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Common stabilizers for linear control systems
in the presence of actuators outage
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Abstract

Issue concerning the existence of common stabilizers for a linear control system experiences actuators’ outage are pre-
sented. The possible outage of actuators examined in this study are not restricted to a pre-specified set. By finding common
quadratic-type Lyapunov functions, we obtain sufficient conditions for the existence of common stabilizers. For cases of
which all the possible failed actuators belonged to a pre-specified set, the results presented in this paper agree with those
obtained by Veillette in 1995. The control gain of common stabilizer for non-nested case is explicitly derived to guarantee
system stability. A simplified checking condition for the existence of common stabilizers is also obtained for the extreme
case when only single actuator can normally operate.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, the study of reliable controls that can tolerate the failure of actuators or sensors in control sys-
tems has attracted much attention (see, e.g., [1–10]). However, most existing results for reliable control design
are limited to systems with failure of actuators within a pre-specified subset. Among these studies, Veillette
[1] also inspected, in his example, whether the designed controllers could tolerate the outage of actuators out-
side the pre-specified subset. In [2], although Medanic investigated the possible outage of actuators outside a
pre-specified subset, it was restricted to single actuator outage. Zhao and Jiang [3] synthesized a reliable con-
troller for dynamic systems with redundant actuators. Though their approach does not involve the construc-
tion of Lyapunov function, the controlled system _x ¼ Axþ Bu is required to have actuator redundancy with
(A, bi) is a controllable pair for each i, with B ¼ ðb1; . . . ; bpÞ 2 Rn�p. Moreover, the pre-compensator for
transforming the non-uniform redundancy property into uniform property might increase system order
and reconfigure system structure. In this paper, the authors will extend the reliable stabilization of [1] to sys-
tems where the outage of actuators might be outside a pre-specified subset and the number of failed actuators
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is not restricted to one. Moreover, the control system is not assumed to possess the controllability property
as required in [3]. To tackle the reliable design problem, one might consider the existence of either common
or non-common Lyapunov functions with regard to faulty systems. In this paper, the authors will consider
the existence of common Lyapunov functions, while an example of seeking non-common Lyapunov func-
tions for stabilizing switched systems may be found in [11]. Our approach is to seek a common quadratic-
type Lyapunov function whose time derivative is negative for all the directions in which the controls have
no contribution. A sufficient condition for common stabilizers is derived and the method of its implementa-
tion is demonstrated.

The goal of this paper is then to propose and implement a checking condition for the existence of common
stabilizers for a control system experiencing the outage of actuators. The idea behind the study is to present a
common stabilizer that can tolerate the outage of certain actuators without switching the control law, since
switching the control law could require more control elements to sense the outage of actuators. Otherwise,
the reliability of additional sensor elements would have to be considered. Potential applications of such a sta-
bilizer include space missions or any highly dangerous area where actuators of equipment fail. This issue is
important because retrieving satellites is expensive and instability of equipment in highly dangerous areas
might result in disaster.

There are two main differences between the paper and those of [1]. First, the paper proposes a unified
approach to determine the existence of common stabilizers regardless of whether the outage of actuators
are confined within a pre-specified set, while those of [1] did not. Moreover, it is also shown that the obtained
results for the existence of common stabilizers agree with those of [1] when the outage of actuators are
confined within a pre-specified set. Second, once the common stabilizer is determined to exist by the checking
condition proposed in this paper, the control gain of the common stabilizers can be determined from the
Routh–Hurwitz criteria to fulfill the task, while the choice of control gain in [1] was fixed to one. An example
is also given to demonstrate the importance of the selection of such a control gain.

