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Abstract

For the interconnection network topology, it is usually represented by a graph. When a network is used, processors
and/or links faults may happen. Thus, it is meaningful to consider faulty networks. We consider k-regular graphs in this
paper. We define a k-regular hamiltonian and hamiltonian connected graph G is super fault-tolerant hamiltonian if G remains
hamiltonian after removing at most k — 2 vertices and/or edges and remains hamiltonian connected after removing at most
k — 3 vertices and/or edges. A super fault-tolerant hamiltonian graph has a certain optimal flavor with respect to the fault-
tolerant hamiltonicity and fault-tolerant hamiltonian connectivity. The aim of this paper is to investigate a construction
scheme to construct various super fault-tolerant hamiltonian graphs. Along the way, the recursive circulant graph is a spe-
cial case of our construction scheme, and the super fault-tolerant hamiltonian property of recursive circulant graph is
obtained.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The architecture of an interconnection network is usually represented by a graph G = (V, E), while vertices
represent processors and edges represent links between processors. We use terms graphs and networks inter-
changeable in this paper. There are a lot of mutually conflicting requirements in designing the topology of
interconnection networks. It is almost impossible to design a network which is optimum for all conditions.
One has to design a suitable network depending on the requirements of their properties. The hamiltonian
property is one of the major requirements in designing the topology of networks. Fault tolerance is also desir-
able in massive parallel systems that have relatively high probability of failure. There are many researches on
the ring embedding problems in faulty interconnection networks [2-8,10-12].
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In this paper, a network is represented as an undirected graph. G = (V, E) is a graph if Vis a finite set and £
is a subset of {(a,b)|(a,b) is an unordered pair of V}. We say that V is the vertex set and E is the edge set. The
degree of a vertex v, denoted by deg(v), is the number of edges incident to v. A graph G is k-regular if
deg(v) = k for every vertex in G. Two vertices « and b are adjacent if (a,b) € E. A path is a sequence of adjacent

vertices, written as (v, vy, v, . . ., U,,), in Which all the vertices vy, vy, . . ., v, are distinct. We also write the path
(00, V1,02, ., Up) @S (Vo, P(V0,V;),Vj Vi1, - - 5 Ujy P(V},0,), 0. . ., Uyy) Where P(vg,v;) = (v, 01, .. .,v;) and P(v;,v,) =
(05, V41, - - ., v;). For our purpose in this paper, a path may contain only one vertex. A path is a hamiltonian

path if its vertices are distinct and they span V. A cycle is a path with at least three vertices such that the first
vertex is the same as the last one. A cycle is a hamiltonian cycle if it traverses every vertex of G exactly once. A
graph G is hamiltonian if it has a hamiltonian cycle, and G is hamiltonian connected if there exists a hamiltonian
path joining any two vertices of G. Many of the graph definitions and notations we used can be found in [1].

Since vertex faults and edge faults may happen when a network is used, it is practically meaningful to con-
sider faulty networks. A graph G is called [-fault-tolerant hamiltonian (I-fault-tolerant hamiltonian connected
respectively) or simply l-hamiltonian (I-hamiltonian connected respectively) if it remains hamiltonian (hamilto-
nian connected respectively), after removing at most / vertices and/or edges. The fault-tolerant hamiltonicity,
H¢(G), is defined to be the maximum integer / such that G — F remains hamiltonian for every
F C V(G)U E(G) with |F| <! if G is hamiltonian, and undefined if otherwise. Obviously, #;(G) < J(G) — 2,
where (G) = min{deg(v)|v € V(G)}. A regular graph G is optimal fault-tolerant hamiltonian it #:(G) =
0(G) — 2. Twisted-cubes, crossed-cubes, mobius cubes and recursive circulant graphs are proved to be optimal
fault-tolerant hamiltonian [2,4-6,11]. All these families of graphs have some good properties in common,
including that they can all be recursively constructed. In establishing their fault-tolerant hamiltonicity, another
parameter called fault-tolerant hamiltonian connectivity is used. The fault-tolerant hamiltonian connectivity,
H'{(G), is defined to be the maximum integer / such that G — F remains hamiltonian connected for every
FC V(G)U E(G) with |F| <! if G is hamiltonian connected, and undefined if otherwise. Obviously,
H{(G) < 6(G) — 3. A regular graph G is optimal fault-tolerant hamiltonian connected if A#§(G) = 6(G) — 3.
Again, twisted-cubes, crossed-cubes, mobius cubes and recursive circulant graphs are proved to be optimal
fault-tolerant hamiltonian connected [2,4-6,11]. We call those regular graphs super fault-tolerant hamiltonian
if #¢(G)=0(G)—2 and #{(G) =3(G) — 3.

All the proofs of super fault-tolerant hamiltonicity are done by induction. We observe that there are certain
common phenomena behind the recursive structures so that we may construct other super fault-tolerant ham-
iltonian graphs. In this paper, we try to investigate these phenomena and establish some construction schemes
of super fault-tolerant hamiltonian graphs.

The rest of this article is organized as follows. In the next section, a recursively construction scheme and
some notations are introduced. The recursive circulant graph [9,11] is essentially a special case of this construc-
tion scheme. Section 3 describes six lemmas which we shall use in our main results. The main results are
proved in Section 4. Finally, the conclusion is given in Section 5.

2. A recursively construction scheme and some notations

Fault tolerance is one of the major requirement on designing a network. A network has higher fault toler-
ance if it is super fault-tolerant hamiltonian. In this section, we give a construction scheme to recursively con-
struct super fault-tolerant hamiltonian graphs. Let Gy,Gs,...,G, be n k-regular super fault-tolerant
hamiltonian graphs with the same number of vertices. We define a new graph H = G(G,, G, . ..,G,, M 3,
Mss,...,.M,_1,,M;,) which has vertex set V(H)= V(G;)U V(G,)U---U WG,), and edge set E(H)=
EG)UEG)U---UEG,)UM,,UM,3U---UM,_;,UM,,, where M,;is an arbitrary perfect matching
between the vertices of G; and G;. See Fig. 1. Considering each component G; as a vertex and each perfect
matching M;; as an edge, then G(Gy,G>,...,G,, My, M>3,...,M,_, ,, M, ,) is reduced to a cycle of length
n. For the sake of simplicity, we shall abbreviate G(Gy,Ga,...,Gp M2, Mos,. .., M, 1, M,) as
G(Gy, Gy,...,G,; C,), where C, stands for a cycle of length n. As an example, the recursive circulant graph,
which was proposed by Park and Chwa [9], is essentially constructed as a special case in this way, and it is
shown to be super fault-tolerant hamiltonian under a certain condition [11]. In this paper, we show that
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G(Gy, Gy, ...,Gy; Cy) i1s super fault-tolerant hamiltonian for any arbitrary perfect matchings, M, ,,
Mys,...,M;,, provided n > 3 and k > 5.

