
Journal of Computational and Applied Mathematics 191 (2006) 106–125
www.elsevier.com/locate/cam

Fast solvers for 3D Poisson equations involving interfaces in a
finite or the infinite domain

Ming-Chih Laia, Zhilin Lib,∗, Xiaobiao Linb

aDepartment of Applied Mathematics, National Chiao Tung University, Taiwan
bDepartment of Mathematics, Center for Research in Scientific Computation, North Carolina State University,

Raleigh, NC 27695

Received 16 June 2003; received in revised form 20 November 2004

Abstract

In this paper, numerical methods are proposed for Poisson equations defined in a finite or infinite domain in three
dimensions. In the domain, there can exists an interface across which the source term, the flux, and therefore the
solution may be discontinuous. The existence and uniqueness of the solution are also discussed. To deal with the
discontinuity in the source term and in the flux, the original problem is transformed to a new one with a smooth
solution. Such a transformation can be carried out easily through an extension of the jumps along the normal
direction if the interface is expressed as the zero level set of a three-dimensional function. An auxiliary sphere is
used to separate the infinite region into an interior and exterior domain. The Kelvin’s inversion is used to map the
exterior domain into an interior domain. The two Poisson equations defined in the interior and the exterior written
in spherical coordinates are solved simultaneously. By choosing the mesh size carefully and exploiting the fast
Fourier transform, the resulting finite difference equations can be solved efficiently. The approach in dealing with
the interface has also been used with the artificial boundary condition technique which truncates the infinite domain.
Numerical results demonstrate second order accuracy of our algorithms.
© 2005 Elsevier B.V. All rights reserved.

MSC: 65N06; 65N50

Keywords: Arbitrary interface; Fast 3D Poisson solver; Immersed interface method; Infinite domain; Extension of jumps;
Spherical coordinates; Level set function; Artificial boundary condition

∗ Corresponding author.
E-mail addresses: mclai@math.nctu.edu.tw (M.-C. Lai), zhilin@math.ncsu.edu (Z. Li), xblin@math.ncsu.edu (X. Lin).

0377-0427/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2005.04.025

http://www.elsevier.com/locate/cam
mailto:mclai@math.nctu.edu.tw
mailto:zhilin@math.ncsu.edu
mailto:xblin@math.ncsu.edu

M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125 107

1. Introduction

We consider the three-dimensional Poisson equation of the form

�u(x) =
{∇ · M1(x) if (x) ∈ �−,

∇ · M2(x) if (x) ∈ �+ = R3 − �−,
lim|x|→∞ u(x) = 0. (1)

We assume that Mi(x), 1�i�2, are in C1 in each domain of its definition, and M2(x) has a compact
support. In many applications, we simply have M2(x) = 0. Across the interface between �− and �+,
there is a finite jump in the flux of the solution which can be written as

[un] =
[

�u

�n

]
= [∇u · n] = [(M2 − M1) · n], (2)

where n is the unit normal direction pointing outward along the interface �=��−. The jump is defined as
the difference of the limiting values of the quantity between the �+ side and the �− side. Fig. 1 illustrates
the description of the problem in the case of M2 = 0 and ∇ · M1 = f (x). The jump conditions can be
derived either through physical reasoning or mathematical derivations, see [6,11,12].

Modeling and simulation of ferromagnetic materials, see [6,4], is one of many applications of the
problem stated above. Ferromagnetic materials are widely used as recording media. They are also currently
being explored as an alternative to semi conductors as memory devices. Let M be the magnetization vector
field, then the magnetic field is given by −∇u, where the potential u satisfies the Poisson equation

�u = ∇ · (M��−), (3)

where ��− is the characteristic function of �−. Here, �− is the domain occupied by the ferromagnetic
material, see [6] for a detailed description. Therefore, the source term has a delta function singularity

∆u = 0

∆u = f (x)

∆u = 0

auxiliary sphere

r = a

Γ = ∂Ω−

Ω+

Ω−

Ω+

n

Fig. 1. A diagram of the interface problem (1) with M2 = 0 and ∇ · M1 =f (x) in a bounded domain �−. The problem is defined
in the entire space. An auxiliary sphere r = a is used to divide the infinite domain into two parts.

108 M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125

which causes a discontinuity in the flux of the solution across the boundary of �−. The domain �− is
typically a closed surface (not necessarily a sphere).

It is important to provide efficient and reliable numerical solutions for the equation above. As quoted
from [6], “Even though there is an extensive literature on numerical simulations using micro-magnetics,
see [2] for a review, with even commercially available software, the accuracy of these numerical compu-
tations is still a serious issue.”

In this paper, we propose second-order accurate fast algorithms based on a fast Fourier transform
(FFT) and the immersed interface method (IIM) [10,12,13,15,16] to solve the interface problem with
discontinuities in the flux and the source term in the entire space.

To solve (1)–(2) numerically, we need to overcome two difficulties associated with the problem. The
first one is how to solve the Poisson equation in the infinite domain. The second one is how to handle the
discontinuities in the source term and in the flux of the solution.

Finite difference approaches are often preferred for a number of reasons. They are simple to implement
and fast when coupled with FFT. For non-linear problems in which a Green function may not be available,
or for free boundary/moving interface problems, finite difference methods with fixed underlying grids
are more attractive. The challenge is how to maintain the accuracy near the boundary or the interface.

For non-interface problems defined in an infinite domain, we refer the readers to [21] for a review
on the regularity of the solution and a variety of numerical methods, particularly, the artificial boundary
condition (ABC) techniques. Using ABC techniques, one needs to truncate the infinite domain and then
to impose some boundary conditions at the truncated boundary. In [3], the authors derived a sequence of
different accurate boundary conditions for Helmholtz equations along the artificial sphere. Some other
artificial boundary conditions can be found in [21].

In this paper, we propose an algorithm that can solve the Poisson equation on the entire three-
dimensional space. The main idea is to use an auxiliary sphere to separate the infinite domain and use the
Kelvin’s inversion to transform the exterior domain to a finite interior domain. The mesh points corre-
sponding to the domain outside of the sphere is carefully chosen so that the finite difference discretizations
from both sides can match together. The resulting finite difference equations can be further simplified by
using the discrete Fourier transform in the � coordinate. Then the generalized cyclic reduction method
is used to solve the remaining block tri-diagonal linear system. Comparing with the ABC approach that
solves the solution only inside a sphere, our new method can get an approximate solution in the entire
space, but the computation cost is not necessarily doubled. More importantly, we do not have to worry
about how big the artificial sphere is or what kind of boundary conditions should be, which makes the
algorithm potentially more efficient.