This paper is organized as follows. Section 2 introduces the problem. An example of which all the faulty
systems are completely controllable does not guarantee the existence of common stabilizers is also given. It
is followed by the derivation of the existence of common stabilizers. The procedure for implementing such
conditions and determining the control gain that guarantees the stability of the faulty systems is also pro-
posed. Section 4 presents an illustrative example to demonstrate the application of the results. The existence
of common stabilizer for the admissible faulty systems of the given example is shown not to be obtainable by
Veillette’s design [1]. Finally, Section 5 gives concluding remarks.
2. Set up of the problem

Consider a linear control system
_x ¼ Axþ Bu; ð1Þ
where x 2 Rn, u 2 Rm, A 2 Rn�n and B 2 Rn�m. Define the set of control matrices
B ¼ fBi 2 Rn�m jBi is obtained from B by replacing some columns or no column

of B with zero column vector and ðA;BiÞ is stabilizableg. ð2Þ
That is, for each Bi 2 B, Bi denotes the control matrix resulting from B experiencing the outage of some actu-
ators. Note that the set B contains a finite number of matrices.

Recall that the goal of this paper is to determine the existence conditions of common stabilizers for all sys-
tem pairs (A, Bi) with Bi 2 B. Note that the outage of actuators considered here is not confined to be within a
pre-specified set.

From linear system theory, it is known that a linear system pair (A, B) is stabilizable if the unstable sub-
space of A is contained in the controllability space of (A, B) (see, e.g., [12]). Using this observation, one might
predict that the class of systems (A, Bi) with Bi 2 B and B as defined in (2) possess a common stabilizer if the
intersection of the controllability space of all the system pairs (A, Bi) contains the unstable subspace of A.
Unfortunately, such a prediction is generally not true. An example is given in Example 1.
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Example 1. Consider system (1) with
A ¼
1 0

0 2

� �
and B ¼

1 1

�1 1

� �
. ð3Þ
Let
B1 ¼
1 0

�1 0

� �
and B2 ¼

0 1

0 1

� �
. ð4Þ
It is easy to check that all the system pairs (A, B) and (A, Bi) for i = 1, 2 are completely controllable. Thus,
according to the definition in (2), we have B ¼ fB;B1;B2g.

Suppose that these three system pairs possess a common stabilizer u = Kx, where
K ¼
k11 k12

k21 k22

� �
. ð5Þ
That is, all the matrices A + BK and A + BiK for i = 1, 2 are Hurwitz. Then, from the Routh–Hurwitz stability
criteria, to provide for the stability of system pair (A, B1) one needs to have tr(A + B1K) = k11 � k12 + 3 < 0
and det(A + B1K) = 2k11 � k12 + 2 > 0, where tr(Æ) and det(Æ) denote the trace and determinant of a matrix.
This results in k11 > 1 and k12 > 4. Similarly, for system pair (A, B2) one needs to have tr(A + B2K) =
k21 + k22 + 3 < 0 and det(A + B2K) = 2k21 + k22 + 2 > 0. This means that k21 > 1 and k22 < �4. By direct
calculation, for system pair (A, B) one finds
detðAþ BKÞ ¼ 2k11ðk22 þ 1Þ þ 2k21ð1� k12Þ � k12 þ ðk22 þ 2Þ. ð6Þ

According to the stability conditions for system pairs (A, B1) and (A, B2) discussed above, all the terms in the
right-hand side of (6) are negative. It then follows that det(A + BK) < 0. This contradicts u = Kx as a stabilizer
for (A, B). Thus, the three given pairs of control systems do not possess a common stabilizer.
3. Main results

In this section, we will employ the Lyapunov approach to derive a condition for the existence of common
stabilizers as given by Theorem 1. Then, we will demonstrate the implementation of the existence condition.
Details are given as below.

3.1. Existence condition for common stabilizers

Suppose the class of systems (A, Bi), Bi 2 B, possesses a common stabilizer K 2 Rm�n and A + BiK shares a
common Lyapunov function V(x) = xTPx. Then xTP(A + BiK)x < 0 for all non-zero x and for all i. This leads
to the following result.

