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Abstract

For the interconnection network topology, it is usually represented by a graph. When a network is used, processors
and/or links faults may happen. Thus, it is meaningful to consider faulty networks. We consider k-regular graphs in this
paper. We define a k-regular hamiltonian and hamiltonian connected graph G is super fault-tolerant hamiltonian if G remains
hamiltonian after removing at most k � 2 vertices and/or edges and remains hamiltonian connected after removing at most
k � 3 vertices and/or edges. A super fault-tolerant hamiltonian graph has a certain optimal flavor with respect to the fault-

tolerant hamiltonicity and fault-tolerant hamiltonian connectivity. The aim of this paper is to investigate a construction
scheme to construct various super fault-tolerant hamiltonian graphs. Along the way, the recursive circulant graph is a spe-
cial case of our construction scheme, and the super fault-tolerant hamiltonian property of recursive circulant graph is
obtained.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The architecture of an interconnection network is usually represented by a graph G = (V,E), while vertices
represent processors and edges represent links between processors. We use terms graphs and networks inter-
changeable in this paper. There are a lot of mutually conflicting requirements in designing the topology of
interconnection networks. It is almost impossible to design a network which is optimum for all conditions.
One has to design a suitable network depending on the requirements of their properties. The hamiltonian
property is one of the major requirements in designing the topology of networks. Fault tolerance is also desir-
able in massive parallel systems that have relatively high probability of failure. There are many researches on
the ring embedding problems in faulty interconnection networks [2–8,10–12].
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In this paper, a network is represented as an undirected graph. G = (V,E) is a graph if V is a finite set and E

is a subset of {(a,b)j(a,b) is an unordered pair of V}. We say that V is the vertex set and E is the edge set. The
degree of a vertex v, denoted by deg(v), is the number of edges incident to v. A graph G is k-regular if
deg(v) = k for every vertex in G. Two vertices a and b are adjacent if (a,b) 2 E. A path is a sequence of adjacent
vertices, written as hv0,v1,v2, . . .,vmi, in which all the vertices v0,v1, . . .,vm are distinct. We also write the path
hv0,v1,v2, . . .,vmi as hv0,P(v0,vi),vi,vi+1, . . .,vj,P(vj,vt),vt, . . .,vmi where P(v0,vi) = hv0,v1, . . .,vii and P(vj,vt) =
hvj,vj+1, . . .,vti. For our purpose in this paper, a path may contain only one vertex. A path is a hamiltonian

path if its vertices are distinct and they span V. A cycle is a path with at least three vertices such that the first
vertex is the same as the last one. A cycle is a hamiltonian cycle if it traverses every vertex of G exactly once. A
graph G is hamiltonian if it has a hamiltonian cycle, and G is hamiltonian connected if there exists a hamiltonian
path joining any two vertices of G. Many of the graph definitions and notations we used can be found in [1].

Since vertex faults and edge faults may happen when a network is used, it is practically meaningful to con-
sider faulty networks. A graph G is called l-fault-tolerant hamiltonian (l-fault-tolerant hamiltonian connected

respectively) or simply l-hamiltonian (l-hamiltonian connected respectively) if it remains hamiltonian (hamilto-
nian connected respectively), after removing at most l vertices and/or edges. The fault-tolerant hamiltonicity,
HfðGÞ, is defined to be the maximum integer l such that G � F remains hamiltonian for every
F � V(G) [ E(G) with jFj 6 l if G is hamiltonian, and undefined if otherwise. Obviously, HfðGÞ 6 dðGÞ� 2,
where d(G) = min{deg(v)jv 2 V(G)}. A regular graph G is optimal fault-tolerant hamiltonian if HfðGÞ ¼
dðGÞ � 2. Twisted-cubes, crossed-cubes, möbius cubes and recursive circulant graphs are proved to be optimal
fault-tolerant hamiltonian [2,4–6,11]. All these families of graphs have some good properties in common,
including that they can all be recursively constructed. In establishing their fault-tolerant hamiltonicity, another
parameter called fault-tolerant hamiltonian connectivity is used. The fault-tolerant hamiltonian connectivity,
Hj

f ðGÞ, is defined to be the maximum integer l such that G � F remains hamiltonian connected for every
F � V(G) [ E(G) with jFj 6 l if G is hamiltonian connected, and undefined if otherwise. Obviously,
Hj

f ðGÞ 6 dðGÞ � 3. A regular graph G is optimal fault-tolerant hamiltonian connected if Hj
f ðGÞ ¼ dðGÞ � 3.

Again, twisted-cubes, crossed-cubes, möbius cubes and recursive circulant graphs are proved to be optimal
fault-tolerant hamiltonian connected [2,4–6,11]. We call those regular graphs super fault-tolerant hamiltonian

if HfðGÞ ¼ dðGÞ � 2 and Hj
f ðGÞ ¼ dðGÞ � 3.

All the proofs of super fault-tolerant hamiltonicity are done by induction. We observe that there are certain
common phenomena behind the recursive structures so that we may construct other super fault-tolerant ham-
iltonian graphs. In this paper, we try to investigate these phenomena and establish some construction schemes
of super fault-tolerant hamiltonian graphs.

The rest of this article is organized as follows. In the next section, a recursively construction scheme and
some notations are introduced. The recursive circulant graph [9,11] is essentially a special case of this construc-
tion scheme. Section 3 describes six lemmas which we shall use in our main results. The main results are
proved in Section 4. Finally, the conclusion is given in Section 5.
2. A recursively construction scheme and some notations

Fault tolerance is one of the major requirement on designing a network. A network has higher fault toler-
ance if it is super fault-tolerant hamiltonian. In this section, we give a construction scheme to recursively con-
struct super fault-tolerant hamiltonian graphs. Let G1,G2, . . . ,Gn be n k-regular super fault-tolerant
hamiltonian graphs with the same number of vertices. We define a new graph H = G(G1,G2, . . . ,Gn,M1,2,
M2,3, . . . ,Mn�1,n,M1,n) which has vertex set V(H) = V(G1) [ V(G2) [ � � � [ V(Gn), and edge set E(H) =
E(G1) [ E(G2) [ � � � [ E(Gn) [M1,2 [M2,3 [ � � � [Mn�1,n [M1,n, where Mi,j is an arbitrary perfect matching
between the vertices of Gi and Gj. See Fig. 1. Considering each component Gi as a vertex and each perfect
matching Mi,j as an edge, then G(G1,G2, . . . ,Gn,M1,2,M2,3, . . . ,Mn�1,n,M1,n) is reduced to a cycle of length
n. For the sake of simplicity, we shall abbreviate G(G1,G2, . . . ,Gn,M1,2,M2,3, . . . ,Mn�1,n,M1,n) as
G(G1,G2, . . . ,Gn; Cn), where Cn stands for a cycle of length n. As an example, the recursive circulant graph,
which was proposed by Park and Chwa [9], is essentially constructed as a special case in this way, and it is
shown to be super fault-tolerant hamiltonian under a certain condition [11]. In this paper, we show that
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Fig. 1. H = G(G1,G2, . . . ,Gn; Cn).
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G(G1,G2, . . . ,Gn; Cn) is super fault-tolerant hamiltonian for any arbitrary perfect matchings, M1,2,
M2,3, . . . ,M1,n, provided n P 3 and k P 5.