For ease of exposition, we make some convention about our notations we shall use along this paper. Con-
sider the graph G(Gy, G,...,G,; C,). For each component G;, we use small letters with subscript i to denote
the vertices in G;, e.g., u;, v;, etc. Thus, u is a vertex in Gy, and u, is a vertex in G,. A perfect matching M,
connecting the vertices of G; and G; in pairs, such pairs of vertices are called matching vertices, and these edges
are called matching edges. We shall use the same letter with different subscripts to denote matching vertices of
each other; e.g., u; and u; are the matching vertices of each other in components G; and G; if there is a perfect
matching between G; and G.

We need some more terms. We shall consider graphs with some faults. Our objective is to find a fault free
hamiltonian cycle (hamiltonian path respectively). In this paper, each fault can be a faulty vertex or a faulty
edge. If a vertex v is not faulty, we say v is a healthy vertex. We call an edge e (respectively a matching edge ¢)
healthy if both edge e and its two endpoints are not faulty. We use F; to denote the set of faults in G;, F{,.. j to
denote the set of faults in G(G;, Giy1,. ... G, My i1, Mit1 12, ..., My ). Let f; = |F;| and f;.. ;) = | F(;.. ;|- Given
two distinct healthy vertices x and y, we use x, y-hamiltonian path to call a fault free hamiltonian path joining x
and y, HP; to denote a fault free hamiltonian path in G; — F;, and HP,.. ; to denote a fault free hamiltonian
path in G(G;, Gir1,..., G My o1, My i, .., Mi_1 ) — F,..j) for i <j. A fault free x,y-hamiltonian path in
G;— F; can be written as (x,HP;y) and a fault free x,y-hamiltonian path in G(G; Git1,...,G, M, 41,
My 2., M) — F;..;) can be written as (x,HP..;,y). In addition, path (x,HP;y) and path
(x,HP..,,y) are cycles if x = y.

3. Preliminaries

Consider an interconnection network G, and suppose that there are some faults in it. Let Fs be the set of
faults in G, and f; = |Fg|be the number of faults in G. Suppose that G is k-hamiltonian (k-hamiltonian con-
nected respectively) and f; < k. Let u be a healthy vertex in G. It is clear that some of the edges incident to u is
on a hamiltonian cycle (hamiltonian path respectively) in G — Fg, but not every edge incident to u is on some
hamiltonian cycle (hamiltonian path respectively) in G — Fg. In the following two lemmas, [2] proved that at
least a fix number of edges incident to vertex u are on some hamiltonian cycles (hamiltonian paths respectively)
in G— Fg.

Lemma 1 [2]. Let G be a k-hamiltonian graph, Fg be a set of faults in G with |Fg| < k, and u be a healthy vertex
in G. Then there are at least k — fg + 2 edges incident to vertex u, such that each one of them is on some
hamiltonian cycle in G — Fg.

Lemma 2 [2]. Let G be a k-hamiltonian connected graph, Fg be a set of faults in G with |Fg| < k, and {x,y,u} be
three distinct healthy vertices in G. Then there are at least k — fg + 2 edges incident to vertex u, such that each
one of them is on some x,y-hamiltonian path in G — Fg.
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Let G, and G, be two graphs with the same number of vertices. Let M be an arbitrary perfect matching
between the vertices of G, and G, [2] has defined graph G(G,,G,; M), which has vertex set
N G(G,, Gg; M)) = V(G,) U V(Gy), and edge set E(G(G,, G;; M)) = E(G,) U E(Gy) U M. The following two lem-
mas result immediately from the fact that |V(G,)| = |V(Gy)| = k+ 1.

Lemma 3 [2]. Let G, and G be two k-regular graphs with the same number of vertices. If the total number of
faults in G(G,, Gy; M) is not greater than k, there exists at least one healthy matching edge between G, and G

Lemma 4 [2]. Let G, and G be two k-regular graphs with the same number of vertices, and let x and y be two
healthy vertices in G(G,, Gg; M). If the total number of faults in G(G,, G, M) is not greater than k — 2, there
exists at least one healthy matching edge between G, and Gy whose endpoints are neither x nor y.

The following two lemmas state that the fault-tolerant hamiltonicity #¢(G) and fault-tolerant hamiltonian
connectivity #{(G) of the graph G(G,, G; M), as compared with G, and G,, are increased by 1. Hence,
G(G,, Gy; M) is a super fault-tolerant hamiltonian graph.

Lemma 5 [2]. Assume k > 4. Let G, and G, be two k-regular super fault-tolerant hamiltonian graphs and
|V(G,)| = |V(Gy)|. Then graph G(G,, Gy; M) is (k — 1)-hamiltonian.

The fault-tolerant hamiltonian connectivity #(G) of G(G,, Gy; M) is also increased by 1, as stated in the
following theorem.

Lemma 6 [2]. Assume k > 5. Let G, and G, be two k-regular super fault-tolerant hamiltonian graphs and
|V(G,)| = |V(Gy)|. Then graph G(G,, G M) is (k — 2)-hamiltonian connected.

4. Main results

We make one simple observation first.

Observation 1. To prove that a graph G is /-hamiltonian (respectively /-hamiltonian connected), it suffices to
show that G — Fg is hamiltonian (respectively hamiltonian connected) for any faulty set Fg C V(G) U E(G)
with |Fg| = [ If the total number of faults |Fg| is strictly less than /, we may arbitrarily designate / — |Fg|
healthy edges as faulty to make exactly / faults.

