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Abstract 

We analyze off-axial, self-focused pulse propagation in graded-index Kerr materials with the variational method. Equations 
which determine the characteristics of the beam, namely the optical path, the wavefront curvature, the beam width, and 
the pulse duration are derived and solved. We show that continuously adjustable negative group-velocity dispersion can be 
generated by off-axial propagation, and for pulse energy smaller than a critical value, negative group-velocity dispersion 
and Kerr nonlinearity warrant the existence of stable spatio-temporal solitary pulses. 

1. Introduction 

Recently one of the authors (J. Wang) and his associates showed that continuously adjustable negative group- 
velocity dispersion can be produced by propagating Gaussian beams off the axis of a graded-index material 
[ 1,2]. The idea is shown in Fig. 1. This is an interesting and useful discovery because dispersion control has 
always been an important issue in the generation and application of ultrashort optical pulses and in wavelength 
multiplexed optical signal processing. Unlike the common dispersion-control methods which use prism-pairs or 
grating-pairs, graded-index materials take little physical space to produce a large amount of negative group- 
velocity dispersion and suffer negligible optical loss. Therefore, graded-index materials have a great potential 
for dispersion control in optical devices, especially in integrated optics. 

A graded-index material is a material with a parabolic refractive index distribution given by 

n(x,v,z,w) =no(w)[l- ~G@J)(~*+Y*L (1) 

where G(w) is the strength of the index gradient. In a graded-index material the group-velocity dispersion 
caused by the frequency dependence of G(w) (the index gradient dispersion) has a sign opposite to the group- 
velocity dispersion caused by the frequency dependence of no(o) (the material dispersion, usually positive). 
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Fig. I. Schematic of off-axial pulse propagation in a graded-index material. 

As shown in EZq. ( l), the net effect of the index gradient dispersion is proportional to the square of the offset 
distance from the beam center to the axis. In addition off-axial propagation also produces negative geometric 
group-velocity dispersion. Therefore, by adjusting the offset distance, the net group-velocity dispersion can be 
continuously controlled. 

Negative group-velocity dispersion also suggests the existence of optical solitons. In another paper [ 31, Wang 
and Chang showed that optical solitons in a broad spectral range can be produced by off-axial propagation 
in graded-index Kerr materials. However, in that paper the analysis is done in the weak self-focusing limit. It 
is not clear how self-focusing would affect the stability of these solitons. Nevertheless self-focusing produces 
stable spatial solitons in two-dimensional homogeneous Kerr materials. In three-dimensional materials self- 
focusing exhibits collapse phenomena [ 41. Because graded-index Kerr materials can be used as novel platforms 
for applications of optical solitons, it is important to find out whether or not graded-index Kerr materials 
can support stable spatio-temporal solitons (or solitary pulses) under the combined effect of graded-index, 
diffraction, self-focusing, group-velocity dispersion, and self-phase modulation. In this paper, we develop a 
variational approach to study the off-axial pulse propagation problem in graded-index Kerr materials. In the 
literature, the variational approach based on the Lagrangian formulation and Ritz optimization procedure has 
been widely applied to the studies of temporal and spatial soliton phenomena [ 5-9 3. On-axial cw propagation 
in graded-index Kerr materials has also been investigated with such an approach [ 10,111. It is found that there 
exist stable, stationary solutions when the optical power is less than a critical value. This is because graded-index 
helps counteract diffraction, so that the beam profile can remain stationary below the critical power. Yet it is not 
clear whether graded-index Kerr materials can support stationary propagation of optical pulses, because unlike 
a cw beam in which the optical power is constant, in an optical pulse the instantaneous power varies greatly 
from the pulse peak to the pulse wings. Recently, we have used the same variational approach to study on-axial 
pulse propagation in graded-index Kerr materials and showed that stable spatio-temporal solitary pulses can 
exist as long as the net group-velocity dispersion is negative and the pulse energy is less than a critical value 
[ 121. However, to obtain negative group-velocity dispersion in the spectral range where the material dispersion 
is positive, off-axial propagation is required [ 31. This calls for an extensive study on off-axial, nonlinear pulse 
propagation problems. In particular, for off-axial propagation the commonly used paraxial approximation needs 
to be examined carefully. Moreover, the Kerr nonlinearity and the rapidly varying intensity of optical pulses 
further increase the complexity of the problem. We find that the variational method is an elegant approach to 
the analytical complexity described above. With an appropriate solution ansatz, the variational method reveals 
the general behavior of Gaussian beam propagation in graded-index Kerr materials and displays the interaction 
between effects of refraction, diffraction, self-focusing, group-velocity dispersion, and self-phase modulation in 
a unified formalism. 