For ease of exposition, we make some convention about our notations we shall use along this paper. Con-
sider the graph G(G1,G2, . . . ,Gn; Cn). For each component Gi, we use small letters with subscript i to denote
the vertices in Gi, e.g., ui, vi, etc. Thus, u1 is a vertex in G1, and u2 is a vertex in G2. A perfect matching Mi,j

connecting the vertices of Gi and Gj in pairs, such pairs of vertices are called matching vertices, and these edges
are called matching edges. We shall use the same letter with different subscripts to denote matching vertices of
each other; e.g., ui and uj are the matching vertices of each other in components Gi and Gj if there is a perfect
matching between Gi and Gj.

We need some more terms. We shall consider graphs with some faults. Our objective is to find a fault free
hamiltonian cycle (hamiltonian path respectively). In this paper, each fault can be a faulty vertex or a faulty
edge. If a vertex v is not faulty, we say v is a healthy vertex. We call an edge e (respectively a matching edge e)
healthy if both edge e and its two endpoints are not faulty. We use Fi to denote the set of faults in Gi, F(i� � �j) to
denote the set of faults in G(Gi,Gi+1, . . . ,Gj,Mi,i+1,Mi+1,i+2, . . . ,Mj�1,j). Let fi = jFij and f(i� � �j) = jF(i� � �j)j. Given
two distinct healthy vertices x and y, we use x,y-hamiltonian path to call a fault free hamiltonian path joining x

and y, HPi to denote a fault free hamiltonian path in Gi � Fi, and HP(i� � �j) to denote a fault free hamiltonian
path in G(Gi,Gi+1, . . . ,Gj,Mi,i+1,Mi+1,i+2, . . . ,Mj�1,j) � F(i� � �j) for i 6 j. A fault free x,y-hamiltonian path in
Gi � Fi can be written as hx,HPi,yi and a fault free x,y-hamiltonian path in G(Gi,Gi+1, . . . ,Gj,Mi,i+1,
Mi+1,i+2, . . . ,Mj�1,j) � F(i� � �j) can be written as hx,HP(i� � �j),yi. In addition, path hx,HPi,yi and path
hx,HP(i� � �j),yi are cycles if x = y.
3. Preliminaries

Consider an interconnection network G, and suppose that there are some faults in it. Let FG be the set of
faults in G, and fG = jFGjbe the number of faults in G. Suppose that G is k-hamiltonian (k-hamiltonian con-
nected respectively) and fG 6 k. Let u be a healthy vertex in G. It is clear that some of the edges incident to u is
on a hamiltonian cycle (hamiltonian path respectively) in G � FG, but not every edge incident to u is on some
hamiltonian cycle (hamiltonian path respectively) in G � FG. In the following two lemmas, [2] proved that at
least a fix number of edges incident to vertex u are on some hamiltonian cycles (hamiltonian paths respectively)
in G � FG.

Lemma 1 [2]. Let G be a k-hamiltonian graph, FG be a set of faults in G with jFGj 6 k, and u be a healthy vertex

in G. Then there are at least k � fG + 2 edges incident to vertex u, such that each one of them is on some

hamiltonian cycle in G � FG .

Lemma 2 [2]. Let G be a k-hamiltonian connected graph, FG be a set of faults in G with jFGj 6 k, and {x, y,u} be

three distinct healthy vertices in G. Then there are at least k � fG + 2 edges incident to vertex u, such that each
one of them is on some x,y-hamiltonian path in G � FG .
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Let Gr and Gs be two graphs with the same number of vertices. Let M be an arbitrary perfect matching

between the vertices of Gr and Gs. [2] has defined graph G(Gr,Gs; M), which has vertex set
V(G(Gr,Gs; M)) = V(Gr) [ V(Gs), and edge set E(G(Gr,Gs; M)) = E(Gr) [ E(Gs) [M. The following two lem-
mas result immediately from the fact that jV(Gr)j = jV(Gs)jP k + 1.

Lemma 3 [2]. Let Gr and Gs be two k-regular graphs with the same number of vertices. If the total number of

faults in G(Gr,Gs; M) is not greater than k, there exists at least one healthy matching edge between Gr and Gs.

Lemma 4 [2]. Let Gr and Gs be two k-regular graphs with the same number of vertices, and let x and y be two
healthy vertices in G(Gr,Gs; M). If the total number of faults in G(Gr,Gs; M) is not greater than k � 2, there

exists at least one healthy matching edge between Gr and Gs whose endpoints are neither x nor y.

The following two lemmas state that the fault-tolerant hamiltonicity HfðGÞ and fault-tolerant hamiltonian
connectivity Hj

f ðGÞ of the graph G(Gr,Gs; M), as compared with Gr and Gs, are increased by 1. Hence,
G(Gr,Gs; M) is a super fault-tolerant hamiltonian graph.

Lemma 5 [2]. Assume k P 4. Let Gr and Gs be two k-regular super fault-tolerant hamiltonian graphs and

jV(Gr)j = jV(Gs)j. Then graph G(Gr,Gs; M) is (k � 1)-hamiltonian.

The fault-tolerant hamiltonian connectivity Hj
f ðGÞ of G(Gr,Gs; M) is also increased by 1, as stated in the

following theorem.

Lemma 6 [2]. Assume k P 5. Let Gr and Gs be two k-regular super fault-tolerant hamiltonian graphs and

jV(Gr)j = jV(Gs)j. Then graph G(Gr,Gs;M) is (k � 2)-hamiltonian connected.
4. Main results

We make one simple observation first.

Observation 1. To prove that a graph G is l-hamiltonian (respectively l-hamiltonian connected), it suffices to
show that G � FG is hamiltonian (respectively hamiltonian connected) for any faulty set FG � V(G) [ E(G)
with jFGj = l. If the total number of faults jFGj is strictly less than l, we may arbitrarily designate l � jFGj
healthy edges as faulty to make exactly l faults.