To deal with the discontinuity across the interface � = ��−, we generalize the method developed in
[16] for two-dimensional problems to spherical coordinates. The main idea is to extend the jumps in the
solution and the flux along the normal line of the interface in a neighborhood of �. Then, we construct a
new function that has the same jump conditions as the solution of (1)–(2). Using a transformation, we get
a new interface problem whose solution is smooth across the interface. Therefore, a second-order accurate
scheme can be obtained using the standard central finite difference scheme in spherical coordinates with
minor modifications. The key to the success of this approach is how to get the orthogonal projections
of the grid points (in the neighborhood of the interface) on the interface which is not trivial when the
geometry is described in spherical coordinates.

Other possible approaches include the use of an integral equation like the fast multipole method [8],
since the solution to the Poisson equation can be expressed as a convolution of the fundamental solution

M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125 109

with the source term f. For the ferromagnetic materials simulation, a boundary correction method based
on the volume integral has been used in [4].

The discussion of the existence and uniqueness of the solution to (1) is complicated with the presence
of the interface and the infinite domain. Under some reasonable conditions, we have shown in this paper
that the solution does exist and is unique.

The paper is organized as follows. We first discuss the wellposedness of the problem in Section 2. In
Section 3, we describe the transformation based on an orthogonal extension of known jumps. The solution
to the new Poisson problem is smooth. An efficient fast Poisson solver in the whole space and the artificial
boundary condition technique are explained in Section 4. The entire algorithm for the interface problem
defined in a finite or the infinite domain is outlined in Section 5. Numerical examples and grid refinement
analysis are provided in Section 6.

2. The existence and uniqueness of the solution to the interface problem defined in the entire space

In this section, we address the wellposedness of the interface problem:

�u(x) =
{

f1(x), x ∈ �−,

f2(x), x ∈ �+,

[u] = w, [un] = v, on the boundary � = ��−,
lim|x|→∞ u(x) = 0. (4)

We assume that �− is a bounded open set in R3 and its boundary � is a two-dimensional C3 manifold.
We denote the unbounded open set exterior to � as �+.

The Poisson’s equation �u = F without interfaces is often studied in Hölder type spaces Ck,�, see
[7]. However, due to the interface �, our F(x) is not continuous. There is a large collection of literature
based on Bessel potentials or other weighted spaces [1,22]. We give a simple treatment using classical
Sobolev spaces. Our assumptions cover the important case where fi =∇ ·Mi , i =1, 2 as explained in the
introduction section. Problem (4) has other applications which include finding the electro-static potential
field with volume charges in the domain and a concentrated single or double layer charges along the
surface �.

Theorem 2.1. Assume that f1 ∈ L2(�−), f2 ∈ L2(�+) ∩ L1(�+), w ∈ H 3/2(�) and v ∈ H 1/2(�).
Then (4) has a unique solution u which is in H 2

loc(R3). That is, for any N > 0, if BN is the ball centered
at zero with radius N, then the restriction of u to BN is in H 2(BN).

Proof. The uniqueness of the solution is due to the condition u(x) → 0 as |x| → ∞. In fact, if U1 and U2
are solutions to (4), then U = U1 − U2 satisfies �U = 0 with the same condition U(x) → 0 as |x| → ∞.
Using the maximum principle, for any N > 0,

sup
x∈BN

|U(x)|� sup
|x|=N

|U(x)|.

The right side approaches 0 as N → ∞. Therefore, U(x) = 0 for all x ∈ R3.

110 M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125

Now we show the existence of the solution of (4). According to Lions and Magenes [17], for any
u ∈ H 2(�−), the trace mapping

u �→
{
u|�,

�u

�n

∣∣∣∣
�

}
,

H 2(�−) → H 3/2(�) × H 1/2(�)

is a continuous linear mapping. It is surjective and there exists a continuous linear right inverse

{g1, g2} �→ R{gj } of H 3/2(�) × H 1/2(�) → H 2(�−).

Let u1 = R{w, v}. Then u1 ∈ H 2(�−) and

u1|� = w,
�u1

�n

∣∣∣∣
�

= v.

If we extend u1 by zero to �+, then

[u1] = w,

[
�

�n
u1

]
= v, on �.

If u is a solution of (4), the function u2 = u − u1 satisfies

�u2 = F(x), F (x) =
{

f1 − �u1, x ∈ �−,

f2 − �u1, x ∈ �+,

u2(x) → 0, as|x| → ∞.

Note that F ∈ L2(�+) ∩ L1(�+).
Let K(x) = − 1

4�|x| be the fundamental solution of the Laplacian in R3. If we define u2 = K ∗ F , then

u2 ∈ H 2
loc(R3) and is a strong solution of �u = F . Moreover, u2(x) → 0 as |x| → ∞. The proof is

presented in Lemma 2.2 below.
It is easy to verify that u = u1 + u2 is a solution of the general problem (4). �

Lemma 2.2. Assume that F ∈ L2(�+) ∩ L1(�+). Let U := ∫
K(x − y)F (y) dy. Then U ∈ H 2

loc(R3)

and is a strong solution of

�u = F . (5)

Moreover, U(x) → 0 as |x| → ∞.

Proof. The space L2(R3) will be denoted by L2 for simplicity, so will the notations L1, H 2, etc.
Observe that K and DK are locally integrable and are C∞ outside a neighborhood of the origin. Let �

be a C∞ cut-off function such that

�(x) =
{

0, |x|�1,

1, |x|�2.

Define the following localization of K and DK:

Kc = K �, Ke = K (1 − �), K = Kc + Ke,
(DK)c = (DK) �, (DK)e = DK (1 − �), DK = (DK)c + (DK)e.

M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125 111

Kc and (DK)c have a compact support and are integrable, while Ke and (DK)e are C∞. Moreover,
Ke(x) → 0 as |x| → ∞. The proof is divided into four steps.

Step 1: Write

U = Kc ∗ F + Ke ∗ F .

Since Kc ∈ L1 and F ∈ L2, the standard theory of convolutions implies that Kc ∗ F ∈ L2.
Using the fact that Ke ∈ C∞, Ke and all its derivatives are bounded, and F ∈ L1, we can show that

Ke ∗ F ∈ C∞. Details shall be omitted. It follows that U ∈ L2
loc.