The paper is organized as follows. In Section 2, using the operator expansion technique, we start from the 
wave equation in the frequency domain to derive the off-axial pulse propagation equation in graded-index 
materials. In Section 3, we study the linear pulse propagation problem using the variational method, The pulse 
shape in space is assumed to be Gaussian and the pulse shape in time is assumed to be a hyperbolic secant. The 
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evolution equations of the pulse parameters are derived. From these evolution equations, the contributions to the 
net group-velocity dispersion are identified and their analytic expressions are given. In Section 4, we improve 
the estimation of the net group-velocity dispersion by including higher order terms in the operator expansion. 
It is found that the paraxial wave equation underestimates the net group-velocity dispersion when the offset 
distance is large. Adjustable negative group-velocity dispersion up to 936 fs2 can be generated by using a 1 cm 
long commercially available graded-index material at 800 nm. In Section 5, with the Kerr nonlinearity included 
in the formulation, we show that stable spatio-temporal solitary pulses can exist and the criteria of existence 
are derived. The conclusions are backed up with numerical simulations. 

2. Off-axial pulse propagation in graded-index materials 

In the frequency domain, the scalar wave equation in a graded-index material with a parabolic refractive 
index given in Eq. (1) can be written as 

-$ + 0; + k2(w) [ 1 - ;GW212 
> 

ax, y, z, WI = 0. 

Here r2 = x2 + y2, 0: is the transverse Laplacian operator, and 

k(w) = na(w)w/c. (3) 

Eq. (2) is a second order partial differential equation in z. However, if the light field propagates only in the 
+z direction, then Eq. (2) can be formally reduced to a first order partial differential equation in z as shown 
in the following equation: 

aE/& = i[ k2( 1 - $Gr2)2 + V$]‘/2E. (4) 

The meaning of the square root of the operator in Eq. (4) has to be understood as its Taylor’s expansion. 
If the propagation direction is close to the z-axis, then it is advantageous to write 

E(x,y,z,w) =ii(x,y,z,o)eikOZ (5) 

and to derive an evolution equation for i ( X, y, z, w) instead of E( x, y, z, w) . Here ko = k( WO) is the propagation 
constant and wc is the carrier frequency. 

By substituting Eq. (5) into Eq. (4) and carrying out the expansion to first order in r2 and Of, we obtain 

aa 
---=i(k-ko)B+ik 

Eq. (6) is the paraxial wave equation in the frequency domain. We shall use it as our starting point to study 
the problem and check its validity in Section 4. 

To derive the propagation equation in the time domain, we expand the frequency dependent terms k and G 
in Eq. (6) around the carrier frequency wa up to second order, then perform the inverse Fourier transform. We 
obtain the following equation, 

au i._ = -idl~+~~+r2(80+ia,~_~~ 
> ( 

u+ . a ff2 a2 
az -~o-w,+~,t, 

) 
v;u. (7) 

Here U( X, y, z, t) is the pulse envelope in the time domain. The coefficients in Eq. (7) are given by 

dl = (d/dw)k, (8) 
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d2 = ( d2/dw2) k, (9) 

PO = &Go, 

PI = (d/do) (;kq, (11) 