In this section, we shall show that G(G1,G2, . . . ,Gn; Cn) is super fault-tolerant hamiltonian. In order to do
that, we prove one preliminary result which will simplify our proof later. Consider the graph
G(G1,G2, . . . ,Gn,M1,2,M2,3, . . . ,Mn�1,n,M1,n), deleting the perfect matching M1,n from it, the resulting graph
is reduced to G(G1,G2, . . . ,Gn,M1,2,M2,3, . . . ,Mn�1,n). For convenience, we shall write it as G(G1,G2, . . . ,
Gn; Pn), where Pn stands for a path of length n � 1. See Fig. 2. In G(G1,G2, . . . ,Gn; Pn), deg(v) = k + 2 for
all v 2 V(G2) [ V(G3) [ � � � [ V(Gn�1), and deg(v) = k + 1 for v 2 V(G1) [ V(Gn). The following theorem states
that the fault-tolerant hamiltonicity HfðGÞ and fault-tolerant hamiltonian connectivity Hj

f ðGÞ of graph
G(G1,G2, . . . ,Gn; Pn), as compared with G1,G2, . . . ,Gn, are increased by 1.

Theorem 1. Assume n P 2 and k P 5. Let G1,G2, . . . ,Gn be n k-regular super fault-tolerant hamiltonian graphs
with the same number of vertices. Then graph G(G1,G2, . . . ,Gn; Pn) is (k � 1)-hamiltonian and (k � 2)-

hamiltonian connected.
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Fig. 2. G(G1,G2, . . . ,Gn; Pn).
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Proof. We prove it by induction on n. Suppose n = 2, then G(G1,G2; P2) = G(G1,G2; M). By Lemmas 5 and 6,
G(G1,G2; M) is (k � 1)-hamiltonian for k P 4 and (k � 2)-hamiltonian connected for k P 5.

Assume the theorem is true for n, which means G(G1,G2, . . . ,Gn; Pn) is (k � 1)-hamiltonian and (k � 2)-
hamiltonian connected for k P 5. We shall show that G(G1,G2, . . . ,Gn+1; Pn+1) is (k � 1)-hamiltonian and
(k � 2)-hamiltonian connected for k P 5 and n + 1 P 3.

We first prove that the fault-tolerant hamiltonicity HfðGÞ of G(G1,G2, . . . ,Gn,Gn+1; Pn+1) is exactly k � 1.
We only consider the situation that the total number of faults is k � 1. As for the total number of faults is
k 0 < k � 1, we choose k � 1 � k 0 non-faulty edges as faulty edges. Consider G1 and Gn+1, either f1 6 k � 3 or
fn+1 6 k � 3. If this is not true, then f1 P k � 2 and fn+1 P k � 2, and (k � 2) + (k � 2) 6 f1 + fn+1 6

f(1� � �n+1) = k � 1, so k 6 3. It is a contradiction since we assume k P 5. Without loss of generality, we may
assume fn+1 6 k � 3. Consequently, Gn+1 � Fn+1 is hamiltonian connected. By Lemma 3, there exists at least
one healthy matching edge between Gn and Gn+1, say (un,un+1). By Lemma 1, there are atleast (k � 1) �
f(1� � �n) + 2 = k + 1 � f(1� � �n) edges incident to vertex un, such that each one of them is on some hamiltonian
cycle in G(G1, . . . ,Gn; Pn) � F(1� � �n). Note that one of the k + 1 � f(1� � �n) edges may be a matching edge between
Gn�1 and Gn.Of all these k + 1 � f(1� � �n) � 1 edges, there is at least one, say (un,vn), such that vn, vn+1,
and (vn,vn+1) are healthy. If it is not true, f(1� � �n+1) = f(1� � �n) + (f(1� � �n+1) � f(1� � �n)) P f(1� � �n) +
((k+1) � f(1� � �n) � 1) = k. This contradicts the fact that f(1� � �n+1) = k � 1. We add the matching edge (vn,vn+1)
and delete (un,vn). Then, there exists a un+1,vn+1-hamiltonian path hun+1,HPn+1,vn+1i in Gn+1 � Fn+1 since
fn+1 6 k � 3. Therefore, hun,HP(1� � �n),vn,vn+1,HPn+1,un+1,uni is a fault free hamiltonian cycle in
G(G1, . . . ,Gn+1; Pn+1) � F(1� � �n+1). See Fig. 3. This completes the proof that the fault-tolerant hamiltonicity
HfðGÞ of G(G1,G2, . . . ,Gn,Gn+1; Pn+1) is k � 1.

Now, we prove that the fault-tolerant hamiltonian connectivity Hj
f ðGÞ of G(G1,G2, . . . ,Gn,Gn+1; Pn+1) is

k � 2. Again, we prove this by induction on n. Let x and y be two arbitrary healthy vertices in
G(G1, . . . Gn+1; Pn+1), we shall find a fault free hamiltonian path joining x and y. We consider the situation
that the total number of faults is exactly k � 2, and the proof is divided with respect to the locations of x and y

into two cases.

Case 1

x and y are in different components.

Without loss of generality, we assume x is in Gi and y is in Gj for i < j. In this case, we shall separate
G(G1, . . . ,Gn+1; Pn+1) into two parts G(G1, . . . ,Gr; Pr) and G(Gr+1, . . . ,Gn+1; Pn+1�r) for some r, i 6 r < j, such
that x is in G(G1, . . . ,Gr; Pr) and y is in G(Gr+1, . . . ,Gn+1; Pn+1�r). Moreover, we consider the following two
subcases.

Subcase 1-1

If there is an r between i and j � 1, such that both G(G1, . . . ,Gr; Pr) � F(1� � �r) and G(Gr+1, . . . ,
Gn+1; Pn+1�r) � F(r+1� � �n+1) are hamiltonian connected.

By Lemma 4, there exists at least one healthy matching edge (ur,ur+1) between Gr and Gr+1, such that ur 5 x

and ur+1 5 y. There is an x,ur-hamiltonian path hx,HP(1� � �r),uri in G(G1, . . . ,Gr; Pr) � F(1� � �r) and a ur+1,
y-hamiltonian path hur+1,HP(r+1� � �n+1),yi in G(Gr+1, . . . ,Gn+1; Pn+1�r) � F(r+1� � �n+1) by induction hypothesis.
Combining these two fault free paths, we have a fault free x,y-hamiltonian path hx,HP(1� � �r),ur,ur+1,
HP(r+1� � �n+1),yi in this subcase. See Fig. 4.
G1 Gn Gn+1

vn

un

vn+1

un+1

Fig. 3. G(G1,G2, . . . ,Gn+1; Pn+1) is (k � 1)-hamiltonian for k P 4 and n + 1 P 3.
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Fig. 4. Subcase 1-1: Both G(G1, . . . ,Gr; Pr) � F(1� � �r) and G(Gr+1, . . . ,Gn+1; Pn+1�r) � F(r+1� � �n+1) are hamiltonian connected.
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Subcase 1-2
There does not exist any r between i and j � 1, to make both G(G1, . . . ,Gr; Pr) � F(1� � �r) and

G(Gr+1, . . . ,Gn; Pn�r) � F(r+1� � �n) hamiltonian connected.