In this section, we shall show that G(Gy, G», ..., G,; C,) is super fault-tolerant hamiltonian. In order to do
that, we prove one preliminary result which will simplify our proof later. Consider the graph
GG, Ga,....,Gpu My 5, M>5,...,M,,_1,, M, ,), deleting the perfect matching M, , from it, the resulting graph
is reduced to G(Gy,Gy,...,G,, M2, M>3,...,M,_,). For convenience, we shall write it as G(Gy,G,.. .,
G,; P,), where P, stands for a path of length n — 1. See Fig. 2. In G(Gy,G>,...,G,; P,), deg(v) =k + 2 for
allv e V(G,) U (G3) U --- U W(G,_), and deg(v) = k + 1 for v € V(Gy) U V(G,). The following theorem states
that the fault-tolerant hamiltonicity #(G) and fault-tolerant hamiltonian connectivity #7{(G) of graph
G(Gy, Gy, ..,G,; Py, as compared with Gy, G», ..., G,, are increased by 1.

Theorem 1. Assumen = 2 andk = 5. Let Gy, G>,. .., G, be n k-regular super fault-tolerant hamiltonian graphs
with the same number of vertices. Then graph G(G\,G,...,G,; P,) is (k — 1)-hamiltonian and (k — 2)-
hamiltonian connected.

Gy a perfect G, a per:]ect aperfect G
matchini i
matching g matching

oo o o

Flg 2. G(G], Gz,. D) Gn; Pn)-
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Proof. We prove it by induction on n. Suppose n = 2, then G(G, G»; P,) = G(Gy, Go; M). By Lemmas 5 and 6,
G(Gy, Gy; M) is (k — 1)-hamiltonian for k > 4 and (k — 2)-hamiltonian connected for k > 5.

Assume the theorem is true for n, which means G(Gy, G»,...,G,; P,) is (k — 1)-hamiltonian and (k — 2)-
hamiltonian connected for k > 5. We shall show that G(Gy,G»,...,G,1; Py+1) 18 (kK — 1)-hamiltonian and
(k — 2)-hamiltonian connected for k > Sand n+1 > 3.

We first prove that the fault-tolerant hamiltonicity #¢(G) of G(Gy, G»,. .., G,, G,+1; P,y) is exactly k — 1.
We only consider the situation that the total number of faults is k — 1. As for the total number of faults is
k' <k — 1, we choose k — 1 — k' non-faulty edges as faulty edges. Consider G; and G,,+, either f; <k —3 or
fut1 <k —3. If this is not true, then fi > k—2 and f,-; > k—2, and (k—2)+(k—2)<fi+fr1 <
Ja.my=k — 1, s0 k< 3. It is a contradiction since we assume k > 5. Without loss of generality, we may
assume f,; < k — 3. Consequently, G+, — F,4+; is hamiltonian connected. By Lemma 3, there exists at least
one healthy matching edge between G, and Gy, say (u,,u,+;). By Lemma 1, there are atleast (k — 1) —
Ja..mT2=k+1—fi.. ., edges incident to vertex u,, such that each one of them is on some hamiltonian
cyclein G(Gy,...,G,; P,) — F,...,. Note that one of the k + 1 — ;.. .,,) edges may be a matching edge between
G, and G,.Of all these k+ 1 — f;...,) — 1 edges, there is at least one, say (u,,v,), such that v,, v,,
and (v,,0,+1) are healthy. If it is not true, fu....v1)=S1..op T ey —Sm) = foom+
((k+1) = f(1...y — 1) = k. This contradicts the fact that f(;...,,+1) =k — 1. We add the matching edge (v, v +1)
and delete (u,,v,). Then, there exists a u,1,v,+;-hamiltonian path (u,41, HP,41,V,+1) in G,y — F,41 since
Jur1 <k —3. Therefore, (u,, HP(...u), U, Upi1, HP i1, U1, u,) is @ fault free hamiltonian cycle in
G(Gy,...,Gur1; Pyt) — Fu...pny. See Fig. 3. This completes the proof that the fault-tolerant hamiltonicity
%f(G) of G(Gl,Gz, ey Gm Gn+1; Pn+l) s k—1.

Now, we prove that the fault-tolerant hamiltonian connectivity #§(G) of G(Gy, Ga,. .., Gy, G,p1; Pry) 1s
k — 2. Again, we prove this by induction on n. Let x and y be two arbitrary healthy vertices in
G(Gy, ... G415 Pytq), we shall find a fault free hamiltonian path joining x and y. We consider the situation
that the total number of faults is exactly k& — 2, and the proof is divided with respect to the locations of x and y
into two cases.

Case 1
x and y are in different components.

Without loss of generality, we assume x is in G; and y is in G; for i <j. In this case, we shall separate
G(Gy,...,G,yy; P,yyy) into two parts G(Gy, ..., G, P,) and G(G,11,. .., G41; Pyy1—,) for some r, i < r <j, such
that x is in G(Gy,...,G,; P,) and y is in G(G,+4,. .., G,+1; P,tr1_,). Moreover, we consider the following two
subcases.

Subcase 1-1
If there is an r between i and j—1, such that both G(Gi,...,G;P,)— Fy..,,) and G(Gy,...,
Gui1; Puvi—+) — Fyv1.. n11y are hamiltonian connected.

By Lemma 4, there exists at least one healthy matching edge (u,, u,+) between G, and G,,, such that u, # x
and u,y; # y. There is an x,u,-hamiltonian path (x, HP...,,u,) in G(Gi,...,Gx; P,) — F...,, and a u,4y,
y-hamiltonian path (w1, HP 1.1y, 9) i0 G(Grit, . . ., Gurts Put1—r) — Frt1.. 1) By induction hypothesis.
Combining these two fault free paths, we have a fault free x,y-hamiltonian path (x, HP(.. ), U, ty+1,
HP(,11...n+1),y) 1n this subcase. See Fig. 4.

G G

1 n+1

()5 )

Fig. 3. G(Gy,Gy,...,Gut1; Pyty) is (kK — 1)-hamiltonian for k > 4 and n+1 > 3.
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Fig. 4. Subcase 1-1: Both G(G,...,G,; P,) — Fi...,y and G(G,11,...,Gur1; Pyyi1—y) — Ft1...n1y are hamiltonian connected.

