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In manufacturing industry, the tool replacement cost is, in many cases, a
significant portion of the production cost. Early tool replacement increases the
production cost. Overdue tool replacement, however, results in poor production
quality. Accordingly, improving production quality while maintaining a low
production cost is essential. The index Cpk is regarded as a yield-based index.
For a fixed Cpk value, the production yield and fraction of defectives can be
calculated. In this paper, we present an analytical approach using Cpk to
determine the optimal tool replacement time. An accurate process capability must
be calculated, particularly when the data contain assignable cause variation. Tool
wear is a dominant and inseparable component in many machining processes
(a systematic assignable cause), and ordinary capability measures become
inaccurate because process data are contaminated by the assignable cause
variation. Considering process capability changes dynamically, an estimator of
Cpk is investigated. The closed form of the exact sampling distribution is derived.
An effective tool management procedure for determining the optimal tool
replacement time is presented for processes with a low fraction of defectives. For
illustrative purposes, an application example involving tool wear is presented.

Keywords: Assignable cause; Critical value; Ordinary least square estimate;
Process capability index; Tool replacement; Tool wear

1. Introduction

Tool wear control is an important component in many manufacturing factories in
order to produce quality products. One of the most important aspects of tool
management is the tool replacement policy. With ongoing manufacturing activities,
the tool will eventually wear down. While such wear is unavoidable, it must be
controlled in order to maintain product quality and efficient tool utilization. The
process capability index is now a common language for quantifying process
performance, conveying critical information regarding the suitability of a manufac-
turing process for the required quality standards. Production yield is one of the
commonly used criteria for measuring process capability. In practice, a minimal
capability requirement would be preset by the customers/engineers. If the prescribed
minimum capability fails to be met due to severe tool wear, one would conclude

*Corresponding author. Email: roller@cc.nctu.edu.tw

International Journal of Production Research

ISSN 0020–7543 print/ISSN 1366–588X online � 2006 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/00207540500446345

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

2:
14

 2
6 

A
pr

il 
20

14
 



that the process is incapable and a tool replacement activity must be initiated.
Process capability analysis is applied to determine the optimal tool replacement time.
The proposed approach is useful, particularly for processes with a low fraction of
defectives requiring low production cost and stringent quality standards.

Process capability analysis has become an important integrated part in applica-
tions of statistical process control to the continuous improvement of quality and
productivity. The relationship between the actual process performance and the
specification limits or tolerance may be quantified using appropriate process
capability indices (PCIs). The use of PCIs in industry did not begin in the United
States until the early 1980s. Soon after, this explosion of use was expanded into
various industries, such as automotive, semiconductor and IC assembly manufac-
turing, to determine production quality in order to meet stringent customers’ speci-
fications. These indices quantify process performance by taking into consideration the
process location, process variation, and manufacturing specifications, which reflect
process consistency, process accuracy, process yield, and process loss. Four basic
capability indices have been defined (Kane 1986, Chan et al. 1988, Pearn et al. 1992):

Cp ¼
USL� LSL

6�
, Cpk ¼ min

USL� �

3�
,
�� LSL

3�

� �
,

Cpm ¼
USL� LSL

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð�� TÞ2

q , Cpmk ¼ min
USL� �

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð�� TÞ2

q ,
�� LSL

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð�� TÞ2

q
8><
>:

9>=
>;,

where USL and LSL are the upper and lower specification limits, T is the target
value, and � and � are the process mean and the standard deviation of the
characteristic, respectively. In the literature, several authors have promoted the use
of various process capability indices and have examined their associated properties
with different degrees of completeness. Examples include Kushler and Hurley (1992),
Rodriguez (1992), Kotz and Johnson (1993), Vännman and Kotz (1995), Vännman
(1995) Bothe (1997), Spiring (1997), Kotz and Lovelace (1998), Palmer and Tsui
(1999), Pearn and Shu (2003), Vännman and Hubele (2003), and references therein.
Kotz and Johnson (2002) presented a compact survey for the development of process
capability indices with interpretations and comments on some 170 publications
appearing during 1992–2000. Spiring et al. (2003) consolidated the research findings
in the field of process capability for the period 1990–2002.