If both G(G1, . . . ,Gr; Pr) and G(Gr+1, . . . ,Gn+1; Pn+1�r) contain two or more components, by induction, both
of them are fault free hamiltonian connected because the total number of faults is k � 2. This contradicts our
assumption. Hence, we may without loss of generality assume that r = 1 and f1 = k � 2. Then
G(G1, . . . ,Gr; Pr) = G1 and G1 is (k � 2)-hamiltonian. So there is a hamiltonian cycle in G1 � F1. Vertex x

has two neighboring vertices on this cycle, we choose one that is not matched with y, say u1. Then, we add
matching edge (u1,u2) and delete (u1,x). On the other side, by induction hypothesis, there is a fault free
u2,y-hamiltonian path hu2,HP(2� � �n+1),yi in G(G2, . . . ,Gn+1; Pn) � F(2� � �n+1). Thus, hx,HP1,u1,u2,HP(2� � �n+1),yi
is a fault free x,y-hamiltonian path in this subcase. See Fig. 5.

Case 2

x and y are in the same component.

The proof of this case is further divided into two subcases.

Subcase 2-1
All the k � 2 faults are in the same component that x and y are in.

Without loss of generality, we may assume x and y are not in Gn+1, otherwise we may replace Gn+1 by G1. By
induction, G(G1, . . . ,Gn; Pn) � F(1� � �n) is hamiltonian connected. By Lemma 4, there exists at least one healthy
matching edge (un,un+1) between Gn and Gn+1 such that un 62 {x,y} and un+1 62 {x,y}. By Lemma 2, there are at
least (k � 2) � f(1� � �n) + 2 = k � f(1� � �n) edges incident to vertex un, such that each one of them is on some x,y-
hamiltonian path in G(G1, . . . ,Gn; Pn) � F(1� � �n). Note that one of the k � f(1� � �n) edges may be a matching edge
between Gn�1 and Gn. Among these k � f(1� � �n) � 1 edges, there is at least one edge (un,vn), such that vn, vn+1,
and (vn,vn+1) are healthy.If it is not true, then G(G1, . . . ,Gn+1; Pn+1) contains f(1� � �n+1) faults, and
f(1� � �n+1) = f(1� � �n) + (f(1� � �n+1) � f(1� � �n)) P f(1� � �n) + (k � f(1� � �n) � 1) = k � 1. This contradicts the fact that
f(1� � �n+1) = k � 2. Now, Gn+1 contains a hamiltonian path hun+1,HPn+1,vn+1i since f(n+1) = 0. Therefore,
x

y

G1 Gn+1G2

u1 u2

Fig. 5. Subcase 1-2: One of G(G1, . . . ,Gr; Pr) � F(1� � �r) and G(Gr+1, . . . ,Gn; Pn+1�r) � F(r+1� � �n) is not hamiltonian connected.

y

x

G1
Gn+1Gn

vn

un

vn+1

un+1

Fig. 6. Subcase 2-1: All the k � 2 faults are in the same component that x and y are in.
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we have a fault free x,y-hamiltonian path hx,P(x,un), un,un+1,HPn+1,vn+1,vn,P(vn,y), yi, where
hx,P(x,un),un,vn,P(vn,y),yi is a hamiltonian path in G(G1, . . . ,Gn; Pn) � F(1� � �n). This case is proved. See Fig. 6.

Subcase 2-2

Not all the k � 2 faults are in the same component that x and y are in.

Without loss of generality, we may also assume x and y are not in Gn+1. Let Gr be the component that x and y

are in, where 1 6 r 6 n. We separate G(G1, . . . ,Gn+1; Pn+1) into two parts G(G1, . . . ,Gs; Ps) and G(Gs+1, . . . ,
Gn+1; Pn+1�s), where:
s ¼ r � 1; if r ¼ n and f nþ1 ¼ k � 2;

s ¼ r; otherwise.
In this way of separation, we guarantee that both G(G1, . . . ,Gs; Ps) � F(1� � �s) and G(Gs+1, . . . ,Gn+1;
Pn+1 � s) � F(s+1� � �n+1) are hamiltonian connected. The case s = r � 1 is similar to the case s = r, so we only
consider the case s = r. By Lemma 4, there exists at least one healthy matching edge (us,us+1) between Gs and
Gs+1, such that us 62 {x,y}. By Lemma 2, if s = 1 (s P 2 respectively), there are at least
(k � 3) � f(1� � �s) + 2 = k � 1 � f(1� � �s) edges ((k � 2) � f(1� � �s) + 2 = k � f(1� � �s) edges respectively) incident to
vertex us, such that each one of them is on some x,y-hamiltonian path in G(G1, . . . ,Gs; Ps) � F(1� � �s).

Among these k � 1 � f(1� � �s) edges (k � f(1� � �s) edges respectively), there is at least one edge (us,vs), such that
vs, vs+1, and (vs,vs+1) are healthy. If it is not true, then G(G1, . . . ,Gn+1; Pn+1) contains at least
f(1� � �s) + (k � 1 � f(1� � �s)) = k � 1 faults when s = 1(f(1� � �s) + (k � f(1� � �s)) � 1 = k � 1 faults when s P 2 respec-
tively). This contradicts the fact that f(1� � �n+1) = k � 2. We then add a matching edge (vs,vs+1) and delete edge
(us,vs). By induction, G(Gs+1, . . . ,Gn+1; Pn+1�s) � F(s+1� � �n+1) is hamiltonian connected. Then, we have a fault
free hamiltonian path hx,P(x,us), us,us+1,HP(s+1� � �n+1),vs+1,vs,P(vs,y),yi in this subcase, where hx,P(x,us),
us,vs,P(vs,y), yi is a hamiltonian path in G(G1, . . . ,Gs; Ps) � F(1� � �s). See Fig. 7. This completes the proof. h

Now, we consider the graph G(G1,G2, . . . ,Gn; Cn), and we shall show that it is a super fault-tolerant ham-
iltonian graph.

Theorem 2. Assume n P 3 and k P 5. Let G1,G2, . . . ,Gn be n k-regular super fault-tolerant hamiltonian graphs

with the same number of vertices. Then graph G(G1,G2, . . . ,Gn; Cn) is k-hamiltonian.