Subcase 1-2
There does not exist any r between i and j— 1, to make both G(Gy,...,G;P,)— F...,, and
G(Gy41s- -, Gy Py_y) — Fy11.. .y hamiltonian connected.

If both G(Gy,...,G,; P,) and G(G,,...,G,+1; P,y1_,) contain two or more components, by induction, both
of them are fault free hamiltonian connected because the total number of faults is & — 2. This contradicts our
assumption. Hence, we may without loss of generality assume that r=1 and fi=k —2. Then
G(Gy,...,G; P,)= Gy and G, is (kK — 2)-hamiltonian. So there is a hamiltonian cycle in G| — Fj. Vertex x
has two neighboring vertices on this cycle, we choose one that is not matched with y, say u;. Then, we add
matching edge (u;,u,) and delete (u;,x). On the other side, by induction hypothesis, there is a fault free
uz,y-hamiltonian path <u2, HP(z. . An+1),y> in G(Gz, ey Gn+1; Pn) - Ez. <nt1)- Thus, <X, HPl,ul, Hz,HP(z. . .,7+1),y>
is a fault free x, y-hamiltonian path in this subcase. See Fig. 5.

Case 2
x and y are in the same component.

The proof of this case is further divided into two subcases.

Subcase 2-1
All the k& — 2 faults are in the same component that x and y are in.

Without loss of generality, we may assume x and y are not in G, , otherwise we may replace G,+; by G;. By
induction, G(Gy,. .., G,; P,) — F..., is hamiltonian connected. By Lemma 4, there exists at least one healthy
matching edge (u,, u,,+,) between G,, and G, such that u, & {x,y} and u, | &€ {x,y}. By Lemma 2, there are at
least (k — 2) — f1...ny + 2 =k — f(1...n) edges incident to vertex u,, such that each one of them is on some x, y-
hamiltonian path in G(Gy,...,G,; P,) — F(...,). Note that one of the k — f(;...,, edges may be a matching edge
between G,_; and G,. Among these k — f(;...,) — 1 edges, there is at least one edge (u,,v,), such that v,, v,.1,
and (v, v,+1) are healthyIf it is not true, then G(Gi,...,Gyy1; Ppy1) contains f...,11) faults, and
Sy =famy TGy = Saoom) = faom (k= fi...y — 1) =k — 1. This contradicts the fact that
Ja..me1y =k — 2. Now, G,y contains a hamiltonian path (u,41, HP,1,0,4+1) since f(,+1)= 0. Therefore,

G, ce. Goor

Fig. 5. Subcase 1-2: One of G(G,,...,G,; P,) — F;...,y and G(Gyy1,. .., Gy; Pyii—,) — Ft1... is not hamiltonian connected.

1 n Ginst
BT
) (D

Fig. 6. Subcase 2-1: All the k£ — 2 faults are in the same component that x and y are in.
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we have a fault free x,y-hamiltonian path (x, P(x,u,),up, Up+1, HPyi1, Vpt1, Ups P(Uy, ¥),y), Where
(x, P(x,u,), Uy, Uy, P(0y,y),p) is a hamiltonian path in G(Gy,. .., G,; P,) — F(y...,). This case is proved. See Fig. 6.

Subcase 2-2
Not all the k — 2 faults are in the same component that x and y are in.

Without loss of generality, we may also assume x and y are not in G,1;. Let G, be the component that x and y
are in, where 1 < r < n. We separate G(Gy,...,G,+1; P,+1) into two parts G(Gy,...,Gg; Py) and G(Gyyy,. ..,
Guv1; Puv1-s), Where:

s=r—1, ifr=nandf, , =k-2

s =r, otherwise.

In this way of separation, we guarantee that both G(G,,...,Gg; P,) — Fy...;) and G(Gyiy,.. ., Gpris
P,v1 — ) — Fst1.. nr1) are hamiltonian connected. The case s =r — 1 is similar to the case s = r, so we only
consider the case s = r. By Lemma 4, there exists at least one healthy matching edge (uy, u,+1) between G, and
Gy+1, such that wu,& {x,y}. By Lemma 2, if s=1 (s> 2 respectively), there are at least

(k=3)—fu..9t2=k—1—fu.4 edges (k—2)—fu... T 2=k — fu...5 edges respectively) incident to

vertex uy, such that each one of them is on some x,y-hamiltonian path in G(Gy, ..., Gg Py) — F(1.. 4.
Among these k — 1 — fi,.. ;) edges (k — f(1...,) edges respectively), there is at least one edge (u,, v,), such that
Vg, Us+1, and (vg,ve+1) are healthy. If it is not true, then G(Gjy,...,G,+; P,+y) contains at least

Ja...s T lk—=1—fu...5) =k — 1 faults when s = 1(f(;...) + (kK — f1...9) — 1 =k — 1 faults when 5 > 2 respec-
tively). This contradicts the fact that f(;...,+1) = k — 2. We then add a matching edge (v,,v,+1) and delete edge
(us,v5). By induction, G(Gy+1,. .., Gyi1; Puyi1—s) — Fsr1.. nr1) 1s hamiltonian connected. Then, we have a fault
free hamiltonian path (x, P(x,u), ts, g1, HP(s41. . .01y, Ust1, Vs, P(Vs,9),») in this subcase, where (x, P(x,u,),
Uy, Vs, P(vy,y),y) is a hamiltonian path in G(Gy,. .., Gy Py) — F{;.. 5. See Fig. 7. This completes the proof. O

Now, we consider the graph G(Gy, G,. .., G,; C,), and we shall show that it is a super fault-tolerant ham-
iltonian graph.

Theorem 2. Assumen = 3 andk = 5. Let Gy, G, ..., G, be n k-regular super fault-tolerant hamiltonian graphs
with the same number of vertices. Then graph G(Gy, G,...,G,; C,) is k-hamiltonian.