The assessment of process capability appears to be easy and straightforward to
apply. However, some assumptions must be made before applying the capability
indices. Those assumptions include (a) the process under investigation must be free
from any special or assignable causes (i.e., in control), (b) the process characteristics
must follow normal distributions, and (c) the observed values of the quality
characteristics must be statistically independent. If the process is out of control in the
early stages, it will be unreliable and meaningless to estimate the process capability.
Porter and Oakland (1991) pointed out that the two conditions making process
capability assessment difficult are: ensuring stability of the mean and standard
deviation, and absence of special causes. It is also assumed that observations are
statistically independent, which is not always the case in reality. Processes with an
uncontrollable, but acceptable, trend, however, are common in practice. Tool wear
is an example of a common assignable cause inducing autocorrelation that is

2314 W. L. Pearn et al.
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physically unavoidable. There are various techniques in current practice used to
assess process capability in the presence of an assignable cause. Some approaches
attempt to remove the variability associated with the systematic cause. For example,
Montgomery (1985) suggested fitting a first-order autoregressive model to the
correlated data. Yang and Hancock (1990) recommended that, in computing the Cp

index, the unbiased estimator of � can be obtained as �=ð1� �Þ1=2, where � is defined
as the average correction factor. Time series modelling to trended data is also
suggested by Alwan and Roberts (1988), who recommend using residuals in
monitoring the process. Furthermore, others make the general assumption of linear
degradation of the tool. For instance, the procedure suggested by Long and
De Coste (1988) removes the linearity by regressing on the means of the subgroups
and then determines the process capability. Quesenberry (1988) suggested using
regression techniques to handle the tool wear over an interval of tool life assuming
that the tool wear rate is known or a good estimate is available.

The existing approaches assume a static process capability over a cycle.
Considering that process capability changes dynamically within a cycle, as well as
from cycle to cycle, we could circumvent some of the problems encountered. Spiring
(1991) considered an application of assessing the process capability index Cpm in the
presence of a systematic assignable cause that results in a numerical measure of the
actual process capability. Although the yield-based index Cpk has been widely used
in manufacturing industry, existing research has never considered situations with
systematic assignable causes. In this paper, we consider the index Cpk. A modified
estimator of Cpk is proposed and an explicit form of the sampling distribution
is derived for situations where a systematic assignable cause occurs. In addition, we
develop a procedure for choosing the time point for tool replacement. Practitioners
can use the proposed procedure to determine whether their process meets the preset
capability requirement, and make reliable decisions regarding the optimal tool
replacement time.

2. The tool wear problem

It is known that process capability can be assessed only when the process data are
statistically independent. The issues of correlation among the samples and its effect
on the control chart limits have been discussed by many authors (Vasilopoulos and
Stamboulis 1978, Burr 1979). However, the effect of correlation on estimating
process capability has been neglected. There are some situations where the assignable
causes are systematic, such as tool wear, in which the effects can be decomposed
before capability is estimated (often referred to as a constant or consistent process
drift). Other examples include accumulation of contaminants and temperature
change drift, which must be removed before the natural variability can be analysed
for process control purposes (Kotz and Lovelace 1998).

When systematic assignable causes are present and tolerated, the overall
variation of the process (�2) is composed of variation due to random causes (�2

r )
and variation due to assignable causes (�2

a). That is, �2 ¼ �2
r þ �2

a . The capability
measures fail to decouple the portion of the overall variation, in the presence of tool
wear, contributed by the assignable causes. Consequently, any estimates of process
capability will confound the true capability calculations. In order to obtain accurate

Tool replacement for production with a low fraction of defectives 2315

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

2:
14

 2
6 

A
pr

il 
20

14
 



measures of process capability, any variation due to assignable cause must be
removed. Spiring (1989, 1991) viewed this as a dynamic process that is constantly
changing as the process tools age, etc. In the dynamic model, the capability of the
process will vary, possibly in a predictable fashion. Spiring has devised a
modification of the Cpm index for this dynamic process under the influence of
systematic assignable causes. In the scenario, the goal is to maintain some minimum
level of capability at all times to ensure production quality. As a result, the capability
will be cyclical in nature, its period defined by the frequency of process/tolling
adjustments. Even when assignable cause variation is not systematic, as is the case
with tool or die wear, there is a need to be able to deal with random fluctuations of
the process mean over time. Typically, deviations from the target value are due
to easily determined assignable causes, such as shift-to-shift changes, differences in
raw material batches, environmental factors, etc. Wallgren (1996) has also studied
the properties and implications of Cpm when consecutive measurements are
observations of dependent variables resulting from a Markov process in discrete
time. This occurs when consecutive measurements from a process are serially
corrected. He developed an augmentation of Cpm, Cpmr, for this situation, based on
the first-order autoregressive model (AR(1)).