Before proving this theorem, we make one remark. In the following proofs of Theorems 2 and 3, we may
assume without loss of generality that the faulty set of G(G1,G2, . . . ,Gn; Cn) does not contain any matching
edge. Otherwise, suppose that there exists one matching edge between G1 and Gn which is faulty. We simply
ignore all the matching edges between G1 and Gn, then G(G1,G2, . . . ,Gn; Cn) is reduced to G(G1,G2, . . . ,Gn; Pn).
Then the problem of proving G(G1,G2, . . . ,Gn; Cn) is k-hamiltonian and (k � 1)-hamiltonian connected is
reduced to show that G(G1,G2, . . . ,Gn; Pn) is (k � 1)-hamiltonian and (k � 2)-hamiltonian connected. There-
fore, the result follows from Theorem 1.

Proof of Theorem 2. We only consider the case that the total number of faults is exactly k and there are no
matching edge faults. Without loss of generality, we may assume that f1 P fi for all 2 6 i 6 n. The proof is
classified into four cases.

Case 1

f1 = k, all the k faults are in G1.
x

y
G1 Gs

Gs+1 Gn+1

vs

us

vs+1

us+1

Fig. 7. Subcase 2-2: Not all the k � 2 faults are in the same component that x and y are in.
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Fig. 8. Case 1: f1 = k and jV(G1 � F1)jP 2.
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Let g be a fault in G1, then, there is a hamiltonian path hu1,P(u1,v1), v1i in G1 � (F1 � {g}). Suppose
jV(G1 � F1)jP 2. In G1 � F1, the path hu1,P(u1,v1),v1i is separated into two subpaths, say hu1,P(u1,w1),w1i
and hz1,P(z1,v1),v1i, which cover all the vertices of G1 � F1. We then add four matching edges:
(u1,u2), (v1,v2), (w1,wn), and (z1,zn). In G2, there is a u2,v2-hamiltonian path hu2,HP2,v2i since f2 = 0. And
in G(G3, . . . ,Gn; Pn�2), there is a wn,zn-hamiltonian path hwn,HP(3� � �n),zni since f(3� � �n) = 0. Hence, we have
a fault free hamiltonian cycle hu1,u2,HP2,v2,v1,P(v1,z1),z1,zn,HP(3� � �n),wn,w1,P(w1,u1),u1i in this subcase.
See Fig. 8. Now, suppose jV(G1 � F1)j = 1. Let V(G1 � F1) = {u1}, then the above-mentioned proof does
not work. We shall construct a hamiltonian cycle in G(G1, . . . ,Gn; Cn) � F(1� � �n) as follows. First, we add
two matching edges (u1,u2) and (u1,un). In G(G2, . . . ,Gn; Pn�1), there is a u2,un-hamiltonian path
hu2,HP(2� � �n),uni since f(2� � �n) = 0. Hence, hu1,u2,HP(2� � �n),un,u1i forms a fault free hamiltonian cycle in
G(G1, . . . ,Gn; Cn) � F(1� � �n). This case is proved. See Fig. 9.
G1

G2Gn

u1

u2
un

Fig. 9. Case 1: f1 = k and jV(G1 � F1)j = 1.
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Fig. 10. Case 2: f1 = k � 1.
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Case 2

f1 = k � 1.

Since G1 is (k � 2)-hamiltonian, there exists a fault free hamiltonian path hu1,HP1,v1i in G1 � F1. Further-
more, u1 5 v1 since jV(G1)jP k + 1 and f1 = k � 1. Without loss of generality, we may assume the kth fault
is not in G2, otherwise we replace G2 by Gn. Now, we add matching edges (u1,u2) and (v1,v2). In
G(G2, . . . ,Gn; Pn�1) � F(2� � �n), there is a u2,v2-hamiltonian path hu2,HP(2� � �n),v2i since f(2� � �n) = 1. Therefore,
we have a fault free hamiltonian cycle hu1,u2,HP(2� � �n),v2,v1,HP1,u1i in this case. See Fig. 10.

Case 3

2 6 f1 6 k � 2.

We may assume without loss of generality that not all of the faults are in G(G1,Gn; M1,n), or we shall consider
G(G1,G2; M1,2) in place of G(G1,Gn; M1,n). So f1 + fn 6 k � 1. By Lemma 3, there is at least one healthy
matching edge (u1,un) between G1 and Gn. In G1 � F1, by Lemma 1, there are at least (k � 2) � f1 + 2 = k � f1

edges incident to vertex u1, such that each one of them is on some hamiltonian cycle in G1 � F1. Of all these
k � f1 edges, there is at least one edge (u1,v1), such that v1, vn, and (v1,vn) are healthy. If this is not true,
G(G1,Gn; M1,n) contains at least f1 + (k � f1) = k faults. But the total number of faults in G(G1,Gn; M1,n) is
no greater than k � 1, causing a contradiction. Since f1 P 2, we have f(2� � �n) 6 k � 2, so there is a fault free
un,vn-hamiltonian path hun,HP(2� � �n),vni in G(G2, . . . ,Gn; Pn�1) � F(2� � �n). Then, hu1,HP1,v1,vn,HP(2� � �n),un,u1i
is a fault free hamiltonian cycle in G(G1, . . . ,Gn; Cn) � F(1� � �n), and this case is proved. See Fig. 11.

Case 4
f1 6 1.

Since f1 P fi for all 2 6 i 6 n, we may assume without loss of generality that f1 = 1 and f(1� � �n) = k P 5,
otherwise it is clear that G(G1, . . . ,Gn; Cn) is hamiltonian. We may further assume that not all of the faults
are in G(G1,Gn; M1,n). We choose a minimum number r such that f1 + f2 + � � � + fr = 2. It is clear that
r 6 n � 1. By Lemma 3, there is at least one healthy matching edge (ur,ur+1) between Gr and Gr+1.
Then, by Lemma 1, there are at least (k � 2) � f(1� � �r) + 2 = k � f(1� � �r) = k � 2 edges incident to vertex ur in
G(G1, . . . ,Gr; Pr) � F(1� � �r), such that each one of them is on some hamiltonian cycle in
G(G1, . . . ,Gr; Pr) � F(1� � �r). We note k � 2 P 3 since k P 5. Of these k � 2 edges incident to ur, there is at least
one edge (ur,vr), such that (ur,vr) is not a matching edge in G(Gr�1,Gr; Mr�1,r), and the matching vertex vr+1 of
vr in Gr+1 is not faulty. We add the matching edge (vr,vr+1) and delete (ur,vr). Since
f(r+1� � �n) = k � 2 P 5 � 2 = 3 and f1 P fi for all 2 6 i 6 n, G(Gr+1, . . . ,Gn; Pn�r) contains at least three compo-
nents. Thus, G(Gr+1, . . . ,Gn; Pn�r) � F(r+1� � �n) is hamiltonian connected and there is a ur+1,vr+1-hamiltonian
path hur+1,HP(r+1� � �n),vr+1i in G(Gr+1, . . . ,Gn; Pn�r) � F(r+1� � �n). Then we have a fault free hamiltonian cycle
hur,HP(1� � �r),vr,vr+1,HP(r+1� � �n),ur+1,uri in this case. See Fig. 12. This completes the proof of the theorem. h

The fault-tolerant hamiltonian connectivity Hj
f ðGÞ in G(G1,G2, . . . ,Gn; Cn) is also increased by 2, as stated

in the following theorem.