Step 2: We now show that U is a weak solution of (5). Let � ∈ C∞
0 (R3). Using Fubini’s theorem and

K(x − y) = K(y − x), we have the following

〈�U, �〉 = 〈U, ��〉
=
∫ (∫

K(x − y)F (y) dy
)

��(x) dx

=
∫

F(y)

(∫
K(y − x)��(x) dx

)
dy

=
∫

F(y)�(y) dy.

This shows that �U = F in the sense of distribution.
Step 3: We now show that U is locally H 2. For any N > 0, let BN be the ball centered at origin and

with radius N. We show that U ∈ H 2(BN).
Let 	 be a C∞ cut-off function such that

	(x) =
{

1, |x|�N,

0, |x|�N + 1.
(6)

Consider ũ = U 	. Then ũ ∈ L2(R3) and has the support in BN+1.

−�ũ = −�U · 	 − 2∇U · ∇	 − U�	. (7)

The first term in (7) equals to −F 	 and is in L2(R3). Observe that ∇K is locally integrable and

∇U =
∫

∇K(x − y)F (y) dy.

The expression is similar to that of U. Thus, by a similar method, we can show that ∇U is locally L2.
Thus the second term in (7) is in L2(R3). Obviously, the third term in (7) is also in L2(R3). All the three
terms have support in BN+1.

Let g =−�ũ+ ũ. Then g ∈ L2(R3) and has the support in BN+1. It is clear that ũ is a weak solution of

−�V + V = g.

Let ĝ(s) denote the Fourier transform of g. Let F be the Fourier transform. We can show the above PDE
has a solution

W = F−1(ĝ(s)/(1 + s2)) ∈ H 2(R3).

The function ũ − W is a solution to −�V + V = 0, therefore it is in C∞. This shows that ũ ∈ H 2(BN).

112 M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125

Observe that U = ũ in BN . Therefore U ∈ H 2(BN). Since N > 0 is arbitrary, we have shown that
U ∈ H 2

loc(R3).
Step 4: Since U ∈ H 2

loc, we find that U is a continuous function in R3. We now show U(x) → 0 as
|x| → ∞.

For any N > 0, let the cut-off function 	 be defined as in (6). Let

F1 = (1 −)F, F2 = 	F, F = F1 + F2.

Therefore we have∣∣∣∣
∫

Ke(x − y)F1(y) dy

∣∣∣∣ �C sup
x

|Ke(x)||F1|L1 ,∣∣∣∣
∫

Kc(x − y)F1(y) dy

∣∣∣∣ � |Kc|L2 |F1|L2 .

As N → ∞, |F1|L1+|F1|L2 → 0. This shows that for any
 > 0, we can find N > 0 such that |K∗F1|�
/2.
With this fixed N, Since F2 has a compact support in BN+1. There exists sufficiently large m > 0 such
that if |x| > m,∣∣∣∣

∫
K(x − y)F2(y) dy

∣∣∣∣ � sup
|x|>m,y∈BN+1

|K(x − y)||F2|L1 <
/2.

If follows that if |x| > m, |K∗F |L∞ � |K∗F1|L∞ +|K∗F2|L∞ <
. Therefore U(x) → 0 as |x| → ∞.�

3. A transformation based on the orthogonal extension of the jumps

We begin to discuss our numerical algorithms for solving (4). First, we briefly review how to trans-
formation the above interface problem to a problem with a smooth solution. This was first introduced in
[16] for two-dimensional problems.

Let �(x) be a real-valued function such that

�(x)

{
< 0 if x ∈ �−,

= 0 if x ∈ � = ��−,

> 0 if x ∈ �+.

(8)

We assume that �(x) ∈ C3(R3) in a neighborhood of the interface �,1 so that the zero level set of �,
�(x)=0, represents the interface. Usually, the level set function is chosen as the signed distance function
(|∇�|=1) from the interface, see [18,19] and the references therein. Therefore, it is reasonable to assume
that |∇�|
= 0 in the neighborhood of the interface �. We define the extensions of w(X(s)) and v(X(s))

along the normal line (both directions) as

we(x) = we(X(s) + �n) = w(X(s)), (9)

1 In implementation, �(x) ∈ C2 seems to be enough for second-order accuracy.

M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125 113

and

ve(x) = ve(X(s) + �n) = v(X(s)), (10)

for all � ∈ R such that the normal lines do not intersect,2 where n is the unit normal direction pointing
outward. We construct the following function based on the extension

ũ(x) = we(x) + ve(x)
�(x)

|∇�(x)| . (11)

Note that ũ(x) ∈ C2 in the neighborhood of the interface � since we assume that w(s), v(s) are in C2 in
the domain of the definition, and � is in C3(R3) in the neighborhood of the interface �. Let us also define

û(x) = H(�(x))ũ(x) =
{0 if �(x) < 0,

1
2 ũ(x) if �(x) = 0,

ũ(x) if �(x) > 0,

(12)

in the same neighborhood in which ũ(x) is well defined, where H(·) is the Heaviside function. We have
the following theorem.

Theorem 3.1. Let u(x) be the solution of (4), û(x) be defined in (12). Define q(x) = u(x) − û(x). Then
in the neighborhood of the interface where we(x) and ve(x) are well defined, the following are true:

�q(x) = f (x) − H(�(x))�û(x), x ∈ R3 − �, (13)
[q] = 0, [∇q · �] = 0, [∇q · n] = 0, (14)

where � is any unit tangent direction of the interface �. In other words, the new function q(x) is a smooth
(C1) function across the interface �.

The proof can be found in [16].

3.1. The orthogonal projection on the interface in spherical coordinates

Using Theorem 3.1, we can transform the original interface problem to a new one with a smooth
solution. In order to take advantage of the transformation, we need to find the extensions (9)–(10) along
the normal line of the surface � to get ũ and û. Since our fast Poisson solver is in spherical coordinates,
it is natural to find the orthogonal projection of a point near the interface using the information (level set
function and the underlying grid) in spherical coordinates.

The spherical coordinates system is

x = r sin � cos �,
y = r sin � sin �, r �0, 0�� < 2�, 0�� < �,
z = r cos �.