The most general case discussed assumes only a reasonable predictable recurring
pattern with known upper and lower specification limits, target value and the
existence of a tool wear problem. Figure 1 illustrates a general relationship that may
occur when a tool wear problem exists. The process specifications (i.e. USL, LSL
and T ), the starting, stopping, tool replacement times (i.e. t0, t1, t2, t3), and the
process output have been included in figure 1. Tool wear is depicted in a nonlinear,
increasing fashion, but could be any reasonably consistent recurring pattern
(including linear degradation). The change times may represent chronological
time, but are more likely to represent production qualities. The process illustrated in
figure 1 depicts a systematic tool wear problem with nonlinear cycles over time/
production. Similar to assessing the variation in any process, all sources of variation
must be examined when considering tool wear. The methodology presented here is

Figure 1. An example of the tool wear problem.

2316 W. L. Pearn et al.
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only reactionary in its approach to dealing with the problem. To become pro-active
in the area of tool wear, steps should be taken to eliminate variation due to an
assignable cause. In a process exhibiting a tool wear problem, the traditional
measure of the process capability index Cpk is affected by the tool wear slope (see
figure 2). Thus, such a measure is invalid since it fails to acknowledge that portions
of the overall variation are due to assignable causes.

3. Statistical properties of the estimated Cpk under tool wear

In this section, we introduce a modification of the Cpk index for the dynamic process
under tool wear conditions. Subsequently, we obtain an explicit form of the exact
cumulative distribution function for the dynamic estimator to measure the fraction
of defectives. The cumulative distribution function can be expressed in terms of a
mixture of the chi-square distribution and the normal distribution. We then obtain
the rth moment, and the first two moments (mean and variance) of the estimated Cpk

for the dynamic process.

3.1 Estimation of Cpk

Considering the process capability varies dynamically, tool replacement must not
be overdue so that some minimum capability can be maintained. We propose the
following modification of Cpk for dynamic processes under the condition of
systematic assignable cause (tool wear):

Cpk ¼
min USL� �t,�t � LSLf g

3�rt
, ð1Þ

where USL and LSL denote the upper and lower specification limit, respectively, �t

represents the mean and �rt the variation (due to random causes only) of the process
at time period t. Utilizing the identity min{a, b}¼ (aþ b)/2� |a� b|/2, the index Cpk

Figure 2. Plot of the changing capability of a process exhibiting tool wear.

Tool replacement for production with a low fraction of defectives 2317
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defined in (1) can alternatively be rewritten as

Cpk ¼
d� j�t �Mj

3�rt
, ð2Þ

where d¼ (USL�LSL)/2 is half of the length of the specification interval, and
M¼ (LSL�USL)/2 is the mid-point between the lower and upper specification
limit. Monitoring a process’s capability will require determination of the value of Cpk

or a suitable estimate at various times t over each cycle in the lifetime of the tool.
Assuming the effect of tool deterioration to be linear over the sampling window only,
estimates of Cpk are possible that will in fact be free from any contribution of the
assignable cause. Hence, the proposed estimator of the process capability can be
obtained by replacing �t and �rt by the estimators �Xt and [(n� 2)MSEt/(n� 1)]1/2,
respectively. Then we have

Ĉpk ¼
min USL� �Xt, �Xt � LSL

� �
3�̂rt

¼
d� j �Xt �Mj

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðn� 2ÞMSEt�=ðn� 1Þ

p : ð3Þ

The variation �̂rt can be calculated by considering sequentially selected points
(i.e. ta1, ta2, ta3, . . . ,tan) instead of the sample variance. MSEt is the mean square error
associated with the regression equation X̂ai ¼ �̂a þ �̂atai , where tai is the sequence
number of the sampling unit and �̂a denotes the linear change of tool wear given
a unit change in time/production:

MSEt ¼

Pn
i¼1 ðXtai

� X̂tai
Þ
2

n� 2
: ð4Þ

3.2 Sampling distribution

For convenience in deriving the cumulative distribution function of Ĉpk, the
following notation is introduced:

1. K ¼ ðn� 2ÞMSE=�2, which is distributed as �2
n�2;

2. Z0 ¼
ffiffiffi
n

p
ð �X�MÞ=�, which is distributed as Nð�

ffiffiffi
n

p
, 1Þ with � ¼ ð��MÞ=�;

and
3. H ¼ Z0j j, which is distributed as a folded-normal distribution with probability

density function fHðhÞ ¼ �ðhþ �
ffiffiffi
n

p
Þ þ �ðh� �

ffiffiffi
n

p
Þ for h � 0, where �ð � Þ is the

probability density function of the standard normal distribution.