P2 = (d2/du2) (+kG), (12) 

ao = 1/2ko, (13) 

QI = (d/dw) (l/2,4), (14) 

cy2 = (d2/dw2) ( 1/2k). (15) 

Here ko = k( coo), Go = G( WO), and all the derivatives are evaluated at w = wa. 
Eq. (7) is the pulse propagation equation in the time domain. It differs from the usually used on-axis paraxial 

pulse propagation equation, in which dl = PI = /iz = (~1 = (~2 = 0. Among these additional terms, the important 
ones are LUG d2/3t2 V& and /3zr2 d2/3t2 u. As we shall see, these two terms give rise to the negative geometric 
group-velocity dispersion. 

3. Variational formulation of linear pulse propagation 

It is very difficult to find exact analytical solutions to Eq. (7). Direct numerical simulation is also not feasible 
because Eq. (7) is a four-dimensional partial differential equation. Our approximate analytical method is based 
on the variational technique that has been used successfully for studying soliton phenomena. The starting point 
is to reformulate the problem variationally. 

It is not difficult to show that Eq. (7) is equivalent to the following variational equation, 

6 JJJJ Ldxdydzdt=O. (16) 

Here the Lagrangian density L is given by 

L= 

-&‘c IVrU12 - Ti 
C?Vru 

Vru*., 

(17) 

where VT is the transverse gradient operator. The power of the variational method is that one can use a much 
simpler trial function to approximate the real solution and get sufficiently accurate results. For our problem, we 
will assume that the pulse envelope u(x, y, z, t) can be well approximated by the following trial function, 
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u(x,y,z,t) = A(z)exp[iB(z>l exp 
[x - xo(z)12 (Y-Ye(z))* 

- 
24(z) 2w3z) 

(18) 

xexp{-iip,(z)[t - to(z)]*}. 

Here the pulse envelope u(n,y, z, t) is assumed to be separable in the X, y, t dimensions. x0, yo are the 
transverse coordinates of the pulse center, kX, k, are the transverse components of the pulse propagation wave 
vector, w,, wY are the transverse spatial beam widths. pxr pY are the wavefront curvatures, to is the time-position 
of the pulse center, wt is the pulse duration, and pf is the temporal chirp of the pulse. All these variables are 
functions of the propagation distance z. The pulse shape in space is assumed to be Gaussian and the pulse 
shape in time is assumed to be a hyperbolic secant. Different assumptions of the pulse shape will only cause 
a difference in the parameters of the Euler equations derived from the Lagrangian density. Inserting the trial 
solution (18) into the variational equation (16) and carrying out the integration over x, y, and z, one obtains 
the following reduced variational equation, 

6 
s 

(Ljdz =O. 

Here the reduced Lagrangian density (L) is given by 

(L) = 27rA*w,w~w,S, 

s =-$+kx~+ky$-; 2 Px d 
W,s +w** 

’ dz > 

+& 
( 

7? 
;$+&P: 

> 
-po[(x;+Y;2) +;(w:+w:,)l 

t 

-P2 (i-$ + &$) Hn;+Y$ +;(w2,+wgl 
t 

-~,[ca:+k?~+~(~+~)+t(W2,p:+wf~~)] 

d 
-a* A--$ + ,,w:p; 

( t )[ 
ck:+k:)+; ($+-$-) +f(lP:++:)]. 

(20) 

The Euler equations of Eq. (19) are a set of coupled ordinary differential equations for the pulse function 
parameters which together describe the propagation of the pulse. These evolution equations of A, x0, k,, w,, 
px, wt, and Pt are given below: 

A2w,wyw, = const = E,/21r, (21) 

(22) 
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(23) 

(24) 

(25) 

dw,/dz = (d2 - a2Ji - P2J2)wptv 

dpt 
z = (d2 - a2Jl - P2J2) (&$-p:). (27) 