2 Theoretically, there is always a neighborhood that the normal line do not intersect. Numerically, in case the normal lines
intersect, we can simply pick up an extension and the algorithm still works.

114 M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125

Let x be a point near the interface �, and x∗ be the corresponding orthogonal projection of x on the
interface, both in spherical coordinates. We can write

x∗ = x + �p, (15)

where � is a scalar, and p is a direction to be determined. If the direction p is known, we can use the
following quadratic equation

�(x) + (∇�(x) · p)� + 1
2 (pTHe(�(x))p)�2 = 0, (16)

to approximate the scalar �, where ∇�, and the Hessian matrix He(�) are evaluated at x. The above
equation is a third-order accurate approximation to �(x∗) = 0. The key here is how to decide the right
direction p in order to get an approximation of the orthogonal projection x∗.

Let [�x, �y, �z]T and [�r, ��, ��]T be the first-order approximation of the vector x − x∗ in Cartesian
and spherical coordinates, respectively. Then we have[

�x

�y

�z

]
≈
[sin � cos � r cos � cos � −r sin � sin �

sin � sin � r cos � sin � r sin � cos �
cos � −r sin � 0

][
�r

��
��

]
.

The columns of the Jacobian matrix above are orthogonal and the Euclidean norms are 1, r, and |r sin �|,
respectively. Therefore, we get

d2 = ‖(x, y, z) − (x∗, y∗, z∗)‖2 ≈ (�x)2 + (�y)2 + (�z)2 = (�r)2 + (r��)2 + (r sin � ��)2.

Since �(r∗, �∗, �∗) = 0, we have �(r, �, �) = �(r, �, �) − �(r∗, �∗, �∗) and

�(r, �, �) = �r �r + ���� + ����

= �r�r + ��

r
(r��) + ��

r sin �
(r sin � ��), (17)

where we have dropped the higher order terms. Using the Cauchy–Schwartz’s inequality, we have

|�|�
√

(�r)
2 +

(��

r

)2 +
(

��

r sin �

)2√
(�r)2 + (r��)2 + (r sin � ��)2.

or in the limit case, we have

|�|
|∇�| �

√
(�r)2 + (r��)2 + (r sin � ��)2.

The minimum of d can be reached if the equal sign can be reached since |�|/∇�| is an approximation to
the distance between (r, �, �) and its orthogonal projection (r∗, �∗, �∗). The equal sign can be reached if
and only if the two vectors in the inner product (17) are collinear, i.e., there is a scalar � such that

r − r∗ = ��r ,

� − �∗ = �
��

r2 ,

� − �∗ = �
��

(r sin �)2 .

M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125 115

Thus we concluded that the projection is along the direction

p =
[
�r ,

��

r2 ,
��

(r sin �)2

]T

(18)

with an undetermined scalar factor � which can find an approximation using (16).

4. Fast solvers for 3D Poisson equation in the infinite domain

The Poisson equation in the three-dimensional infinite domainR3 can be written in spherical coordinates
as

�2u

�r2 + 2

r

�u

�r
+ 1

r2

�2u

��2 + cot �

r2

�u

��
+ 1

r2 sin2�

�2u

��2 = f (r, �, �). (19)

A vanishing condition at infinity

u → 0 as r → ∞, (20)

is imposed in order to ensure the uniqueness of the solution.
In this section, we will introduce two different fast direct methods for Eqs. (19)–(20). Both methods

involve second-order finite difference discretizations to the Poisson equation (19) which can be solved
efficiently when the FFT-based fast solver [9] is implemented. The only difference of the two methods is
whether the problem is solved in the whole space or just within a truncated domain.

4.1. A new approach without truncation

First, we present a new approach which does not involve any truncation of the infinite domain. Thus, a
numerical solution can be obtained in the whole three-dimensional space. Another important advantage
of this approach is that there is no need to impose any artificial boundary conditions since the vanishing
condition can be treated naturally in our finite difference setting. Also, the second-order accuracy is
preserved in the whole domain.

In [9], Lai et al. have developed a 3D FFT-based fast direct solver for the Eq. (19) on a bounded
spherical domain {r �a}. This solver has three major features; namely, there are no pole conditions, a fast
linear algebraic solver can be applied, and the scheme is able to handle different boundary conditions. In
this subsection, we will develop the Poisson solver on the entire three-dimensional space based on the
method on a finite domain described in [9] and the Kevin’s transformation.

Before we proceed, let us decompose the infinite domain R3 into two regions using a sphere which is
centered at the origin with radius a. Let the interior domain be �a = {r �a} and the exterior domain be
�c

a = {r > a}, respectively, so that R3 = �a ∪ �c
a . Then the boundary ��a will be {r = a}. The present

idea is to transform the part of Poisson equation in the exterior unbounded domain �c
a to a Poisson

equation in a bounded domain. To accomplish that, we introduce an inversion mapping r̄ = a2/�, or
(r̄, �, �) → (a2/�, �, �) that maps the exterior domain {��a} into the interior domain {r̄ �a}. Then, we

116 M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125

define the functions ū and f̄ in �a whose values are related to the functions u and f in �c
a by

ū(r̄, �, �) = a2

r̄
u

(
a2

r̄
, �, �

)
, f̄ (r̄, �, �) = a2

r̄
f

(
a2

r̄
, �, �

)
, r̄ �a. (21)

The above transform (21) is called the Kelvin’s inversion. The functions ū and f̄ have the same regularities
in the domain �a as the functions u and f in �c

a . Also, after applying the Kelvin’s transform, the Laplace
operator is preserved as

u�� + 2

�
u� + 1

�2 u�� + cot �

�2 u� + 1

�2sin2�
u��

= r̄5

a6

(
ūr̄ r̄ + 2

r̄
ūr̄ + 1

r̄2 ū�� + cot �

r̄2 ū� + 1

r̄2sin2�
ū��

)
.