Theorem 3. Assume n P 3 and k P 5. Let G1,G2, . . . ,Gn be n k-regular super fault-tolerant hamiltonian graphs

with the same number of vertices. Then G(G1,G2, . . . ,Gn; Cn) is a (k � 1)-hamiltonian connected graph.
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v1

un

vn

Fig. 11. Case 3: 2 6 f1 6 k � 2.
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Fig. 12. Case 4: f1 6 1.
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Proof. Let x and y be two healthy vertices in G(G1,G2, . . . ,Gn; Cn), we shall find a fault free hamiltonian path
joining x and y. Just as before, we only consider the situation that the total number of faults is exactly k � 1
and there are no matching edge faults. The proof is classified into two cases with respect to the locations of x
and y.

Case 1

x and y are in different components.

This case can be further divided into two subcases.

Subcase 1-1

Not all the k � 1 faults are in the same component.

We may without loss of generality separate G(G1,G2, . . . ,Gn; Cn) into two parts G(G1, . . . ,Gr; Pr) and
G(Gr+1, . . . ,Gn; Pn�r) where 1 6 r 6 n � 1, such that x in G(G1, . . . ,Gr; Pr), y in G(Gr+1, . . . ,Gn; Pn�r),
f(1� � �r) P 1, and f(r+1� � �n) P 1. We shall prove this subcase by considering whether G(G1, . . . ,Gr; Pr) � F(1� � �r)

and G(Gr+1, . . . ,Gn; Pn�r) � F(r+1� � �n) are hamiltonian connected. Suppose that both G(G1, . . . ,Gr; Pr) �
F(1� � �r) and G(Gr+1, . . . ,Gn; Pn�r) � F(r+1� � �n) are hamiltonian connected. Since the total number of faults is
k � 1, there are at least two healthy matching edges between G1 and Gn, and there are at least two healthy
matching edges between Gr and Gr+1. Among these four healthy matching edges, there is at least one (ur,ur+1)
between Gr and Gr+1, such that ur 62 {x} and ur+1 62 {y}. Now, there are an x,ur-hamiltonian
path hx,HP(1� � �r),uri in G(G1, . . . ,Gr; Pr) � F(1� � �r) and a ur+1,y-hamiltonian path hur+1,HP(r+1� � �n),yi in
G(Gr+1, . . . , Gn; Pn�r) � F(r+1� � �n). Therefore, we have a fault free x,y-hamiltonian path hx,HP(1� � �r),ur,ur+1,
HP(r+1� � �n),yi in this subcase. See Fig. 13.

Suppose that G(G1, . . . ,Gr; Pr) � F(1� � �r) or G(Gr+1, . . . ,Gn; Pn�r) � F(r+1� � �n) is not hamiltonian connected.
We claim that at least one of G(G1, . . . ,Gr; Pr) � F(1� � �r) and G(Gr+1, . . . ,Gn; Pn�r) � F(r+1� � �n) is hamiltonian
connected. Suppose not, then (k � 2) + (k � 1) 6 f(1� � �r) + f(r+1� � �n) = f(1� � �n) = k � 1, so k 6 2. But k P 5, it is
x y

Gr Gr+1

GnG1

ur
ur+1

Fig. 13. Subcase 1-1: G(G1, . . . ,Gr; Pr) � F(1� � �r) and G(Gr+1, . . . ,Gn; Pn�r) � F(r+1� � �n) are hamiltonian connected.
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Fig. 14. Subcase 1-1: G(G1, . . . ,Gr; Pr) � F(1� � �r) or G(Gr+1, . . . ,Gn; Pn�r) � F(r+1� � �n) is not hamiltonian connected.
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a contradiction. Hence, we may assume without loss of generality that G(G1, . . . ,Gr; Pr) � F(1� � �r) is not
hamiltonian connected, and G(Gr+1, . . . ,Gn; Pn�r) � F(r+1� � �n) is. Now, we know f(1� � �r) 6 k � 2 and G(G1, . . . ,
Gr; Pr) � F(1� � �r) is not hamiltonian connected. So by Theorem 1, f(1� � �r) = k � 2 and G(G1, . . . ,Gr; Pr) = G1.
Since G1 is (k � 2)-hamiltonian, there exists a fault free hamiltonian cycle in G1 � F1. On this cycle, there are
two vertices u1 and v1 adjacent to x. Consider the four matching edges incident to u1 or v1: (u1,u2), (v1,v2),
(u1,un), and (v1,vn). Among these four edges, there is at least one, say (u1,u2), which is not matched with y nor
with the (k � 1)th fault, i.e., u2 5 y and u2 is healthy. We delete edge (u1,x) and add edge (u1,u2). In
G(G2, . . . ,Gn; Pn�1) � F(2� � �n), there is a u2,y-hamiltonian path hu2,HP(2� � �n),yi since f(2� � �n) 6 k � 2. Thus,
hx,HP1,u1,u2,HP(2� � �n),yi is a fault free x,y-hamiltonian path in this subcase. See Fig. 14.

Subcase 1-2

All the k � 1 faults are in the same component.

This subcase can be further divided into two subcases.

Subcase 1-2-1

All the k � 1 faults are in a single component which contains either x or y.