For x>0, the cumulative distribution function of Ĉpk can be derived as

FĈpk
ðxÞ ¼ PðĈpk � xÞ ¼ P

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ðb

ffiffiffi
n

p
�HÞ

3
ffiffiffiffiffiffi
nK

p � x

 !

¼ 1� P
ffiffiffiffiffiffi
nK

p
<

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ðb

ffiffiffi
n

p
�HÞ

3x

 !

¼ 1�

ð1
0

P
ffiffiffiffiffiffi
nK

p
<

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ðb

ffiffiffi
n

p
�HÞ

3x

�����H ¼ h

 !
fHðhÞdh

¼ 1�

ð1
0

P
ffiffiffiffiffiffi
nK

p
<

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ðb

ffiffiffi
n

p
� hÞ

3x

 !
fHðhÞdh,

2318 W. L. Pearn et al.
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where b¼ d/�. Since K is distributed as �2
n�2, we have

P
ffiffiffiffiffiffi
nK

p
<

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ðb

ffiffiffi
n

p
� hÞ

3x

 !
¼ 0 for h > b

ffiffiffi
n

p
and x > 0:

Therefore,

FĈpk
ðxÞ ¼ 1�

ðb ffiffinp

0

P
ffiffiffiffiffiffi
nK

p
<

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ðb

ffiffiffi
n

p
� hÞ

3x

 !
fHðhÞdh

¼ 1�

ðb ffiffinp

0

G
ðn� 1Þðb

ffiffiffi
n

p
� hÞ2

9nx2

� �
fHðhÞdh for x > 0,

ð5Þ

where Gð � Þ is the cumulative distribution function of �2
n�2. Substituting fH(h) into (5)

leads to the result

FĈpk
ðxÞ ¼ 1�

ðb ffiffinp

0

G
ðn� 1Þðb

ffiffiffi
n

p
� tÞ2

9nx2

� �
�ðtþ �

ffiffiffi
n

p
Þ þ �ðt� �

ffiffiffi
n

p
Þ

	 

dt for x > 0:

ð6Þ

Using ordinary least square (OLS) estimates of �a and �a and assuming the
sampling scheme to be sequential, the computational formula for equation (3) can
be expressed alternatively as

Ĉpk ¼
d� �Xta �M

�� ��
3

Pn
i¼1 X

2
tai

n� 1
�
2nð2nþ 1Þ

ðn� 1Þ2
�X2
ta
�
12

Pn
i¼1 ðiXtai Þ

2
� �

nðn2 � 1Þðn� 1Þ
þ
12 �Xta

Pn
i¼1 ðiXtaiÞ

ðn� 1Þ2

" #1=2
, ð7Þ

where n denotes the subgroup sample size, and Xtai represents the ith value of the
quality characteristic in sampling period ta. The proposed sampling scheme is similar
to those schemes used in monitoring a process for control charting procedures. The
general format would be to gather k subgroups of size n from each cycle (e.g., the
period from t0 to t1 in figure 1) over the lifetime of the tool. The value of k is unique
to each process, and may change from cycle to cycle within a process. On the other
hand, for sample size less than five (i.e. n<5) one must be cautious, and larger
samples (e.g. n<30) may also pose a problem. The optimal sample size for assessing
process capability in the presence of a systematic assignable cause varies for each
process considered (see Spiring (1991) for more details).

3.3 The rth moment

Under the assumption of normality, we note that MSE is distributed as (n� 2)�1�2

times a chi-square variable with n� 2 degrees of freedom, symbolically
MSE � ðn� 2Þ�1�2�2

n�2, and hence the estimator Ĉpk for the dynamic process can
be rewritten as

Ĉpk ¼
d� �X�M

�� ��
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðn� 2ÞMSE�=ðn� 1Þ

p ¼
d

�
�

1ffiffiffi
n

p

ffiffiffi
n

p
�X�M
�� ��
�

 !,
3�n�2ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p : ð8Þ

Tool replacement for production with a low fraction of defectives 2319
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The statistic
ffiffiffi
n

p
j �X�Mj=� has a folded normal distribution (see Leone et al. (1961)

for more details about the distribution). Thus, we have

E

ffiffiffi
n

p
j �X�Mj

�

� �
¼

ffiffiffi
2

	

r
exp �

nð��MÞ
2

2�2

� �
þ

ffiffiffi
n

p
j��Mj

�
1� 2� �

ffiffiffi
n

p
j��Mj

�

� �� �
,

ð9Þ

where �ð�Þ ¼ ð2	Þ�1=2
Ð u
�1

expð�t2=2Þ dt and

E

ffiffiffi
n

p
j �X�Mj

�

� �2
( )