The equations for yu, k,, w!, and pv are of the same form as those for no, k,, w,, and px. Evolution equations 
for fo and 0 are not shown here since they are not important for our discussion. In IQ. (21), E,, is the pulse 
energy. In Eqs. (26) and (27), JI and 52 are defined according to 

(28) 

J~=;(w;+w;.)+(x;+~;). (29) 

Consider a typical graded-index material, SML-W2.0 GRIN rod (Selfoc Micro Lens-W type of 2.0 mm 
diameter from NSG America Inc.), the wavelength dependence of nt~ is given by 

no(A) = 1.5868 + 8.14 x 10-3/A2, (30) 

and the wavelength dependence of G is given by 

G(A) = (0.2931+ 2.369 x 10m3/A2 + 7.681 x 10-4/A4)2 mmm2. (31) 

Here A is the wavelength in units of ,um. From the formula given above, at the 800 nm wavelength, one 
has d:! = 1.08 x 10V2’ s2/m, & = 5.60 x 10” rne3, p2 = 4.61 x 10m20 s2/m3, a0 = 3.98 x 10e8 m, and 

a2 = 1.45 x 1O-38 m s2. These are the typical parameters for commercially available graded-index materials. 
Given these values, it is safe to make the following two approximations 

These two approximations should be valid even if w, is of the order of several femtoseconds. 
With the above two approximations, Hqs. (2 1) -( 27) are much simplified. 

A2w,w~w, = const E E,/2a, 

dxa/dz = 2aok,, 

dk,/dz = -2Pon0, 

dw,/dz = 2aowxpx, 

dp,/dz = 2ao( l/w: - ~2) - WO, 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 
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dn+/dz = (d2 - a2J1 - PzJz)wp,, 

dpr 
-=(d2-~2J,-P2J2) (f&p;). 
dz 

Eqs. (34)-(40) have the following interesting characteristics: 
(i) Eq. (34) is the pulse energy conservation equation. 
(ii) x0 and k, are coupled together in the same way as in the case of a cw Gaussian beam propagating 

off-axially through the graded-index waveguide. The evolution of xa and k, are independent of the evolution 
of other parameters. The solutions are periodic functions given by 

x0(z) = a,sint&GZz +h), 

k,(z) = dfiecos(~~z +&I. 

(41) 

(42) 

Here u, and 4, are constants to be determined from the initial conditions. 
(iii) Similarly, the evolution of ya and k, are given by 

Yotz) =a,sM+G&z +&), 

k!.(z) = &i&&s(&&&z ++y)- 

(43) 

(44) 

If we choose the initial condition to be a, = uY = a, & = 7r/2, c$?, = 0, then xi< z ) + yi( z ) = const = a2 and 
kz + k; = const = (~e/ae)a2. That is, the pulse propagates in a helix trajectory. In this case, the offset distance 
is constant. 

(iv) The difference between on-axial and off-axial pulse propagation does not show up in the evolution 
equations of w, and px. The parameters wX and px are coupled together in the same way as in the case of a cw 
Gaussian beam propagating axially through the graded-index waveguide. Parameters w, and p, do not appear 
in the equations of w, and px. This implies the temporal evolution does not affect the spatial evolution. The 
inverse is not true. 

(v) There exists a stationary solution of w, and px such that px ( z ) = 0 and 

w,: (z > = const = ( CYO//+J) ‘j4. (45) 

This is called the stationary beam width of a graded-index material. 
(vi) The difference between on-axial and off-axial pulse propagation appears in the evolution equations of 

w, and p,. The net dispersion parameter is given by 

D E d2 - a2J, - p2J2, (46) 

with J, and 52 given in Eqs. (28), (29). There are three contributions to the net group-velocity dispersion. The 
first term is the material dispersion due to the frequency dependence of no. The second term is the geometric 
group-velocity dispersion due to off-axial propagation. The third term is the material dispersion due to the 
frequency dependence of G and off-axial propagation. For typical graded-index materials, CY~ and p2 are all 
positive. 