Without loss of generality, we may assume: (1) x and all the faults are in G1; and (2) y is in Gr, where r 5 1 and
r 5 2. There is a hamiltonian cycle in G(G1,G2; M1,2) � F1 since f1 = k � 1. On this cycle, there are two ver-
tices adjacent to x. Of these two vertices, at least one is in G1, say u1. Let un be the matching vertex of u1 in Gn.
We shall consider the cases: un = y or un 5 y. Suppose un = y. We add the matching edge (u1,y) and delete
(x,u1). On any hamiltonian cycle in G(G1,G2; M1,2) � F1, at least k edges are in G2 since jV(G2)jP k + 1 and
all the faults are in G1. Of these k edges, there is at least one, say (v2,w2), such that the matching vertex v3 of v2

(the matching vertex w3 of w2 respectively) is not y since k P 5. Then, we delete (v2,w2) and add both matching
edges (v2,v3) and (w2,w3). In G(G3, . . . ,Gn; Pn�2) � {y}, there is a v3,w3-hamiltonian path hv3,P(v3,w3),w3i.
Therefore, we have a fault free x,y-hamiltonian path hx,P(x,v2),v2,v3,P(v3,w3),w3,w2,P(w2,u1),u1,yi in this
subcase, where hx,P(x,v2),v2,w2,P(w2,u1), u1,xi is a hamiltonian cycle in G(G1,G2; M1,2) � F1. See Fig. 15.
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Fig. 15. Subcase 1-2-1: u2 = y.
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Fig. 16. Subcase 1-2-1: u2 5 y.
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Now, suppose un 5 y. We then add the matching edge (u1,un) and delete (x,u1). In G(G3, . . . ,
Gn; Pn�2) � F(3� � �n), there is a un,y-hamiltonian path hun,HP(3� � �n),yi since f(3� � �n) = 0. So hx,HP(1� � �2),u1,
un,HP(3� � �n),yi forms a fault free x,y-hamiltonian path in this subcase. See Fig. 16.

Subcase 1-2-2

All the k � 1 faults are in a single component which does not contain x nor y.

Without loss of generality, we may assume that all the faults are in G1, x is in Gr, and y is in Gs, where
1 < r < s 6 n. In G1 � F1, there is a hamiltonian path hu1,HP1,v1i since f1 = k � 1. We add two matching
edges (u1,u2) and (v1,v2). Note that x may be equal to u2 or v2. By Lemma 2, there are at least
(k � 3) � f(2� � �r) + 1 (we add 1 not 2 since x may be equal to one of u2 or v2) edges incident to vertex x, such
that each one of them is on some u2,v2-hamiltonian path hu2,HP(2� � �r),v2i in G(G2, . . . ,Gr; Pr�1) � F(2� � �r).
Here, (k � 3) � f(2� � �r) + 1 = (k � 3) � 0 + 1 = k � 2. There are at least k � 2 edges that can be taken into ac-
count. Note that k P 5, so k � 2 P 3. Of these three edges, there is at least one edge (x,wr), such that
(x,wr) 2 E(Gr) and wr is not matched with y. Then, we delete (x,wr) and add a matching edge (wr,wr+1). In
G(Gr+1, . . . ,Gn; Pn�r), there is a wr+1,y-hamiltonian path hwr+1,HP(r+1� � �n),yi since there is no fault in
G(Gr+1, . . . ,Gn; Pn�r). Thus, we have a fault free x,y-hamiltonian path hx,P(x,v2), v2,v1,HP1,u1,u2,
P(u2,wr),wr,wr+1,HP(r+1� � �n),yi in this subcase, where hx,P(x,v2), v2,v1,HP1,u1,u2,P(u2,wr),wri is a fault free
hamiltonian path in G(G1, . . . ,Gr; Pr) � F(1� � �r). See Fig. 17.

Case 2

x and y are in the same component.

We may assume without loss of generality that x and y are in G1. This case can be further divided into three
subcases.

Subcase 2-1

k � 2 6 f1 6 k � 1.

Let g and h be two faults in G1. Since G1 is (k � 3)-hamiltonian connected, G1 � (F1 � {g,h}) has a fault free
hamiltonian path hx,P(x,y), yi. Removing g and h, the path hx,P(x,y),yi is separated into three subpaths:
x
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Fig. 17. Subcase 1-2-2: All the faults are in a single component which does not contain x or y.
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Fig. 18. Subcase 2-1: hx,P(x,y),yi is separated into three disjoint subpaths.
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hx,P(x,u1),u1i, hv1,P(v1,w1), w1i, and hz1,P(z1,y),yi which cover all the vertices of G1 � F1. We note that a
path could be a single vertex here. There is one exceptional case: f1 = k � 1 and jV(G1 � F1)j = 2, then
V(G1 � F1) = {x,y}, and the path hx,P(x,y),yi cannot be separated into three disjoint subpaths. Consider
the case that the path hx,P(x,y),yi is indeed separated into three disjoint subpaths. Since f(2� � �n) 6 1, F(2� � �n) is
either in G2 or in Gn and this fault is possibly matched with one of u1, v1, w1, or z1. We may assume without
loss of generality that the faulty set F(2� � �n) is in Gn, and this fault is matched with u1. We then add four match-
ing edges (u1,u2), (v1,v2), (w1,wn), and (z1,zn). In G(G2, . . . ,Gn�1; Pn�2) � F(2� � �n�1), there is a u2,v2-hamiltonian
path hu2,HP(2� � �n�1),v2i since f(2� � �n�1) 6 1. And in Gn � Fn, there is an xn,zn-hamiltonian path hwn,HPn,zni
since fn 6 1. Hence, hx,P(x,u1),u1,u2,HP(2� � �n�1),v2,v1,P(v1,w1), w1,wn,HPn,zn,z1,P(z1,y),yi forms a fault free
x,y-hamiltonian path in this subcase. See Fig. 18.

Now, suppose f1 = k � 1, and jV(G1 � F1)j = 2. Let V(G1 � F1) = {x,y}. We add matching edges (x,x2)
and (y,y2). In G(G2, . . . ,Gn; Pn�1), there is an x2,y2-hamiltonian path hx2,HP(2� � �n),y2i since f(2� � �n) = 0.
Therefore, we have a fault free x,y-hamiltonian path hx,x2,HP(2� � �n),y2,yi in this subcase.

Subcase 2-2
1 6 f1 6 k � 3.

Without loss of generality, we may assume that not all the faults are in G(G1,G2; M1,2), or we may replace
G(G1,G2; M1,2) by G(G1,Gn; M1,n). By Lemma 4, there is at least one healthy matching edge (u1,u2) between
G1 and G2 such that u1 62 {x,y}. By Lemma 2, there are at least (k � 3) � f1 + 2 = k � 1 � f1 edges incident to
vertex u1 in G1 � F1, such that each one of them is on some x,y-hamiltonian path in G1 � F1. Among these
k � 1 � f1 edges, there is at least one, say (u1, v1), such that all of v1, v2, and (v1,v2) are healthy. If this is
not true, then G(G1,G2;M1,2) contains at least f1 + (k � 1 � f1) = k � 1 faults. But we know f1 + f2 6 k � 2,
which is a contradiction. Then, we add the matching edge (v1,v2). In G(G2, . . . ,Gn; Pn�1) � F(2� � �n), there is
a u2,v2-hamiltonian path hu2,HP(2� � �n),v2i since f(2� � �n) 6 k � 2. Therefore, we have a fault free x,y-hamiltonian
path hx,P(x,u1),u1,u2,HP(2� � �n),v2,v1,P(v1,y), yi in this subcase, where hx,P(x,u1),u1,v1,P(v1,y),yi is a hamil-
tonian path in G1 � F1. See Fig. 19.
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y
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G2Gn

u1v1
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Fig. 19. Subcase 2-2: 1 6 f1 6 k � 3.
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Subcase 2-3

f1 = 0.