¼ 1þ
nð��MÞ

2

�2
: ð10Þ

The distribution of Ĉpk depends on the parameters d/� and
ffiffiffi
n

p
j �X�Mj. The rth

moment about 0 of Ĉpk is

EðĈpkÞ
r
¼

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

3

 !r

Eðx�r
n�2Þ

Xr
j¼1

ð�1Þj
d

�

� �r�j
1ffiffiffi
n

p

� �j

E

ffiffiffi
n

p
j �X�Mj

�

� �j
( )

: ð11Þ

In particular, the first two moments as well as the mean and the variance of Ĉpk

can be obtained as

EðĈpkÞ ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

2

r
�½ðn� 3Þ=2�

�½ðn� 2Þ=2�

d

�
�

ffiffiffiffiffiffi
2

	n

r
e�
=2 �

ffiffiffi



n

r
f1� 2�ð�

ffiffiffi



p
Þg

" #
,

VarðĈpkÞ ¼
n� 1

9ðn� 4Þ

d

�

� �2

�2
d

�

� � ffiffiffiffiffiffi
2

	n

r
e�
=2 þ

ffiffiffi



n

r
1� 2� �

ffiffiffi



p � �" #
þ

þ 1

n

( )

� ½EðĈpkÞ�
2,

where 
 ¼ nð��MÞ
2=�2 and �ðuÞ ¼

Ð1
0 tu�1 e�t dt is a gamma function.

4. Procedure for optimal tool replacement

Under the normality assumption, we have proved that the cumulative distribution
function of Ĉpk for a dynamic process can be expressed as a mixture of the chi-square
and the normal distributions. Using the index Cpk, engineers can access the process
performance and monitor the tool replacement. Therefore, to test whether a given
process is capable, the statistical hypotheses testing can be considered as

H0 : Cpk � C ðprocess is not capableÞ,

H1 : Cpk > C ðprocess is capableÞ:

The process is called capable if it produces a low fraction of defectives.
Otherwise, the process is not capable. We define the test ��ðxÞ, the decision making
rule, as the following: ��ðxÞ ¼ 1 if Ĉpk > c0, and ��ðxÞ ¼ 0 otherwise. Thus, the test
�� rejects the null hypothesis H0 (Cpk�C) if Ĉpk > c�, with type I error �(c�)¼ �, the
chance of incorrectly concluding an incapable process (Cpk�C) as capable (Cpk�C).
Based on the CDF of Ĉpk expressed in (6), given values of the capability requirement
C (i.e. the expected product’s fraction of defectives), the parameter �, the sample
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size n, and risk �, the critical value c� can be obtained by solving the equation
PðĈpk � c�jCpk ¼ CÞ ¼ � using available numerical integration methods. That is,ðð3Cþj�jÞ

ffiffi
n

p

0

G
ðn� 1Þðð3Cþ j�jÞ

ffiffiffi
n

p
� tÞ2

9nc2�

� �
½�ðtþ �

ffiffiffi
n

p
Þ þ �ðt� �

ffiffiffi
n

p
Þ� dt ¼ �: ð12Þ

It should be noted, particularly, that equation (12) is an even function of �. Thus,
for both �¼ �0 and �¼��0 we may obtain the same critical value c�. However, from
expression (12) the distribution characteristic parameter �¼ (��M )/� is usually
unknown, and has to be estimated in real applications, naturally by substituting �
and � by the sample mean �X and the sample variance S2 ¼ �n

i¼1ðXi � �XÞ2=ðn� 1Þ. To
eliminate the need to estimate the parameter �, we examine the behaviour of the
critical values c� with respect to the parameter �¼ 0(0.05)3.00. We further perform
extensive calculations to obtain the critical values c� for �¼ 0(0.05)3.00, n¼ 5(5)50,
Cpk¼ 0.5(0.5)2.0 with risk �¼ 0.05. Note that the parameter values we investigated,
�¼ 0(0.05)3.00, cover a sufficiently wide range of applications with process capability
analysis. The results indicate that (i) the critical value c� is increasing in �, and is
decreasing in n, and (ii) the critical value c� attains its maximum at �¼ 1.00 in all
cases with accuracy up to 10�3. Hence, for practical purposes we may solve equation
(12) with �¼ 1.00 to obtain the required critical values c� for given Cpk, n, and �,
without having to further estimate the parameter �. Thus, the risk � can be ensured,
and the decisions made based on such an approach are indeed more reliable.
Figures 3(a)–(d) plot the curves of the critical value c� versus the parameter
� ¼ 0ð0:05Þ3:00, n¼ 5, 10, 20, 30 with type I error �¼ 0.05, for levels of Cpk¼ 0.50,
1.00, 1.50 and 2.00, respectively.