(vii) If the initial beam width w, (0) , wY (0) is set equal to the stationary beam width according to Eq. (45) 
and the pulse propagates in a helix trajectory, then J1 and J2 can be well approximated by 

JI (z) M const = (/&/aa)a2, (47) 

52(z) =const=u2, (48) 
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when the offset distance a is much larger than the beam width. In this special case, the net dispersion parameter 
is a constant given by 

D = d2 - a2(/?o/cuo)a2 - /&a’. (49) 

Thus the net dispersion parameter can be made negative by choosing a sufficiently large offset distance u. 
(viii) Up to this point, we have derived an expression for the net group-velocity dispersion parameter by 

assuming the beam width is equal to the stationary beam width and the pulse propagates in a helix trajectory. 
The dispersion parameter is constant in this special case. In general situations, since the offset distance, the 
beam width, and the propagation direction are periodic functions of the propagation distance, the net dispersion 
parameter is a also a periodic function of the propagation distance. 

4. Net group-velocity dispersion 

Expression (49) for the net dispersion parameter is based on the paraxial approximation in the frequency 
domain, Eq. (7). In this section we will check its accuracy by comparing it with a more accurate estimation. 

Let us take a look at the exact wave equation, Eq. (4), again. If we rewrite it as 

dE 
z = i{k2(w) [ 1 - ;G(w)P-~]~ + V;}‘/2E = iP(o)E, 

then at least formally the group-velocity dispersion parameter is given by 

D=a2p 
Ai3 = ${k2(w) [ 1 - iG(w)r212 + Vg}‘/2. 

(50) 

(51) 

Eq. (5 1) is just a formal expression. However, in the previous section, we mentioned that the spatial and 
temporal pulse evolution can be decoupled. We also assume that the spatial evolution of the pulse is roughly 
the same as that predicted by the paraxial wave equation. The validity of this assumption has been checked by 
estimating the magnitudes of higher order terms that affect spatial evolution. In the limit that the beam width is 
much smaller than the beam offset, it is found that the net correction due to higher order terms is less than 1% 
when the offset distance is 1 mm (the radius of the SMGW2.0 GRIN rod). When the offset distance is smaller, 
the net correction is even smaller. Therefore it is safe to assume that the spatial evolution of the pulse is the 
same as that described by the paraxial wave equation. With these observations, we find that, in the limit that 
the beam width is much smaller than the beam offset, one can safely replace the operator V+ with -( kz + k;) 

in Eq. (51). If the pulse propagates in a helix trajectory, then one has r2 = a2 and kz + k; = (Po/ao)a2. In 
this case, the net dispersion parameter is given by 

D = -j$k2(co) [l - $G(~)u~]~ - (&+&I~}‘/~. (52) 

Eq. (52) is a more accurate estimation of the net dispersion parameter since it includes all higher order terms 
in the operator expansion. Using the SML-W2.0 GRIN rod mentioned in the previous section as a numerical 
example again, we calculate the dispersion parameter at 800 nm for three offset distances. Results from Eq. 
(49) and the more accurate Eq. (52) are tabulated together in Table 1 for comparison. It can be seen that 
when the offset distance is small, the material dispersion dominates and the net dispersion parameter is positive. 
However, when the offset distance is sufficiently large, the net dispersion parameter becomes negative. It can 
also be seen that when the offset distance is small, predictions from Eq. (49) and Eq. (52) do not differ 
very much. However, when the offset distance is 1 mm, the radius of the SMLW2.0 GRIN rod, the prediction 
from Eq. (52) is 1.35 times larger than that from Eq. (49). The half-pitch length of this graded-index lens 
is 7~/2&& = 1.05 cm. Therefore the net negative dispersion generated by off-axial propagation through a 
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Table 1 
Dispersion parameters (in fs2/mm) for different beam offsets. Estimation is based on the data of SML-W2.0 GRIN rod at the 800 nm 