Recall that we assume both x add y are in G1 in this case. There are four matching edges incident to x or y:
(x,x2), (y,y2), (x,xn), and (y,yn). It means that x and y have four matching vertices: x2, y2, xn, and yn. We
divide this subcase into two subcases according to the status of the four matching vertices.

Subcase 2-3-1

Suppose that at least one of the four matching vertices is healthy.

We may assume without loss of generality that x2 is healthy, then we add edge (x,x2). In G(G2, . . . ,
Gn; Pn�1) � F(2� � �n), there is a fault free hamiltonian cycle since f(2� � �n) 6 k � 1. On this cycle, there are two ver-
tices adjacent to x2, and at least one of these two is in G2, say u2. We consider the cases whether u2 is matched
with y.

Subcase 2-3-1-1

u2 is not matched with y.

We delete (x2,u2), and add (u1,u2). In G1 � {x}, there is a u1,y-hamiltonian path hu1,P(u1,y),yi. Therefore,
hx,x2,HP(2� � �n),u2,u1,P(u1,y),yi forms a fault free x,y-hamiltonian path in this subcase. See Fig. 20.

Subcase 2-3-1-2

u2 is matched with y.

On the fault free hamiltonian cycle in G(G2, . . . ,Gn; Pn�1) � F(2� � �n), let v2 be the vertex adjacent to x2 and
v2 5 u2. Note that v2 is either in G2 or in G3. Suppose v2 is in G2. We add two matching edges (x,x2)
and (v1,v2), and delete (x2,v2). In addition, there is a v1,y-hamiltonian path hv1,P(v1,y),yi in G1 � {x}. Then,
hx,x2,HP(2� � �n),v2,v1,P(v1,y),yi forms a fault free x,y-hamiltonian path in this subcase. See Fig. 21.
x

y G1

G2Gn

u1

x2
u2

Fig. 20. Subcase 2-3-1-1: u2 is not matched with y.
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Fig. 21. Subcase 2-3-1-2: v2 is in G2.
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Suppose v2 is in G3. We consider the case that jV(G2 � F2)j > 2. On the hamiltonian cycle in
G(G2, . . . ,Gn; Pn�1) � F(2� � �n), let w2 be a vertex in G2 which is adjacent to u2 and w2 5 x2. We then delete
edge (y2,w2), and add the matching edge (w1,w2). Thus, we have a fault free x,y-hamiltonian path
hx,P(x,w1), w1,w2,HP(2� � �n),y2,yi in this subcase, where hx,P(x,w1),w1i is a hamiltonian path in G1 � {y}. See
Fig. 22.

Suppose jV(G2 � F2)j = 2, and let V(G2 � F2) = {x2,u2}. To construct a fault free x,y-hamiltonian path, we
add matching edges (x,x2) and (u2,u3). Then, we have a fault free x,y-hamiltonian path hx,x2,u2,u3,P(u3,y),yi
in this subcase, where hu3,P(u3,y),yi is a hamiltonian path in G(G3,G4, . . . ,Gn,G1; Pn�1) � F(3� � �n) � {x}. See
Fig. 23.

Subcase 2-3-2

Suppose that all of the four matching vertices are faulty.
y
x

G1

G2G3Gn

u2
x2

u3

Fig. 23. Subcase 2-3-1-2: jV(G2 � F2)j = 2.
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Fig. 24. Subcase 2-3-2: All of the four matching vertices are faulty.
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Fig. 22. Subcase 2-3-1-2: v2 is in G3.
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Fig. 25. Super fault-tolerant hamiltonian graphs.
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In G1, excluding possibly y, there are at least k � 1 vertices adjacent to x. Of these k � 1 vertices, there is at
least one, say u1, such that u2 is healthy since G2 � {x2} has at most k � 2 faults. Now, we append edge (x,u1)
and the matching edge (u1,u2). In G(G2, . . . ,Gn; Pn�1) � F(2� � �n), there is a fault free hamiltonian cycle since
f(2� � �n) 6 k � 1. On this cycle, neither of the two vertices adjacent to u2 is matched with y since x2 and y2

are faulty. Therefore, we choose one of the two vertices adjacent to u2, say v2. We then delete (u2,v2) and
add the matching edge (v1,v2). In G1 � {x,u1}, there is a v1,y-hamiltonian path hv1,P(v1,y),yi. If it is not true,
then k � 3 < 2, this contradicts the fact that k P 5. So hx,u1,u2,HP(2� � �n),v2,v1,P(v1,y),yi forms a fault free
x,y-hamiltonian path in this subcase. See Fig. 24. This completes the proof of this theorem. h

The following corollary results from Theorems 2 and 3.

Corollary 1. Assume that G1,G2, . . . ,Gn are k-regular super fault-tolerant hamiltonian with the same number of

vertices where n P 3 and k P 5. Then G(G1,G2, . . . ,Gn; Cn) is (k + 2)-regular super fault-tolerant hamiltonian.

Among the existing interconnection network topologies, some of them are super fault-tolerant hamiltonian.
For example, we use computer program to check that (1) the twisted-cube TQ5, crossed-cube CQ5, and möbius
cube MQ5 are 5-regular super fault-tolerant hamiltonian; (2) the (n,k)-star graph S6,2 is 5-regular super fault-
tolerant hamiltonian; (3) the arrangement graph A5,2 is 6-regular super fault-tolerant hamiltonian; and (4) the
recursive circulant graph RC(1,3,3) is 6-regular super fault-tolerant hamiltonian. See Fig. 25.

5. Conclusion

The fault-tolerant hamiltonicity and the fault-tolerant hamiltonian connectivity are essential parameters of
an interconnection network. In this paper, we propose a family of k-regular, (k � 2)-hamiltonian, and (k � 3)-
hamiltonian connected graphs. These graphs are maximally fault-tolerant, and we call them super fault-toler-
ant hamiltonian graphs.

Some of the contributions of this paper are the following. We propose a construction scheme to construct,
with flexibility, many k-regular super fault-tolerant hamiltonian graphs for k P 6. The recursive circulant
graphs can be recursively constructed using our construction schemes. And therefore, they are in fact a sub-
class of our proposed family of graphs. Then, we know that they are super fault-tolerant hamiltonian as long
as the case is true for initial cases k 6 5. With our scheme, some new super fault-tolerant hamiltonian graphs
may be constructed.
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