For the convenience of the user applying our proposed procedure, we tabulate
the critical values of Ĉpk for various values of �¼ 0.01 and 0.05 with n¼ 5(5)30 in
table 1 for commonly recommended minimum capability requirements C¼ 1.00,
1.33, 1.67 and 2.00. For example, if C¼ 1.00 is the minimum capability requirement,
then for �¼ 0.05, with sample size n¼ 15, we find c�¼ 1.517 from table 1. That is, as
the estimated process capability drops below the critical value of Ĉpk, the practitioner
should stop the process and reset the tool because there is evidence that the process is
nearing the end of its ability to produce a satisfactory product. If the value of Ĉpk is
greater than the critical value, then the process is considered capable and should be
allowed to continue.

5. An application example

To illustrate how the proposed procedure is applied to actual data collected from a
factory, we consider the following example taken from a company which manufac-
tures commercial automotive vehicles. A particular type of connecting rod for a
diesel engine is investigated. The capability analysis focused on the key characteristic,
big end diameter, which is finished by a fine boring process. The upper and lower
manufacturing specification limits are set to USL¼ 48.6mm and LSL¼ 47.6mm,
respectively. If the characteristic data do not fall within the tolerance (LSL,USL),
the connecting rod component is considered to be non-conforming/defective, and
will not be used to make the diesel engine of that particular model.

Tool replacement for production with a low fraction of defectives 2321

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

2:
14

 2
6 

A
pr

il 
20

14
 



When the product exits the process, the diameter is measured and recorded. The
collected data exhibiting tool wear consist of 100 observations arranged in ten
subgroups of size ten each, and is displayed in table 2. Figures 4 plots the individual
values in the data series. It can be seen that the observations starting from a higher
value (close to the upper limit) gradually decrease to the lower limit due to tool wear.
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Figure 3. (a) Plots of c� versus � for Cpk¼ 0.5, �¼ 0.05, and n¼ 5, 10, 20, 30 (from top to
bottom). (b) Plots of c� versus � for Cpk¼ 1.0, �¼ 0.05, and n¼ 5, 10, 20, 30 (from top to
bottom). (c) Plots of c� versus � for Cpk¼ 1.5, �¼ 0.05, and n¼ 5, 10, 20, 30 (from top
to bottom). (d) Plots of c� versus � for Cpk¼ 2.0, �¼ 0.05, and n¼ 5, 10, 20, 30 (from top to
bottom).

Table 1. Critical value c� for dynamic processes with various parameters.

Cpk¼ 1.00 Cpk¼ 1.33 Cpk¼ 1.67 Cpk¼ 2.00

n �¼ 0.01 �¼ 0.05 �¼ 0.01 �¼ 0.05 �¼ 0.01 �¼ 0.05 �¼ 0.01 �¼ 0.05

5 5.206 2.967 6.867 3.918 8.591 4.903 10.269 5.862
10 2.266 1.750 2.980 2.305 3.720 2.881 4.441 3.442
15 1.829 1.517 2.404 2.000 3.002 2.500 3.584 2.987
20 1.644 1.412 2.163 1.863 2.701 2.329 3.226 2.783
25 1.539 1.350 2.026 1.782 2.532 2.229 3.023 2.664
30 1.471 1.309 1.937 1.728 2.420 2.162 2.891 2.584
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The trend appears to be linearly decreasing. Also, the value of the diameter of each
component is influenced by the amount of tool wear at that instant, which is likely to
be dependent on the condition of the tool when the previous component was
processed. Now, the goal is to maintain some minimum level of capability at all times
and to monitor/manage this process under the influence of tool wear. The lower
confidence bound is not only essential to assure production yield, but can also be
used in capability testing for decision making. In fact, Boyles (1991) showed that the
yield is �2� (3Cpk)–1, or the fraction of non-conformities is �2�(–3Cpk). Table 3
displays various values of Cpk¼ 1.00(0.10)2.00, and the corresponding maximum
possible non-conformities (in ppm). For example, if a process has capability with
Cpk� 1, then the production yield would be at least 99.73%. Similarly, to achieve a
defect rate of less than 0.544 ppm, a Cpk level of 1.67 is needed. At a Cpk level of 2.0,
the likelihood of a defective part drops to 2 parts per billion (ppb). Suppose the
capability requirement for this particular model of diesel engine was defined as
‘Capable’ if Cpk>1.00. When the measure of process capability approaches the
minimum acceptable level, the process should be stopped and the tool should be
replaced. Thus, applying the proposed capability measure for a dynamic process,
practitioners can monitor the process by calculating Cpk. The proposed procedure