wavelength 

Beam offset distance 0.5 mm 0.75 mm 1.0 mm 

Material dispersion: d2 108 108 108 
Geometric dispersion: -a2 ( /3o/cro) ~1’ -51.0 -115 -204 
Graded index dispersion: -&z2 -11.5 -25.9 -46.1 
D from Eq. (49) 45.6 -32.4 -142 
D from Eq. (52) 43.2 -45.5 -187 

half-pitch SMGW2.0 GRIN rod can be as large as 1970 fs2 when the offset distance is equal to the radius of 
the graded-index lens. This equals the positive dispersion of 3.39 cm of sapphire. In principle, one may increase 
G or the radius of the graded-index lens to produce even larger negative dispersion. But in fact, the radius of a 
graded-index lens is limited by the maximum refractive index change that can be made. For commercial glass 
graded-index lenses the index drop from the center to the edge is about 0.05. 

One may wonder why Eq. (7) gives a poor description of the dispersion parameter (or the temporal 
evolution) while its description of the spatial evolution is sufficiently accurate. This is because even if 1 + 1~ 

is a good approximation to G, 1 + @2~/~02 may not be a good approximation to a2Ji?-x/rk2. It is 
just because the spatial evolution described by Eq. (7) is sufficiently accurate in the case studied here, that we 
are able to derive the more accurate expression Elq. (52) for the net dispersion parameter. 

5. Nonlinear puke propagation and stable spatio4.emporal solitary pulses 

In this section we study the pulse propagation problem in nonlinear graded-index materials. Including Kerr 
nonlinearity in the formulation, the paraxial wave equation in the time domain becomes 

(53) 

( a .ff2 a2 
+ icw-c.r~~-~~;j;z 

> 
v;u + iKlul2u. 

The term containing K is the contribution of the Kerr nonlinearity and the constant K is defined by 

K _ k(woIn2 

-no(wo)* 
(54) 

Here n2 is the nonlinear coefficient of the refractive index. 
The Lagrangian density with Kerr nonlinearity is the same as Elq. (17) except an additional term, iKlu14. 

The evolution equations of ~a, and k, are exactly the same as Eqs. (22), (23). The evolution equations of w,, 
px, wt and p, are now 

dw,/dz = ~CTOW,P,, 

dp, -dz = 2CYa - 2Po - 
KEP 

6?rw;wYw, ’ 

dwt/dz = Dw,p,, 
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(58) 

Here D is the net dispersion parameter defined in Eq. (46). The evolution equations for pulse parameters in 
the y dimension are similar. It is interesting to note that Eqs. (55)-(58) still hold if the pulse propagates 

on-axially. The only difference is that D = d:! for on-axial propagation. Therefore, the following derivation is 

similar to our recent study on on-axial solitary pulse propagation [ 121. 

In the following we shall consider a special case where 

( i ) The beam is circular (w, = wY = w and p+ = pY = p) . 

(ii) The beam width is much smaller than the offset distance. 

(iii) The beam propagates in a helix trajectory such that the offset distance is constant. 
(iv) From item (ii) and (iii), the net dispersion parameter D is constant. We will also assume that it is 

negative (D = -101). 
By introducing normalized quantities, the equations become 

di+/d? = 2Qp, (59) 

(60) 

dw,/dz = -iQJ, (61) 

(62) 

Here Z, @, W,, and I?,, are dimensionless normalized quantities and the normalization units are (a) propagation 

distance: ZN = (a&) -‘12; (b) beam width: WN = (ao/Po ‘14; 
J 

(c) pulse duration: WrN = (I DI/a> ‘12; 
(d) intensity: 1~ = m/K; (e) pulse energy: EP~ = 1~ N~,~. 