One can directly conclude that if u is harmonic in �c
a , then ū is harmonic for every points in �a except the

origin. Therefore, instead of solving one Poisson equation in the infinite domain, we solve the following
two Poisson equations in the finite domain �a ,

urr + 2

r
ur + 1

r2 u�� + cot �

r2 u� + 1

r2sin2�
u�� = f, in �a , (22)

ūr̄ r̄ + 2

r̄
ūr̄ + 1

r̄2 ū�� + cot �

r̄2 ū� + 1

r̄2sin2�
ū�� = a4

r̄4 f̄ , in �a . (23)

The above two equations are coupled at the boundary r = a by the condition ū(a, �, �) = a u(a, �, �).
The vanishing boundary condition of (20) is transformed to some condition of ū at the origin, which is
not specified explicitly. We shall see this does not cause any trouble in our finite difference scheme later.
Notice that the values of u and ū and their derivatives should agree with each other at the boundary ��a

if ū is transferred back to the original equation and the geometry.
We now discuss how to solve Eqs. (22)–(23) based on the fast direct solver developed in [9]. First, we

choose a grid

(ri, �j , �k) = (i�r, (j − 1/2)��, k��), 1�i�M, 1�j �L, 1�k�N , (24)

where the mesh spacings for each direction are

�r = a/M, �� = �/L, �� = 2�/N . (25)

In order to match the position of the ghost grid point in radial direction, the mesh width �r̄ is chosen to
satisfy

a − �r̄ = a2

a + �r
. (26)

This requirement has the meaning that the ghost grid point of u outside the boundary {r = a} will be the
grid point of ū which is the closest one to the boundary. By a simple calculation, we obtain �r̄=a/(M+1).
So the grid points used for ū can be chosen similarly by

(r̄i , �j , �k) = (i�r̄ , (j − 1/2)��, k��), 1�i�M + 1, 1�j �L, 1�k�N . (27)

M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125 117

Notice that, by the choice of �r and �r̄ , we have rM = r̄M+1 =a and thus the coupling boundary condition
is ūM+1,j,k = a uM,j,k .

Once we have set up the grid, we can apply the standard second-order centered finite difference
approximation to Eqs. (22) and (23). This leads to the following finite difference equations

ui+1,j,k − 2uijk + ui−1,j,k

(�r)2 + 2

ri

ui+1,j,k − ui−1,j,k

2�r
+ 1

r2
i

ui,j+1,k − 2uijk + ui,j−1,k

(��)2

+ cot �j

r2
i

ui,j+1,k − ui,j−1,k

2��
+ 1

r2
i sin2�j

ui,j,k+1 − 2uijk + ui,j,k−1

(��)2 = fijk , (28)

ūi+1,j,k − 2ūijk + ūi−1,j,k

(�r̄)2 + 2

r̄i

ūi+1,j,k − ūi−1,j,k

2�r̄
+ 1

r̄2
i

ūi,j+1,k − 2ūijk + ūi,j−1,k

(��)2

+ cot �j

r̄2
i

ūi,j+1,k − ūi,j−1,k

2��
+ 1

r̄2
i sin2�j

ūi,j,k+1 − 2ūijk + ūi,j,k−1

(��)2 = a4

r̄4
i

f̄ijk . (29)

Since the solution is periodic in � direction, we can approximate u by the truncated Fourier series

u(ri, �j , �k) =
N/2−1∑

n=−N/2

un(ri, �j)e
in�k , (30)

where un(ri, �j) is the discrete Fourier coefficient given by

un(ri, �j) = 1

N

N−1∑
k=0

u(ri, �j , �k)e
−in�k . (31)

The above transformation between the physical space and Fourier space can be efficiently performed
using the FFT with O(N log2 N) arithmetic operations. The expansions for the functions f, ū, and f̄ are
similar.

Substituting those expansions into the standard centered finite difference scheme (28)–(29) and equating
the corresponding Fourier coefficients, the finite difference equations for the nth Fourier coefficients un

and ūn are as follows:

Ui+1,j − 2Uij + Ui−1,j

(�r)2 + 2

ri

Ui+1,j − Ui−1,j

2�r
+ 1

r2
i

Ui,j+1 − 2 Uij + Ui,j−1

(��)2

+ cot �j

r2
i

Ui,j+1 − Ui,j−1

2��
+ 1

r2
i sin2�j

2 cos(n��) − 2

(��)2 Uij = Fij , (32)

Ūi+1,j − 2 Ūij + Ūi−1,j

(�r̄)2 + 2

r̄i

Ūi+1,j − Ūi−1,j

2�r̄
+ 1

r̄2
i

Ūi,j+1 − 2Ūij + Ūi,j−1

(��)2

+ cot �j

r̄2
i

Ūi,j+1 − Ūi,j−1

2��
+ 1

r̄2
i sin2�j

2 cos(n��) − 2

(��)2 Ūij = a4

r̄4
i

F̄ij . (33)

118 M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125

Here, we denote the discrete values by Uij = un(ri, �j), Ūij = ūn(r̄i , �j), Fij = fn(ri, �j) and F̄ij =
f̄n(r̄i , �j).

We now discuss how to handle the numerical boundary conditions for � = 0 and � = �. Using a
staggered grid in the � direction, we do not put the grid points on the north (�=0) and south (�=�) poles
directly. Thus, the numerical boundary values for Ui0 and Ui,L+1 can be easily obtained by the symmetry
constraint of Fourier coefficients [9]; that is, Ui0 = (−1)nUi1 and Ui,L+1 = (−1)nUiL. Similarly, we have
Ūi0 = (−1)nŪi1 and Ūi,L+1 = (−1)nŪiL. Therefore, no complicated pole treatments are needed in our
setting. More surprisingly, the numerical boundary values U0j and Ū0j will not be needed either since
the coefficients of those values in the finite difference equations (32)–(33) are zero. One can easily check
this from the above finite difference equations in the case of i = 1. The numerical boundary conditions
for UMj and ŪM+1,j are provided by the coupling boundary condition ŪM+1,j = aUMj . By ordering the
unknowns appropriately, the resulting linear system of equations for Uij and Ūij can be solved altogether
by the generalized cyclic reduction algorithm [20] with O(LM log2 M) operations.

4.2. An artificial boundary approach

The traditional numerical computation for (19)–(20) is to truncate the unbounded region by a sphere, say
r = a; then an artificial boundary condition is imposed at r = a. The resulting problem is then discretized
and solved in the bounded region {r �a}. However, the main difficulty is how to choose the artificial
boundary condition at r = a so that the vanishing condition at infinity can be translated appropriately
to the boundary. In [3], the authors developed a sequence of local boundary conditions for some elliptic
equations. Those artificial boundary conditions can be considered as applying the differential operators
to the solution at the boundary. The order of accuracy of those boundary conditions depends on the order
of the highest derivative in the differential operators. In this paper, we use the following second-order
accurate boundary condition

�2u

�r2 + 4

r

�u

�r
+ 2u

r2 = 0, at r = a. (34)

The detail of the derivation of the above condition can be found in [3]. In short, we now solve Eq. (19)
in a finite domain {r �a} with the boundary condition (34).