Before proving this theorem, we make one remark. In the following proofs of Theorems 2 and 3, we may
assume without loss of generality that the faulty set of G(Gy,G>,...,G,; C,) does not contain any matching
edge. Otherwise, suppose that there exists one matching edge between G| and G, which is faulty. We simply
ignore all the matching edges between G, and G,, then G(G,, Gy,. .., G,; C,) is reduced to G(Gy, Gy, . .., G,; P,).
Then the problem of proving G(Gy,G,,...,G,; C,) is k-hamiltonian and (k — 1)-hamiltonian connected is
reduced to show that G(Gy, G,,...,G,; P,) is (k — 1)-hamiltonian and (k — 2)-hamiltonian connected. There-
fore, the result follows from Theorem 1.

Proof of Theorem 2. We only consider the case that the total number of faults is exactly k and there are no
matching edge faults. Without loss of generality, we may assume that f; > f; for all 2 < i < n. The proof is
classified into four cases.

Case 1
f1 =k, all the k faults are in G;.

G, G,

Fig. 7. Subcase 2-2: Not all the k — 2 faults are in the same component that x and y are in.
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Fig. 8. Case 1: fy =k and |V(G, — Fy)| = 2.

Let g be a fault in Gy, then, there is a hamiltonian path (u;, P(u,v),v1) in Gy — (F; — {g}). Suppose
|V(Gy — F1)| = 2. In G; — Fy, the path (uy, P(uj,v1),v1) is separated into two subpaths, say (uy, P(uy, wy), wy)
and (zy,P(zy,v1),v1), which cover all the vertices of G; — F;. We then add four matching edges:
(uy,us),(v1,02), (Wi, w,), and (z1,z,). In Gs, there is a uy, vo-hamiltonian path (u,, HP,,v,) since f, =0. And
in G(Gs,...,Gy; P,_,), there is a w,,z,-hamiltonian path (w,, HP3...,),2,) since fs...,) = 0. Hence, we have
a fault free hamiltonian cycle (uy,us, HP, 2,01, P(01,21), 21, Zn, HP (3. . .y, Wi, W1, P(W1, 1), 1) in this subcase.
See Fig. 8. Now, suppose | V(G — F})| = 1. Let V(G| — F)) = {u;}, then the above-mentioned proof does
not work. We shall construct a hamiltonian cycle in G(Gy,...,G,; C,) — ..., as follows. First, we add
two matching edges (uj,un) and (uj,u,). In G(Gs,...,G,; P,_1), there is a u,,u,-hamiltonian path
(ur, HP(5. . ), ty) since f(o...,y = 0. Hence, (u1,u2, HP ..., Uy, u;) forms a fault free hamiltonian cycle in
G(Gy,...,G,; C,) — F{i...n. This case is proved. See Fig. 9.

Fig. 9. Case 1: fy =k and |V(G| — F})| = 1.

G

Fig. 10. Case 2: fij =k — 1.
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Case 2
fi=k—1.

Since G is (k — 2)-hamiltonian, there exists a fault free hamiltonian path (u;, HPy,v;) in Gy — F). Further-
more, u; # vy since |V(Gy)| = k+ 1 and f] = k — 1. Without loss of generality, we may assume the kth fault
is not in G,, otherwise we replace G, by G,. Now, we add matching edges (u,u;) and (vy,v;). In
G(Ga,...,Gy; Py_y) — Fio.. .y, there is a u,, vp-hamiltonian path (uy, HP5.. ., 02) since f(o...,y = 1. Therefore,
we have a fault free hamiltonian cycle (uy,uz, HP 5. .y, 02,01, HP1,uy) in this case. See Fig. 10.

Case 3
2<fi<k-2.

We may assume without loss of generality that not all of the faults are in G(Gy, G,;; M, ,,), or we shall consider
G(G1,Gy; My 5) in place of G(Gy,G,; My ,). So fi+f, <k — 1. By Lemma 3, there is at least one healthy
matching edge (uy,u,) between G| and G,. In G; — F}, by Lemma 1, there are at least (k —2) — fi +2 =k — fj
edges incident to vertex u;, such that each one of them is on some hamiltonian cycle in G; — F;. Of all these
k — f1 edges, there is at least one edge (u,v;), such that vy, v,, and (vy,v,) are healthy. If this is not true,
G(G,,G,; M, ,) contains at least f; + (k — f1) = k faults. But the total number of faults in G(Gy, G,;; M, ,,) is
no greater than k — 1, causing a contradiction. Since f; > 2, we have fi...,) < k — 2, so there is a fault free
Uy, vy-hamiltonian path (u,, HPo. . ), v,) in G(Go, . .., Gy Py—y) — Fia.. ). Then, (uy, HPy, vy, 0, HP(5. . ), Uy, 1)
is a fault free hamiltonian cycle in G(Gy,...,G,; C,) — F{i...,), and this case is proved. See Fig. 11.

Case 4

AL
Since f; = f; for all 2 <i< n, we may assume without loss of generality that f{ =1 and f..,, =k = 5,
otherwise it is clear that G(Gy,...,G,; C,) is hamiltonian. We may further assume that not all of the faults

are in G(Gy,G,; M,,). We choose a minimum number r such that f; +f,+---+f,=2. It is clear that
r<m—1. By Lemma 3, there is at least one healthy matching edge (u,,u,+;) between G, and G,,.
Then, by Lemma 1, there are at least (k — 2) — f(;...,, ¥ 2=k — f1...,, = k — 2 edges incident to vertex u, in
G(Gy,...,G; Py) — Fy...,, such that each one of them is on some hamiltonian cycle in
G(Gy,...,Gs P,) — F...n. Wenote k — 2 = 3since k > 5. Of these k — 2 edges incident to u,, there is at least
one edge (u,,v,), such that (u,,v,) is not a matching edge in G(G,_, G,;; M,_,,), and the matching vertex v, of
v, in G, is not faulty., We add the matching edge (v.,v4+1) and delete (u,.v,). Since
Jori.m=k—2>=25-2=3and f; = fiforall 2 <i<n, G(Gyyy,...,Gy; P,_,) contains at least three compo-
nents. Thus, G(G,+4,..., Gy Py_y) — Fy11.. . is hamiltonian connected and there is a u,,v,1;-hamiltonian
path (u,4 1, HP(s11.. ), Up1) I0 G(Gryys. .., Gy Py—y) — Fioq1...ny. Then we have a fault free hamiltonian cycle
(p, HP(y. . .y, Ups Uy 1, HP (1. .y, U1, 1y) i this case. See Fig. 12. This completes the proof of the theorem. [

The fault-tolerant hamiltonian connectivity #7%(G) in G(Gy, Gy, . . ., G,; C,) is also increased by 2, as stated
in the following theorem.

