for the four algorithms on the synthetic data in Groups 1 to 4 are shown in
Fig. 5.

We first compare the TOARM algorithm with the Apriori algorithm. Fig.

5(a), (c), and (d) shows that execution times for the TOARM algorithm on

Groups 1, 3, and 4 were always much less than those of the Apriori algorithm.

This is because the datasets in these three groups were homogeneous, meaning

they used the same set of items in each group. In this situation, the number of

candidate itemsets considered by the TOARM algorithm was much closer to

the number of final large itemsets than those considered by the Apriori
Table 5

Mining information for the five groups

Group Initial minimum

support (%)

Average length

of maximal

large itemsets

Average size

of large itemsets

1 2 11 9006

2 2 9 5093

3 2 9 12,127

4 2 5 799

5 1 5 1300
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Fig. 5. Execution times for the four algorithms on Groups 1 to 4.
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algorithm. The former thus had more compact candidate sets than the latter.
For example, Table 6 shows the number of candidate itemsets considered by

the TOARM and the Apriori algorithms for Group 4 with minimum supports

ranging from 0.022 to 0.04 in the mining requests.

By contrast, the datasets in Group 2 were heterogeneous, meaning they used

different sets of items. In this situation, the number of candidate itemsets con-

sidered by the TOARM algorithm was much larger than the number of final

large itemsets considered by the Apriori algorithm since most of the candidate

itemsets appeared in only one or a few tuples in the multidimensional pattern
relation. Table 7 shows the number of candidate itemsets considered by the

TOARM and Apriori algorithms for Group 2 along with minimum supports
Table 6

The numbers of candidate itemsets for Group 4

Approach Support

0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

Number of candidate itemsets

TOARM 959 690 550 442 372 308 269 241 220 199

Apriori 11,636 10,327 9165 8590 7722 7085 6603 6346 5898 5369

Number of final large itemsets

TOARM/Apriori 574 453 373 318 260 228 201 177 158 144



Table 7

The numbers of candidate itemsets for Group 2

Approach Support

0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

Number of candidate itemsets

TOARM 20,893 16,003 11,920 9016 7421 6541 5731 4984 3775 2816

Apriori 11,615 10,157 9158 8016 7372 6704 6070 5243 4593 4255

Number of final large itemsets

TOARM/Apriori 902 778 684 608 537 473 417 372 327 296
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ranging from 0.022 to 0.04 in the mining requests. Table 7 also shows that

while the number of candidate itemsets for Group 2 considered by the

TOARM algorithm was larger than that considered by the Apriori algorithm,

the TOARM algorithm used two pruning strategies in Phase 2 and thus only

had to re-process the remaining candidate itemsets against the underlying data-

sets in Phase 3. The result was that the TOARM algorithm usually required
less time than the Apriori algorithm. This is consistent with the results shown

in Fig. 5(b).

Next, we compare the TOARM algorithm with the Partition algorithm.

Although the number of candidate itemsets considered by the Partition algo-

rithm in the second pass was equal to that considered by the TOARM algo-

rithm, the Partition algorithm must generate a set of all potentially large

itemsets from each partition during its first pass. The TOARM algorithm

can, however, use the pattern sets in the multidimensional pattern relation to
achieve this purpose. Therefore, the execution times required by the TOARM

algorithm on Groups 1 to 4 were always less than those required by the Parti-

tion algorithm. This is also consistent with the results shown in Fig. 5.

Finally, we compare the TOARM algorithm with the FUP algorithm. The

FUP algorithm can, in general, perform well when the size of newly inserted

transactions is relatively smaller than the size of an original database because

the cost of generating candidate itemsets from only new transactions is usually

low and a large proportion of the candidate itemsets can be determined from
previously mined large itemsets. However, the FUP algorithm treated the data-

sets in each of our application groups as increments and yielded even worse

performance than the Apriori algorithm, especially on the heterogeneous data-

sets since it had to process all of them one by one. Fig. 5(a), (c), and (d) shows

that the execution times for the FUP algorithm on the three homogeneous

groups were about twice those of the Apriori algorithm. On the second group,

which was heterogeneous, the FUP algorithm required about four times the

execution time required by the Apriori algorithm.
The execution times for the four algorithms on the real-world BMS-POS [40]

dataset used in the second part of the experiments are shown in Fig. 6. The
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TOARM algorithm had the best performance among the four approaches.

Experiments were then made to show the influence of the initial minimum sup-

port used in constructing the multidimensional pattern relation on perfor-

mance. Execution times for the TOARM algorithm on Groups 1 and 2 using
various initial minimum supports with the minimum support in mining requests

fixed at 0.023 are shown in Fig. 7. Note that the execution times by the TOARM

algorithm increased nonlinearly along with the initial minimum support be-

cause higher initial minimum supports meant a larger number of remaining can-

didate itemsets in Phase 3. The numbers of remaining candidate itemsets after

Phase 2 along with various initial minimum supports for Groups 1 and 2 are

shown in Fig. 8. The results are quite consistent with the discussion above.

Finally, the scalability aspect was examined by running the TOARM and
Apriori algorithms on Group 1 using various numbers of blocks ranging from
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5 to 40, with the minimum support in mining requests set at 0.022. The execution

times required by the two algorithms are shown in Fig. 9. It is clear that the exe-

cution times required by the TOARM algorithm for various numbers of blocks

were small, and seemed to grow slowly and linearly with the numbers of blocks.
9. Conclusion and future work

In this paper, we have extended the concept of effectively utilizing patterns

previously discovered for online decision support under multidimensional con-

siderations. By structurally and systematically storing additional context and

mining information in the multidimensional pattern relation, our proposed
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TOARM approach easily and efficiently derives association rules that satisfy

diverse user-concerned constraints. Our experimental results show the pro-

posed TOARM approach is more efficient than the well known Apriori, Parti-

tion, and FUP approaches under the considerations mentioned above.

Our approach requires storage of multidimensional pattern relations, which

leads to some overhead in creating and maintaining this structure. The most
time-consuming process is the generation of the pattern sets for these relations.

However, the proposed approach is designed for applications in which data is

inserted and analyzed in blocks during specific time intervals and pattern sets

may have to be generated during each time interval for analysis. Such applica-

tions are frequently found in both business and industry.

For heterogeneous datasets, the TOARM approach may generate more

candidate itemsets than a level-wise candidate generation algorithm (such as

the Apriori algorithm) because most candidate itemsets appear in only one
or few matched tuples. If necessary, the TOARM approach may be easily

modified to operate in a level-wise way to deal with this problem at the ex-

pense of I/O cost. Since the TOARM approach is based on pre-defined mul-

tidimensional pattern relations, its power is limited by the contents stored in

the relations. If mining requests have smaller minimum supports than the ini-

tial minimum support or ask for additional contexts apart from those in the

multidimensional pattern relation, the TOARM approach may need to be

modified to work well. In the former case, additional data scans may be re-
quired to get correct pattern sets; in the latter case, more context information

may need to be stored in multidimensional pattern relations or appropriate

database join operations may be required to include context information from

other tables. These issues are interesting and may be studied in the future. We

will also attempt to use other techniques to further improve the performance

of the proposed methodology. For example, we can construct an Iceberg cube

[8,15] or use materialized views [11,37] for the proposed multidimensional pat-

tern relation to provide more efficient online association rule generation and
more powerful mining services.
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