The finite difference discretization for the resulting problem is almost the same as the one described
before. That is, we use the same grid as described in (24)–(25) and follow the same solution procedures to
solve one Poisson equation in the domain {r �a}. The treatments for numerical boundary values are also
the same except at the boundary r = a which uses the condition (34) instead. Therefore, the numerical
boundary value of UM+1,j can be found by the second-order approximation of (34)

UM+1,j − 2UMj + UM−1,j

(�r)2 + 4

rM

UM+1,j − UM−1,j

2�r
+ 2UMj

r2
M

= 0. (35)

Once we incorporate the numerical boundary values into the difference scheme, the resulting linear
equations are again solved by the generalized cyclic reduction method.

Remark 4.1. If the domain is a finite r �a instead of the infinite domain, then we can apply the exact
boundary condition at r = a instead of the artificial boundary condition.

M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125 119

Let us close this section by summarizing the algorithms and the operation counts in the following three
steps:

1. Compute the Fourier coefficients for the right-hand side function as in (31) by FFT, which requires
O(MLN log2 N) operations.

2. Solve the block tridiagonal linear systems for N Fourier coefficients by the generalized cyclic reduction
algorithm, which requires O(NLM log2 M) operations.

3. Invert the Fourier coefficients as in (30) by FFT to obtain the solution, which requires O(MLN log2 N)

operations.

The overall operation count is roughly O(NLM log2 (M +N)) for M ×L×N grid points. One should
notice that the artificial boundary condition approach saves about the half of the work comparing with
the approach without truncation since the former does not compute the solution outside the truncating
boundary.

5. Dealing with the interface and an outline of the algorithm

In this section, we explain how to handle the interface and give an outline of our algorithm. For the
interface problem (4), using the transformation described in Section 3 and a level set function to express
the interface, we can get a discrete Poisson equation with a modified right-hand side. The discrete Poisson
equation can be solved either in the entire space or in a sphere r �a using an artificial boundary condition
technique. Below we explain our algorithm step by step.

Step 1: Indexing grid points. First we generate a grid (24)–(25) and choose a sphere r =a that encloses
the interface � = ��−. A level set function whose zero level set (�(r, �, �) = 0) is the interface �, is
defined at grid points as �ijk . If we only want to obtain the solution in a bounded domain, then we have
to choose the artificial sphere r = a carefully in order to use an artificial boundary condition technique
while maintaining second-order accuracy.

Let

�max
ijk = max{�i−1,j,k, �i,j,k, �i+1,j,k, �i,j−1,k, �i,j+1,k, �i,j,k−1, �i,j,k+1},

�min
ijk = min{�i−1,j,k, �i,j,k, �i+1,j,k, �i,j−1,k, �i,j+1,k, �i,j,k−1, �i,j,k+1}. (36)

We define xijk as an irregular grid point if

�max
ijk �min

ijk �0. (37)

We define xijk = (ri, �j , �k) as an sub-irregular grid point if it is not an irregular grid point, but one of its
six neighbors is an irregular grid point. If xijk is neither an irregular nor a sub-irregular grid point, then
we call it a regular grid point.

Step 2: Finding the orthogonal projections. If xijk is an irregular or sub-irregular grid point, we use
the second-order central finite difference scheme to find the approximate orthogonal direction p defined
in (18) at xijk , and the Hessian matrix He(�(xijk)) in spherical coordinates. Then we solve the quadratic
equation (16) to get � and an approximate orthogonal projection x∗

ijk of xijk on the interface �.

120 M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125

Step 3: Extending the jumps. We need to extend the jumps to all irregular and sub-irregular grid points
xijk from their orthogonal projection x∗

ijk on the interface according to the following:

(we)ijk = w(x∗
ijk(s)), (ve)ijk = v(x∗

ijk(s)). (38)

Now we compute ũijk and ûijk defined in (11) and (12) at irregular and sub-irregular grid points xijk

according to the following

ũijk = we(xijk) + ve(xijk)
�(xijk)

|∇�(xijk)| ,

ûijk =
{

0 if �(xijk)�0,

ũijk if �(xijk) > 0,
(39)

Step 4: Adding the correction terms. Since the solution of the Poisson equation �u(x)− û(x)=f (x)−
H(�(x))�û(x) has a smooth solution, an approximate solution can be obtained by solving the following
finite difference equations

hUijk =
{

fijk − Hh(�ijk)
hũijk +
hûijk + Cijk if xijk is irregular,
fijk otherwise.

(40)

Here, Cijk is a correction term needed to offset the discontinuities in second-order derivatives, and
h is
the standard discrete Laplacian in spherical coordinates described by

hUijk = Ui+1,j,k − 2Uijk + Ui−1,j,k

(�r)2 + 2

ri

Ui+1,j,k − Ui−1,j,k

2�r
+ 1

r2
i

Ui,j+1,k − 2Uijk + Ui,j−1,k

(��)2

+ cot �j

r2
i

Ui,j+1,k − Ui,j−1,k

2��
+ 1

r2
i sin2�j

Ui,j,k+1 − 2Uijk + Ui,j,k−1

(��)2 ,

and Hh(�ijk) is the discrete Heaviside function

Hh(�ijk) =
{

1 if �ijk > 0,

0 if �ijk �0.
(41)

The correction term Cijk is defined in (43) and it is important for second-order accuracy of our method.
Note that when i = 1, the coefficient of U0jk in the expression above happens to be zero. Therefore we
have avoided the singularity at r = 0. The extension of the jumps to sub-irregular grid points is used to
compute
hũijk and
hûijk at irregular grid points.

Define

Fijk =
{

fijk − Hh(�ijk)
hũijk if xijk is irregular,
fijk otherwise.