Theorem 3. Assumen = 3 and k = 5. Let Gy, G»,. .., G, be n k-regular super fault-tolerant hamiltonian graphs
with the same number of vertices. Then G(Gy, G»,...,G,; C,) is a (k — 1)-hamiltonian connected graph.

Fig. 11. Case 3: 2 < fi <k —2.
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G1 Gr

Fig. 12. Case 4: f; < 1.

Proof. Let x and y be two healthy vertices in G(Gy, G, . . ., G,; C,), we shall find a fault free hamiltonian path
joining x and y. Just as before, we only consider the situation that the total number of faults is exactly &k — 1
and there are no matching edge faults. The proof is classified into two cases with respect to the locations of x
and y.

Case 1
x and y are in different components.

This case can be further divided into two subcases.

Subcase 1-1
Not all the k£ — 1 faults are in the same component.

We may without loss of generality separate G(Gy,G>,...,G,; C,) into two parts G(Gy,...,G,; P,) and
G(Gt1,...,Gy P,_,) where 1 <r<mn—1, such that x in G(Gy,...,G;P,), y in G(G.yy,...,G,; P,_,),
fa...n = 1, and f,+1...,) = 1. We shall prove this subcase by considering whether G(G;,...,G; P,) — F.. .,
and G(G,+1,...,Gy; P,_,) — F;+1...,) are hamiltonian connected. Suppose that both G(Gy,...,G; P,) —
Fi..,yand G(Goyy,...,Gy; P,_)) — Fyq1.. .y are hamiltonian connected. Since the total number of faults is
k — 1, there are at least two healthy matching edges between G, and G,, and there are at least two healthy
matching edges between G, and G,;. Among these four healthy matching edges, there is at least one (u,, u,4)
between G, and G,4, such that u,. ¢ {x} and wu,; &€ {y}. Now, there are an x,u-hamiltonian
path (x,HP(..,,u,) in G(G,...,G; P,) — F..,, and a u,;;,y-hamiltonian path (u, 1, HP11...,),)) in
G(Gyi1,- -+, Gy Py_y) — Fiyi1.. ). Therefore, we have a fault free x, y-hamiltonian path (x, HP .. .., Uy, 1,11,
HP11...),y) in this subcase. See Fig. 13.

Suppose that G(G,,...,G; P,) — Fi...,y of G(Gyy1,. .., Gy Py_y) — Fyv1...y 1s not hamiltonian connected.
We claim that at least one of G(Gy,...,G); P,) — Fi...,, and G(Gy11,. .., Gy; Py_;) — Fyv1.. . 1S hamiltonian
connected. Suppose not, then (k —2) +(k— 1) <f...on T for1o.m=JSa..my=k — 1,50 k <2. But k > 5, it is

Fig. 13. Subcase 1-1: G(Gy,...,G,; P,) — Fy...,y and G(G,+y,. .., Gy Py—,) — F(y41...,) are hamiltonian connected.
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G

Fig. 14. Subcase 1-1: G(Gy,...,G,; P,) — F...,y of G(G,+y,...,Gy; Py_)) — F(y41...,) is not hamiltonian connected.

a contradiction. Hence, we may assume without loss of generality that G(G,,...,G,; P,) — F(;...,) is not
hamiltonian connected, and G(G,+1,..., Gy Py—;) — Ft1...) is. Now, we know f(;...,, < k — 2 and G(Gy,...,
G,; P,) — F1.. .,y is not hamiltonian connected. So by Theorem 1, f;...,, =k —2 and G(Gy,...,G,; P,) = G,.
Since G is (k — 2)-hamiltonian, there exists a fault free hamiltonian cycle in G; — F;. On this cycle, there are
two vertices u; and v, adjacent to x. Consider the four matching edges incident to u; or vy: (uy, us), (v, 02),
(uy,u,), and (vy,v,). Among these four edges, there is at least one, say (u;,u,), which is not matched with y nor
with the (k — 1)th fault, i.e., u» # y and u, is healthy. We delete edge (u;,x) and add edge (u;,u,). In
G(Ga,...,Gy Py_y) — Fio.. .y, there is a up, y-hamiltonian path (up, HP...,),y) since f(z...,) < k — 2. Thus,
(x, HPy,uy,us, HP(>.. ,;),y) is a fault free x, y-hamiltonian path in this subcase. See Fig. 14.

Subcase 1-2
All the k — 1 faults are in the same component.

This subcase can be further divided into two subcases.

Subcase 1-2-1
All the k — 1 faults are in a single component which contains either x or y.

Without loss of generality, we may assume: (1) x and all the faults are in Gy; and (2) y is in G,, where r # 1 and
r # 2. There is a hamiltonian cycle in G(Gy, Gy; M, ;) — F) since f; = k — 1. On this cycle, there are two ver-
tices adjacent to x. Of these two vertices, at least one is in Gy, say u;. Let u,, be the matching vertex of u; in G,,.
We shall consider the cases: v, =y or u,, # y. Suppose u,, = y. We add the matching edge (u;,y) and delete
(x,u;). On any hamiltonian cycle in G(G,, Gy; M) — F), at least k edges are in G, since |V(G,)| = k+ 1 and
all the faults are in G. Of these k edges, there is at least one, say (v, w;), such that the matching vertex v; of v,
(the matching vertex ws of w, respectively) is not y since k > 5. Then, we delete (v, w;) and add both matching
edges (vo,v3) and (wo,w3). In G(Gs,. .., Gy P,_o) — {y}, there is a v, wz-hamiltonian path (vs, P(v3, w3), w3).
Therefore, we have a fault free x, y-hamiltonian path (x, P(x,v,), 03,03, P(03, W3), W3, W2, P(Wa,11),u1,y) in this
subcase, where (x, P(x,v,), 3, Wa, P(Wa,u1), 11, X) is @ hamiltonian cycle in G(Gy, Gy; M) — F). See Fig. 15.