Table 2. The collected 10 subgroups of size ten (units: mm).

i t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

1 48.550 48.524 48.510 48.510 48.484 48.477 48.471 48.464 48.464 48.451
2 48.444 48.431 48.424 48.391 48.424 48.391 48.398 48.391 48.424 48.404
3 48.424 48.424 48.391 48.391 48.391 48.391 48.424 48.358 48.358 48.325
4 48.305 48.299 48.259 48.292 48.246 48.272 48.292 48.226 48.252 48.226
5 48.226 48.199 48.206 48.226 48.193 48.226 48.160 48.173 48.179 48.160
6 48.160 48.126 48.126 48.093 48.133 48.160 48.093 48.093 48.093 47.961
7 47.994 48.040 48.027 48.060 48.067 48.027 48.027 47.961 47.928 47.895
8 47.895 47.835 47.842 47.829 47.829 47.895 47.835 47.815 47.809 47.809
9 47.822 47.809 47.809 47.796 47.829 47.802 47.829 47.829 47.763 47.729
10 47.763 47.729 47.763 47.696 47.696 47.729 47.696 47.650 47.690 47.696

0 20 40 60 80 100

Observations

LSL

47.8

48.0

48.2

48.4

USL

mm

Figure 4. Plot of the original data.
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for a process involving tool wear is similar to those used in monitoring a process with
a control chart.

In this case we find that the critical value of Ĉpk is 1.75 by checking table 1 under
�¼ 0.05, sample size n¼ 10 and minimum capability requirement C¼ 1.00. When the
estimated process capability drops below the critical value of Ĉpk, the practitioner
should stop the process and reset the tool because there is evidence that the process is
nearing the end of its ability to produce an acceptable product. For values of Ĉpk

greater than 1.75 the process is considered capable and is allowed to continue. The
calculated Ĉpk for a dynamic process at each time period based on the data in table 2
is summarized in table 4. Figure 5 plots the measure of process capability Ĉpk for a

Table 3. Cpk values versus the corresponding
non-conformities.

Cpk ppm

1.00 2699.796
1.10 966.848
1.20 318.217
1.30 96.193
1.33 66.073
1.40 26.691
1.50 6.795
1.60 1.587
1.67 0.544
1.70 0.340
1.80 0.067
1.90 0.012
2.00 0.002

Table 4. Estimated Cpk for the dynamic process at each time period.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Ĉpk 2.444 2.827 2.699 4.681 6.736 3.664 2.817 2.486 1.872 0.856

1 2 3 4 5 6 7 8 9 10

Time period

0

2

4

6
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st

im
at

ed
 C

pk

Minimum Cpk value

Figure 5. Capability plot for a dynamic process.
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dynamic process at each time period over a single cycle of the process. It is observed
that the estimated Ĉpk attains a maximum at time period t5 and then drops below the
line of critical values 1.75 at time period t10. Therefore, based on these results we
would suggest that the process should be stopped and the tool should be replaced at
time period t10 to avoid the production of unacceptable components. As shown in
table 4, the Ĉpk value is 1.872 at time period t9; it then drops to near the critical value
of 1.75. We recommend that the practitioner sample the characteristic data more
frequently after time period t9. Consequently, the Ĉpk value would decrease more
smoothly for a more accurate determination of the optimal time for tool replacement
in order to maintain production quality.

6. Conclusions

The process capability index Cpk is an effective tool for process performance analysis
and quality assurance. The index Cpk provides a measure of process yield. Given a
fixed Cpk value, the production yield and fraction of defectives can be calculated.
Process capability can be calculated accurately if the data contain no assignable
cause variation. Tool wear, however, is a dominant and irremovable component in
many machining processes and is a systematic assignable cause. The ordinary
measures of process capability are inaccurate because the process data are
contaminated by the assignable cause variation. Therefore, developing an effective
method to determine the optimal time for tool replacement is essential due to the
high product quality requirement and low production cost considerations. For
processes with tool wear, an estimator of Cpk is investigated. The closed form of the
exact sampling distribution is also derived. We have shown that, under the
assumption of normality, its sampling distribution is a mixture of the chi-square and
the normal distributions. We have implemented the derived results to develop a tool
management procedure for assessing process capability at each time period over a
single cycle of the process. Critical values for various capability requirements and
sample sizes are provided. Considering that the process capability changes
dynamically, a procedure using a control chart is developed to monitor the process
and determine the optimal tool replacement time to maintain production quality.