(42)

The correction term then is

Cijk =
∑

il ,jl ,kl

Hh(−�i+il ,j+jl ,k+kl
�ijk)�i+il ,j+jl ,k+kl

(
�i+il ,j+jl ,k+kl

|∇�i+il ,j+jl ,k+kl
|

)2

× Fi+il ,j+jl ,k+kl
− Fijk

2
, (43)

M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125 121

where (il, jl, kl)={(−1, 0, 0), (1, 0, 0), (0, −1, 0), (0, 1, 0), (0, 0, −1), (0, 0, 1)}, �i+il ,j+jl ,k+kl
are the

coefficients of the discrete Laplacian in spherical coordinates:

�i±1,j,k = 1

(�r)2 ± 1

ri�r
, �i,j±1,k = 1

(ri ��)2 ± cot �j

2r2
i ��

, �i,j,k±1 = 1

(ri sin �j��)2 . (44)

The gradient vector

∇� =
(

�r ,
1

r
��,

1

r sin �
��

)
(45)

is computed using the standard second-order central finite difference scheme at involved grid points.
It is clear now that the discontinuity in the solution and the flux only affect the right-hand side of the

finite difference equations.
Step 5: Solving the discrete system. We solve the discrete system of equations with modified right-hand

side using the fast method described in Section 4 to get an approximate solution to the original problem
either in the entire space or inside the truncated domain r �a.

6. Performance study

We have done intensive tests on the methods discussed in this paper using Sun Ultra workstations or
PCs. Our computer codes3 have not been optimized and parallelized. However, all the numerical results
confirm second order accuracy of the present methods in the infinity norm.

6.1. Example 1

In this example, the level set function is

�(r, �, �) = r2 − (1 + Br sin � cos �). (46)

The interface in Cartesian grid, therefore, is x2 + y2 + z2 − Bx = 1. The exact solution is chosen as

u(r, �, �) =
{

r3 sin � cos � if �(r, �, �)�0,
sin � cos �

r2 if �(r, �, �) > 0.
(47)

The source term is

f (r, �, �) =
{

10 r sin � cos � if �(r, �, �)�0,

0 if �(r, �, �) > 0.
(48)

The jump condition is determined from the exact solution and the interface. In the special case when
B = 0, the interface is the unit sphere r = 1, the jump conditions are

[u] = 0, [un] = −5 sin � cos �. (49)

If B
= 0, then both the solution and the flux have a non-zero jump.

3 The code is available to public upon request.

122 M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125

Table 1
The grid refinement analysis for Example 1

M N L E1∞ Order E2∞ Order CPU (s)

(a) Sphere interface: B = 0. The solution is continuous but the flux is not
16 32 16 7.0822 × 10−3 4.4105 × 10−3 0.0900
32 64 32 1.7932 × 10−3 1.9816 1.1444 × 10−3 1.9464 0.6700
64 128 64 4.5196 × 10−4 1.9883 2.9192 × 10−4 1.9710 5.5200

128 256 128 1.1349 × 10−4 1.9936 7.3742 × 10−5 1.9850 49.870

(b) An arbitrary interface: B = 0.25. Both the solution and the flux are discontinuous
16 32 16 5.0432 × 10−2 9.0128 × 10−3 0.0900
32 64 32 1.3027 × 10−2 1.9529 2.4347 × 10−3 1.8882 0.6600
64 128 64 1.8168 × 10−3 2.8420 6.3863 × 10−4 1.9307 5.5500

128 256 128 5.2148 × 10−4 1.8008 1.7160 × 10−4 1.8960 49.870

The auxiliary sphere separating the infinite domain is r = a = 2. The CPU time unit is in seconds.

In Table 1, we show the result of the grid refinement analysis for the solution both inside and outside
of the auxiliary sphere r = a = 2. The error is defined as

E∞ = max
ijk

{|u(ri, �j , �k) − Uijk|}, (50)

where u(ri, �j , �k) and Uijk are the exact solution and computed solutions at the grid point (ri, �j , �k).
We use E1∞ to denote the maximum error inside the sphere, and E2∞ to denote the maximum error outside
the sphere. The order of accuracy is defined as

order = log(E(M)/E(2M))

log 2
. (51)

In Table 1(a), B =0 and the interface is the unit sphere which is aligned with the grid line in r direction.
The solution is continuous, but both the flux and the source term have a finite jump. The grid refinement
analysis show clearly second-order accuracy as the mesh gets finer. In Table 1(b), the interface depends
on r , �, and �. It is not aligned with any grid lines. Now the solution, the flux, and the source term all
have a finite jump across the interface. Generally, for interface problems, the maximum errors usually do
not decrease monotonically (see [14,5]). But the average convergence rate in Table 1(b) shows second
order convergence again.

In Table 2, we show the result of the grid refinement analysis using the artificial boundary condition
(34). The error is measured at grid points inside the artificial sphere r = a. The CPU time was cut by
less than half. In this table, we list the numerical results for a = 2 and a = 5. It is hard to determine the
optimal value of a since the choice is problem-dependent. In this case, the artificial sphere a =2 seems to
be a good choice for this particular artificial boundary condition technique. When we increase the radius
of the sphere to a = 5, the maximum error actually gets a little bigger. The part of reason is that the mesh
resolution when a = 5 is worse than the case when a = 2. Nevertheless, both cases show second-order
accuracy.

M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125 123

Table 2
The grid refinement analysis for Example 1 using the artificial boundary condition (34) and B = 0.25

M N L E1∞(a = 2) order (a = 2) E1∞(a = 5) order (a = 5) CPU (s)

16 32 16 1.8356 × 10−2 2.9658 × 10−2 0.0700
32 64 32 3.4625 × 10−3 2.4063 6.8574 × 10−3 2.1127 0.4800
64 128 64 4.9865 × 10−4 2.7957 2.3333 × 10−3 1.5553 3.8200

128 256 128 1.2012 × 10−4 2.0536 6.2092 × 10−4 1.9099 32.070

The CPU time unit is in seconds.

Table 3
The grid refinement analysis for Example 2

M N L E1∞ order E2∞ order CPU (s)

16 32 16 1.5243 × 10−2 1.4778 × 10−2 0.080
32 64 32 8.2877 × 10−3 0.8791 1.8384 × 10−3 3.0069 0.6600
64 128 64 1.1670 × 10−3 2.8282 4.9265 × 10−4 1.8998 5.5500

128 256 128 3.6756 × 10−4 1.6667 1.2586 × 10−4 1.9687 50.090

The auxiliary sphere separating the unbounded domain is r = a = 2 and B = 0.1. The CPU time unit is in seconds.