7 .

11

G,
/

)

Fig. 15. Subcase 1-2-1: u, = y.
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Fig. 16. Subcase 1-2-1: u # y.

Now, suppose u, # y. We then add the matching edge (u;,u,) and delete (x,u;). In G(Gs,...,
G,; P,_>) — F5...,, there is a u,,y-hamiltonian path (u,, HP3...,),y) since fz...,,=0. So (x,HP..2),u,
Uy, HP3.. ), y) forms a fault free x, y-hamiltonian path in this subcase. See Fig. 16.

Subcase 1-2-2
All the k — 1 faults are in a single component which does not contain x nor y.

Without loss of generality, we may assume that all the faults are in Gy, x is in G,, and y is in Gy, where
1 <r<s<n In G| — Fy, there is a hamiltonian path (u;, HP,v;) since fi =k — 1. We add two matching
edges (uj,up) and (vy,v,). Note that x may be equal to u, or v,. By Lemma 2, there are at least
(k—3) = fi>..., T 1 (we add 1 not 2 since x may be equal to one of u, or v,) edges incident to vertex x, such
that each one of them is on some u,,v,-hamiltonian path (uy, HP5...,),02) in G(Ga,. .., G, Pry) — Fo..y).
Here, (k = 3) — fo...y +1=(k —3) = 0+ 1=k — 2. There are at least k — 2 edges that can be taken into ac-
count. Note that k£ > 5, so k —2 > 3. Of these three edges, there is at least one edge (x,w,), such that
(x,w,) € E(G,) and w, is not matched with y. Then, we delete (x,w,) and add a matching edge (w,, w,+). In
G(Gy41s. -, Gy; Pyy), there is a w,yq,y-hamiltonian path (w, 1, HP(41...,),y) since there is no fault in
G(G41,...,Gy Py_)). Thus, we have a fault free x,y-hamiltonian path (x, P(x,v,),vs,01, HPy,uy, s,
P(uz, w,), We, Wyt 1, HP(111. . .y, y) 1n this subcase, where (x, P(x,v,), 2,01, HP1,uy, U, P(a, w,),w,) is a fault free
hamiltonian path in G(Gy,...,G,; P,) — F,...,. See Fig. 17.

Case 2
x and y are in the same component.

We may assume without loss of generality that x and y are in Gy. This case can be further divided into three
subcases.

Subcase 2-1
k-2<fi<k-1

Let g and & be two faults in Gy. Since G is (kK — 3)-hamiltonian connected, G| — (F; — {g,/}) has a fault free
hamiltonian path (x, P(x,y),y). Removing g and #, the path (x, P(x,y),y) is separated into three subpaths:

Fig. 17. Subcase 1-2-2: All the faults are in a single component which does not contain x or y.
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Fig. 18. Subcase 2-1: (x, P(x,y),y) is separated into three disjoint subpaths.

(x, P(x,uy),uy), (v1, P(v1,w1),w1), and (z1, P(z1,»),y) which cover all the vertices of G; — F;. We note that a
path could be a single vertex here. There is one exceptional case: fj =k — 1 and |V(G, — F})| =2, then
(G, — Fy) = {x,y}, and the path (x, P(x,y),y) cannot be separated into three disjoint subpaths. Consider
the case that the path (x, P(x,y),y) is indeed separated into three disjoint subpaths. Since f»...,) < 1, Fio...,) is
either in G, or in G, and this fault is possibly matched with one of u;, vy, wy, or z;. We may assume without
loss of generality that the faulty set F{,...,) is in G, and this fault is matched with «;. We then add four match-
ing edges (uy,u2), (v1,02), (W1,Wy), and (z1,2,). In G(G>, . . ., G,_1; Py_3) — Fo..._1), there is a u,, v,-hamiltonian
path (us, HP(.. 1), V) since f(>...,—1) < 1. And in G, — F,, there is an x,, z,-hamiltonian path (w,, HP,,z,)
since f,, < 1. Hence, (x, P(x,u1),uy,uz, HP(5. . 1), V2,01, P(01,W1), W1, Wy, HP,, 2,,, 21, P(21, ), y) forms a fault free
x,y-hamiltonian path in this subcase. See Fig. 18.

Now, suppose fi =k — 1, and |V(G, — Fy)| = 2. Let V(G — F;) = {x,y}. We add matching edges (x,x»)
and (y,y2). In G(G,,...,G,; P,_), there is an xp,),-hamiltonian path (x,, HP(5...n),y2) since f(5...,) = 0.
Therefore, we have a fault free x, y-hamiltonian path (x,x,, HP(>...n), 2, ) in this subcase.

Subcase 2-2
1<fi<k-3.

Without loss of generality, we may assume that not all the faults are in G(Gy, G»; M;>), or we may replace
G(G,,Gy; M, ) by G(Gy,G,; M, ). By Lemma 4, there is at least one healthy matching edge (u,u,) between
Gy and G, such that u; & {x,y}. By Lemma 2, there are at least (k — 3) — fj + 2 =k — 1 — f] edges incident to
vertex u; in Gy — Fy, such that each one of them is on some x, y-hamiltonian path in G; — F;. Among these
k — 1 — f; edges, there is at least one, say (uy, vy), such that all of v, v, and (vy,v,) are healthy. If this is
not true, then G(Gy, Go; M| ) contains at least f; + (k — 1 — f;) = k — 1 faults. But we know f; + /> <k — 2,
which is a contradiction. Then, we add the matching edge (vi,v2). In G(G>,...,G,; P,_1) — Fo.. ., there is
a Uy, vr-hamiltonian path (uy, HP>.. ), v2) since f»...,y < k — 2. Therefore, we have a fault free x, y-hamiltonian
path (x, P(x,uy),u1,uz, HP 5. . .,;), 2,01, P(vy, ), y) in this subcase, where (x, P(x,u;),u1,v1, P(v1,),y) is a hamil-
tonian path in G, — F;. See Fig. 19.