Eqs. (59) -( 62) describe the dynamic interplay among the dispersion, diffraction, graded-index effect, and 
nonlinearity. The stationary solutions that satisfy 

dw/dZ = dp/dz = dwt/dz = dj&/df = 0 

are given by 

(63) 

p=/?,=o, (64) 

8, = (4n-/JQV2, (65) 

(R.J)3 - (rV2) + Ei//487? = 0. (66) 

Eq. (66) is a third order polynomial equation in @ *. To have meaningful solutions ( iC2 > O), I+. (66) needs 

to have positive real roots. The condition for Eq. (66) to have positive real roots is given by 

.& 5 25/23- i14r x 13 5034 . . (67) 

Thus the normalized critical energy is 25/2 x 3-‘/47r. 
With any given ,$, that satisfies Eq. (67), Eqs. (59)-( 62) have two stationary solutions. The normalized 

stationary beam width and pulse duration are plotted in Figs. 2 and 3, respectively. After linearizing Eqs. 
(59) -( 62) near the stationary solutions and examining the eigensolutions of the linearized equations, we find 
that only the upper branch of the solution is stable. 

Eq. (67) and D < 0 are the existence criteria of stable spatio-temporal solitary pulses in a graded-index 
waveguide with Kerr nonlinearity. It should be noted that if pa = 0 (no graded index), then Eq. (66) reduces 
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Fig. 2. Normalized beam width versus normalized pulse energy of the solitary pulses. 

Fig. 3. Normalized pulse duration versus normalized pulse energy of the solitary pulses. 

to a first order polynomial equation in ti. The solution is thus not stable. This reproduces the well-known 
result that spatio-temporal solitary pulses are not stable in a homogeneous Kerr medium. 

For the SML-W2.0 GRIN rod, at the 800 nm wavelength, we have seen in the previous sections that 
d2 = 1.08 x 10m2’ s2/m, & = 5.60 x 10” rnm3, & = 4.61 x 10m2’ s2/m3, aa = 3.98 x low8 m, and 
‘~7. = 1.45 x 10m3* m s2. Let us now assume a nonlinear coefficient, n2 = 3.20 x 10e2’ m2/W, the value of fused 
silica, then K = 2.51 x lo-l3 m/W. When the net dispersion parameter D is written as -d x 1O-25 s2/m, the 

normalization units are (a) propagation distance: zN = 6.70 mm; (b) beam width: wN = 16.3 pm; (c) pulse 
duration: WtN = 25.9 x & fs; (d) pulse energy: EP~ = 4.10 x fi nJ. For the SML-W2.0 GRIN rod, d varies 
from - 1.08 to 1.87, as can be seen in Table 1. 

These values show that it is not difficult to generate spatio-temporal solitary pulses in graded-index materials 
with ordinary ultrashort pulse lasers. For on-axial solitary pulse propagation, the predictions from the variational 
method have been verified by direct numerical simulation of the paraxial wave equation [ 121. The result of 
the numerical simulation strongly supports the validity of the variational approach employed here. Under the 
normalization units used, the paraxial wave equation for on-axial propagation is 

(68) 

We take advantage of the cylindrical symmetry to reduce the computational complexity by one dimension and 
use the finite difference beam propagation method [ 131 to propagate the pulse. Our finite difference beam 

propagation method is based on the Crank-Nicholson method [ 141 and we use five-point finite difference 
formula in the temporal and transverse spatial dimension. Since Rq. (74) is nonlinear, an iterative procedure is 
implemented to insure the accuracy of each propagation step. The solitary pulse solution from the variational 
analysis is used as the initial condition. We have calculated the peak amplitude, pulse duration, and beam width 
for solitary pulses with the normalized pulse energy EP equal to 2, 4, 6, 8, 10, 12. The pulse parameters for 
l?,, = 6 are shown in Fig. 4. The evolutions of spatial and temporal pulse shapes are shown in Figs. 5 and 