References

Alwan, L.C. and Roberts, H.V., Time series modeling for statistical process control. J. Bus.
Econ. Stat., 1988, 6, 87–95.

Bothe, D.R., Measuring Process Capability, 1997 (McGraw-Hill: New York).
Boyles, R.A., The Taguchi capability index. J. Qual. Technol., 1991, 23, 17–26.
Burr, I.W., Elementary Statistical Quality Control, 1997 (Marcell Dekker: New York).
Chan, L.K., Cheng, S.W. and Spiring, F.A., A new measure of process capability Cpm. J.

Qual. Technol., 1988, 20, 162–175.
Kane, V.E., Process capability indices. J. Qual. Technol., 1986, 18, 41–52.
Kotz, S. and Johnson, N.L., Process Capability Indices, 1997 (Chapman & Hall: London).
Kotz, S. and Johnson, N.L., Process capability indices—a review, 1992–2000. J. Qual.

Technol., 2002, 34, 1–19.
Kotz, S. and Lovelace, C., Process Capability Indices in Theory and Practice, 1997 (Arnold:

London).

Tool replacement for production with a low fraction of defectives 2325

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

2:
14

 2
6 

A
pr

il 
20

14
 



Kushler, R. and Hurley, P., Confidence bounds for capability indices. J. Qual. Technol., 1992,
24, 188–195.

Leone, F.C., Nelson, L.S. and Nottingham, R.B., The folded normal distribution.
Technometrics, 1961, 3, 543–550.

Long, J.M. and De Coste, M.J., Capability studies involving tool wear. ASQC Quality
Congress Transactions, Dallas, 1988, 42, 590–596.

Montgomery, D.C., Introduction to Statistical Quality Control, 2nd ed., 1997 (Wiley:
New York).

Quesenberry, C.P., An SPC approach to compensating a tool wear process. J. Qual. Technol.,
1988, 20, 220–229.

Palmer, K. and Tsui, K.L., A review and interpretations of process capability indices. Ann.
Oper. Res., 1999, 87, 31–47.

Pearn, W.L., Kotz, S. and Johnson, N.L., Distributional and inferential properties of process
capability indices. J. Qual. Technol., 1992, 24, 216–231.

Pearn, W.L. and Shu, M.H., Lower confidence bounds with sample size information for Cpm
with application to production yield assurance. Int. J. Prod. Res., 2003, 41, 3581–3599.

Porter, L.J. and Oakland, J.B., Process capability indices—an overview of theory and
practices. Qual. Reliab. Eng. Int., 1991, 7, 437–448.

Rodriguez, R., Recent developments in process capability analysis. J. Qual. Technol., 1992, 24,
176–187.

Spiring, F.A., An application of Cpm to the tool-wear problem. ASQC Quality Congress
Transactions, Toronto, 1989, 43, 123–128.

Spiring, F.A., Assessing process capability in the presence of systematic assignable cause.
J. Qual. Technol., 1991, 23, 125–134.

Spiring, F.A., A unifying approach to process capability indices. J. Qual. Technol., 1997, 29,
49–58.

Spiring, F., Leung, B., Cheng, S. and Yeung, A., A bibliography of process capability papers.
Qual. Reliab. Eng. Int., 2003, 19, 445–460.

Vännman, K., A unified approach to capability indices. Stat. Sinica, 1995, 5, 805–820.
Vännman, K. and Kotz, S., A superstructure of capability indices distributional properties

and implications. Scand. J. Stat., 1995, 22, 477–491.
Vännman, K. and Hubele, N.F., Distributional properties of estimated capability indices

based on subsamples. Qual. Reliab. Eng. Int., 2003, 19, 445–460.
Vasilopoulos, A.V. and Stamboulis, A.P., Modification of control chart limits in the presence

of data correlation. J. Qual. Technol., 1978, 10, 20–30.
Wallgren, E., Properties of the Taguchi capability index for Markov dependent quality

characteristics. Technical report, University of Örebro, Sweden, 1996.
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