Fig. 19. Subcase 2-2: 1 < f; <k — 3.
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Subcase 2-3
fi=0.

Recall that we assume both x add y are in G, in this case. There are four matching edges incident to x or y:
(x,x2), (¥,2), (x,x,), and (y,y,). It means that x and y have four matching vertices: x,, y», x,, and y,. We
divide this subcase into two subcases according to the status of the four matching vertices.

Subcase 2-3-1
Suppose that at least one of the four matching vertices is healthy.

We may assume without loss of generality that x, is healthy, then we add edge (x,x5). In G(G>,...,
G,; P,_1) — Fp.. ), there is a fault free hamiltonian cycle since f(>...,) < k — 1. On this cycle, there are two ver-
tices adjacent to x,, and at least one of these two is in G,, say u,. We consider the cases whether u, is matched
with y.

Subcase 2-3-1-1
u, 1s not matched with y.

We delete (x,,u), and add (uy,u5). In Gy — {x}, there is a uy, y-hamiltonian path (uy, P(uy,y),y). Therefore,
(x,X2, HP 5. . .y, U, 1, P(uy,y),y) forms a fault free x, y-hamiltonian path in this subcase. See Fig. 20.

Subcase 2-3-1-2
u, is matched with y.

On the fault free hamiltonian cycle in G(Ga,...,G,; P,_1) — Fo.. »), let v, be the vertex adjacent to x, and
v, # up. Note that v, is either in G, or in G3. Suppose v, is in G,. We add two matching edges (x,x,)
and (vy,v,), and delete (xp,v,). In addition, there is a vy, y-hamiltonian path (v,, P(vy,y),y) in Gy — {x}. Then,
(x,X2, HP 3. .y, 02,01, P(v1,y),y) forms a fault free x,y-hamiltonian path in this subcase. See Fig. 21.

Fig. 20. Subcase 2-3-1-1: u, is not matched with y.

Fig. 21. Subcase 2-3-1-2: v; is in G».
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Suppose v, is in Gs;. We consider the case that |V(G, — F>)|>2. On the hamiltonian cycle in
G(Gs,...,Gy; Py_y) — Fo...), let wy be a vertex in G, which is adjacent to u, and w, # x,. We then delete
edge (y2,w»), and add the matching edge (w;,w,). Thus, we have a fault free x,y-hamiltonian path
(x, P(x,w1), w1, Wa, HP(5.. 5y, y2,p) in this subcase, where (x, P(x,w), w;) is a hamiltonian path in G; — {y}. See
Fig. 22.

Suppose | (G, — F>)| =2, and let V(G, — F>) = {x5,u»}. To construct a fault free x, y-hamiltonian path, we
add matching edges (x, x,) and (u», u3). Then, we have a fault free x, y-hamiltonian path (x, x,, us, u3, P(u3, ), )
in this subcase, where (u3, P(u3,y),y) is a hamiltonian path in G(Gs, Ga,. .., G, Gi; P,—1) — F5...,) — {x}. See
Fig. 23.

Subcase 2-3-2
Suppose that all of the four matching vertices are faulty.

G, 4 G»

Fig. 22. Subcase 2-3-1-2: v; is in Gj.

Fig. 23. Subcase 2-3-1-2: |V(G, — F>)| = 2.

‘1
G2

Fig. 24. Subcase 2-3-2: All of the four matching vertices are faulty.
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Fig. 25. Super fault-tolerant hamiltonian graphs.
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In Gy, excluding possibly y, there are at least k — 1 vertices adjacent to x. Of these k — 1 vertices, there is at
least one, say u, such that u; is healthy since G, — {x,} has at most k — 2 faults. Now, we append edge (x, u;)
and the matching edge (u,u2). In G(G,. .., Gy P,—1) — F2...,), there is a fault free hamiltonian cycle since
Jo...y <k — 1. On this cycle, neither of the two vertices adjacent to u, is matched with y since x, and y»
are faulty. Therefore, we choose one of the two vertices adjacent to u,, say v,. We then delete (u,,v,) and
add the matching edge (vy,v5). In Gy — {x,u;}, there is a vy, y-hamiltonian path (vy, P(v1,y),). If it is not true,
then k — 3 <2, this contradicts the fact that k > 5. So (x,u;,us, HP(>...,,), 02,01, P(v1,),y) forms a fault free
X, y-hamiltonian path in this subcase. See Fig. 24. This completes the proof of this theorem. [J

The following corollary results from Theorems 2 and 3.

Corollary 1. Assume that Gy, G, ..., G, are k-regular super fault-tolerant hamiltonian with the same number of
vertices where n = 3 and k = 5. Then G(Gy, G, ..., G,; C,) is (k + 2)-regular super fault-tolerant hamiltonian.

Among the existing interconnection network topologies, some of them are super fault-tolerant hamiltonian.
For example, we use computer program to check that (1) the twisted-cube TQs, crossed-cube CQs, and mobius
cube MQs are 5-regular super fault-tolerant hamiltonian; (2) the (n, k)-star graph Se, is 5-regular super fault-
tolerant hamiltonian; (3) the arrangement graph A5 is 6-regular super fault-tolerant hamiltonian; and (4) the
recursive circulant graph RC(1,3,3) is 6-regular super fault-tolerant hamiltonian. See Fig. 25.

5. Conclusion

The fault-tolerant hamiltonicity and the fault-tolerant hamiltonian connectivity are essential parameters of
an interconnection network. In this paper, we propose a family of k-regular, (k — 2)-hamiltonian, and (k — 3)-
hamiltonian connected graphs. These graphs are maximally fault-tolerant, and we call them super fault-toler-
ant hamiltonian graphs.

Some of the contributions of this paper are the following. We propose a construction scheme to construct,
with flexibility, many k-regular super fault-tolerant hamiltonian graphs for k > 6. The recursive circulant
graphs can be recursively constructed using our construction schemes. And therefore, they are in fact a sub-
class of our proposed family of graphs. Then, we know that they are super fault-tolerant hamiltonian as long
as the case is true for initial cases k < 5. With our scheme, some new super fault-tolerant hamiltonian graphs
may be constructed.
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