6.2. Example 2

In this example, we show the result for a problem where the solution has a stronger discontinuity. The
level set function is

�(r, �, �) = r − (1 + B sin � cos �). (52)

The exact solution is chosen as

u(r, �, �) =

⎧⎪⎨
⎪⎩

r sin � cos �

(
5

2
− 3

2
r2
)

if �(r, �, �)�0,

2 sin � cos �

r2 if �(r, �, �) > 0.

(53)

The source term is

f (r, �, �) =
{−15r sin � cos � if �(r, �, �)�0,

0 if �(r, �, �) > 0.
(54)

The jumps in [u] and [un] are determined from the exact solution and the interface. Note that even in the
special case when B = 0, the solution is discontinuous. In the following tests, we choose B = 0.1.

In Table 3, we show the grid refinement analysis with an auxiliary sphere r = a = 2 for the solution
both inside and outside of the sphere. Average second order accuracy is again verified.

In Table 4, we show the result of the ABC approach. The results agree with our analysis for Example
1 and Table 2.

Note that in all the examples, we have Mi = ∇ui , i = 1, 2, corresponding to the application discussed
in the introduction section. We should also point out that our method does require the interface to be

124 M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125

Table 4
The grid refinement analysis for Example 2 using the artificial boundary condition (34)

M N L E1∞(a = 2) order (a = 2) E1∞(a = 5) order (a = 5) CPU (s)

16 32 16 3.8444 × 10−2 3.4777 × 10−1 0.0700
32 64 32 8.0087 × 10−3 2.2631 3.2515 × 10−2 3.4189 0.4800
64 128 64 1.1029 × 10−3 2.8602 1.4151 × 10−2 1.2003 3.7800

128 256 128 3.5020 × 10−4 1.6551 3.4269 × 10−3 2.0459 31.9500

The CPU time unit is in seconds.

smooth enough in Euclidean space because the method is based on the extension of the jumps along
the orthogonal directions. Some interfaces that are arbitrarily differentiable in spherical coordinates may
have a singularity in Euclidean space. For example, �(r, �, �) = r − (1 − B cos �) has a singularity at the
pole � = 0 and � = � when it is expressed in Cartesian coordinates.

Acknowledgements

The authors would like to thank Drs. K. Ito and S. Tsynkov of North Carolina State University for
beneficial discussions. Mr.Yi Chen wrote the computer code to find the orthogonal projection of a point on
the interface using spherical coordinates as his Master degree project. The first author is supported in part
by the National Science Council of Taiwan under research Grant NSC-91-2115-M-009-016. The second
author is partially supported by USA-ARO Grant 43751-MA and USA- NFS Grants DMS-0201094 and
DMS-0412654 and DMS-0201094.

References

[1] D. Adams, L. Hedberg, Function Spaces and Potential Theory, Springer, Berlin, 1996.
[2] A. Aharoni, Introduction to the Theory of Ferromagnetism, Oxford University Press, Oxford, 1996.
[3] A. Bayliss, M. Gunzburger, E. Turkel, Boundary conditions for the numerical solution of elliptic equations in exterior

regions, SIAM J. Appl. Math. 42 (2) (1982) 430–451.
[4] C.J. Garcia-Cervera, Z. Gimbutas, E. Weinan, Accurate numerical methods for micromagnetics simulations with general

geometries, J. Comput. Phys. 184 (2003) 37–52.
[5] M. Dumett, J.P. Keener, An immersed interface method for anisotropic elliptic problems on irregular domains in 2D,

Numer. Meth. Part. D. E. 21 (2005) 397–420.
[6] E.Weinan, Selected problems in material science, in: B. Engquist, W. Schmid (Eds.), Mathematics Unlimited-2001 and

Beyond, Springer, 2001.
[7] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983.
[8] L. Greengard, V. Rokhlin, A fast algorithm for particle summations, J. Comput. Phys. 73 (1987) 325–348.
[9] M.-C. Lai, W.-W. Lin, W. Wang, A fast spectral/difference method without pole conditions for Poisson-type equations in

cylindrical and spherical geometries, IMA J. Numer. Anal. 22 (2002) 537–548.
[10] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular

sources, SIAM J. Numer. Anal. 31 (1994) 1019–1044.
[11] R.J. LeVeque, Z. Li, Immersed interface method for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci.

Comput. 18 (1997) 709–735.
[12] Z. Li, The immersed interface method—a numerical approach for partial differential equations with interfaces, Ph.D.

Thesis, University of Washington, 1994.

M.-C. Lai et al. / Journal of Computational and Applied Mathematics 191 (2006) 106–125 125

[13] Z. Li, A note on immersed interface methods for three dimensional elliptic equations, Comput. Math. Appl. 31 (1996)
9–17.

[14] Z. Li, A fast iterative algorithm for elliptic interface problems, SIAM J. Numer. Anal. 35 (1998) 230–254.
[15] Z. Li, K. Ito, Maximum principle preserving schemes for interface problems with discontinuous coefficients, SIAM J. Sci.

Comput. 23 (2001) 1225–1242.
[16] Z. Li, W.-C. Wang, I.-L. Chern, M.-C. Lai, New formulations for interface problems in polar coordinates, SIAM J. Sci.

Comput., 25 (2003) 224–245.
[17] J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, vol. I, Springer, Berlin, 1972.
[18] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, New York, 2002.
[19] J.A. Sethian, Level Set Methods and Fast Marching Methods, second ed., Cambridge University Press, Cambridge, 1999.
[20] P.N. Swarztrauber, A direct method for the discrete solution of separable elliptic equations, SIAM J. Numer. Anal. 11

(1974) 1136–1149.
[21] S. Tsynkov, Numerical solution of problems on unbounded domains. a review, Appl. Numer. Math. 27 (1998) 465–532.
[22] B.O. Turesson, Nonlinear potential theory and weighted Sobolev spaces, Lecture Notes in Mathematics, vol. 1736, Springer,

Berlin, 2000.

	Fast solvers for 3D Poisson equations involving interfaces in a finite or the infinite domain
	Introduction
	The existence and uniqueness of the solution to the interface problem defined in the entire space
	A transformation based on the orthogonal extension of the jumps
	The orthogonal projection on the interface in spherical coordinates

	Fast solvers for 3D Poisson equation in the infinite domain
	A new approach without truncation
	An artificial boundary approach

	Dealing with the interface and an outline of the algorithm
	Performance study
	Example 1
	Example 2

	Acknowledgements
	References