6. The initial conditions are A = 0.704, D = 0.980 and i+, = 2.01. The pulse duration plotted in Fig. 4 is 
defined by the second moment [~t2~ii(0,0,~,t)~2dt/~~ii(0,0,~,t)~2dt] ‘I2 For a sech pulse, it is equal to . 
0.907@,. The beam width is defined in a similar way. Our simulation is carried out for the nonlinear phase 
shift up to 32 rad, which should be long enough to verify the existence of spatio-temporal solitary pulses. 
The accuracy of our numerical simulation is checked by monitoring the pulse energy and the error is found to 
be of the order of lo-‘. From Fig. 4, it can be seen that the solution is stable and behaves almost like real 
solitons. From Figs. 5 and 6, it can be seen that the pulse shapes during propagation are close to our solution 
ansatz. The small fluctuations of the pulse parameters in Fig. 4 indicate that the initial pulse parameters and 
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Fig. 4. Amplitude. pulse duration and beam width from numerical simulation for on-axial pulse propagation. 
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Fig. 5. Spatial pulse shapes sampled for the nonlinear phase shift equal to 0, 2, 4, . . . , 32 (from bottom to top). 

Fig. 6. Temporal pulse shapes sampled for the nonlinear phase shift equal to 0, 2, 4, . , 32 (from bottom to top). 

pulse shapes we assume are close to but not exactly the real stationary solution. The small mismatch causes 
the solution to oscillate around the stationary solution. The fluctuations can be reduced by carefully adjusting 
the input pulse parameters. For smaller pulse energies, the discrepancy between the variational and numerical 
solutions is smaller. For larger pulse energies, the discrepancy is larger. However, for pulse energies close to 
the critical energy (i.e. &, = 12), the variational solution seems to be unstable, because when the pulse energy 
is close to the critical energy, the solution ansatz may not be sufficiently accurate. From our calculation, we 
not only numerically prove the existence of solitary pulses in graded-index Kerr materials but also find that our 
variational method accurately predicts the pulse parameters of soli@ry pulses for EP 5 10. 

6. Conclusions 

We have studied off-axial pulse propagation inside a graded-index waveguide with Kerr nonlinearity. A 
pulse propagation equation in the time domain, E!q. (7), is derived and used as a starting point for our 
study. Evolution equations of the pulse parameters are derived using a variational approach, and an approximate 
analytical expression for the net dispersion parameter is obtained. It is found that our pulse propagation equation 
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is sufficiently accurate for predicting the spatial and temporal evolution when the offset from the optical axis 
is small. However, it underestimates the net group-velocity dispersion when the offset distance is large. An 
improved estimation for the net dispersion is derived by taking advantage of the decoupling between the spatial 
and temporal evolution. It is found that adjustable negative group-velocity dispersion up to 1870 fs2 can be 
generated by a 1 cm long commercially available graded-index lens. This makes graded-index waveguides ideal 
candidates for compact dispersion control elements. In short pulse applications, the Kerr nonlinearity may not 
be ignored due to the high peak intensity. In the spatial domain, the combined effects of self-focusing and 
diffraction may exhibit spatial soliton phenomena. Similarly, in the temporal domain, the combined effects of 
self-phase modulation and negative group-velocity dispersion can also induce temporal soliton phenomena. From 
our variational approach, we find that in graded-index waveguides with Kerr nonlinearity, the net interaction of 
self-focusing, diffraction, self-phase modulation, group-velocity dispersion, and graded-index confinement can 
produce stable spatio-temporal solitary pulses. Their existence criteria and expressions for their pulse parameters 
are derived. The required negative group-velocity dispersion can be generated by off-axial propagation. From 
the results obtained, we believe it is not difficult to generate such solitary pulses in a wide range of wavelengths. 

In our study of nonlinear pulse propagation in graded-index materials, the major approximation is the solution 
ansatz, Eq. (18). In particular, in Eq. (18) the beam width is assumed to be the same across the whole pulse. 
We have verified this assumption by direct numerical simulation for the case of on-axis spatio-temporal solitary 
pulses propagation. Direct numerical simulation of off-axial solitary pulse propagation will be much more 
difficult and should be addressed in the future. 
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