Theorem 1. Consider the class of linear control systems (A, Bi), where Bi 2 B and B is defined as in (2). If there

exists a symmetric positive definite matrix P > 0 such that
xTPAx < 0 for all x 2
[

Bi2B
NðBT

i P Þ n f0g; ð7Þ
then the class of systems (A, Bi), Bi 2 B, possess a common stabilizer. Here, N(Æ) denotes the null space of a ma-

trix. Moreover, a common stabilizer can be chosen in the form u = �a Æ BTPx with a satisfying Condition (9).

Proof. By the application of optimal control design, we choose a common stabilizer candidate in the form of
u = �a Æ BTPx to meet Condition (7). It is observed that, from the special structure of Bi, BiBT ¼ BiBT

i for all
Bi 2 B. The time derivative of V(x) = xTPx along the trajectories of the system _x ¼ Axþ Biu with
u = �a Æ BTPx has the form
_V ¼ 2 � ðxTPAx� a � xTPBiBT
i PxÞ. ð8Þ
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In the following, we will show the existence of a such that _V < 0 for all x 5 0 and for all Bi 2 B. This will then
imply the existence of common stabilizers.

If xTPAx < 0 for all x 5 0, then A must be a Hurwitz matrix [12] and _V < 0 for all x 5 0 and for all Bi 2 B
no matter what a > 0 is chosen. On the other hand, if xTPAx P 0 for some x 5 0, then Condition (7) implies
that xTPBi 5 0 for all i and for all x 2 S, S := {x jxTPAx P 0, kxk = 1}. Since S is a non-empty compact set,
it implies that ci := minx2SkxTPBik > 0 for all Bi 2 B. Thus, c: = minici > 0 exists since B only contains a finite
number of matrices. From the definition of c, all the non-zero points x satisfying xTPAx P 0 have the
property that kxTPBik ¼ k xT

kxk PBik � kxkP c � kxk for all Bi 2 B. Choose the control gain a satisfying
a >
kATPk

c2
> 0. ð9Þ
It then follows from (8) that, if x is a non-zero point with xTPAx P 0, then
_V < 2 � xTPAx� kA
TPk
c2
kxTPBik2

� �
6 2 � xTPAx� kA

TPk
c2
� c2kxk2

� �
6 0
for all Bi 2 B. The conclusion of the theorem is hence provided. h

Remark 1. In general, the control gain a for the common stabilizers as defined in Eq. (9) might not be easy to
directly calculate. However, an alternative way for a may be determined by employing Routh–Hurwitz criteria
(see, e.g., [12]).
3.2. Existence of a matrix P satisfying condition (7)

According to Theorem 1, if one can find a symmetric positive definite matrix P which satisfies Condition
(7), a common stabilizer for the class of systems (A, Bi), Bi 2 B, can then be determined. In this subsection, we
will derive conditions for the existence of such a matrix P. For this purpose, we define the terminology of
nested subset of B.

A subset B1 ¼ fB1; . . . ;Bkg of B as defined in (2) is said to be nested if it has the property:
Range(B1) � Range(B2) � � � � � Range(Bk). Under this condition, we say that B1 corresponds to the worst
case (i.e., minimum number of actuators under operation) for all system pairs (A, Bi) with Bi 2 B1.

First, consider the case in which the outage of actuators is confined within a pre-specified set as considered
by [1,6]. That is, the set B of [1,6] is nested. The existence of a P satisfying Condition (7) can be guaranteed by
solving the algebraic Riccati equation (ARE) associated with the worst case of B, say B�1, as given below:
ATP þ PA� PB�1B�
T

1 P þ H ¼ 0 ð10Þ

for any given H > 0. Indeed, under this case,

S
Bi2BNðBT

i PÞ ¼ NðB�T

1 PÞ and, from (10), 2xTPAx = �xTHx < 0
for all x 2 NðB�T

1 PÞ n f0g. This verifies the existence of P that satisfies Condition (7) and thus the existence of
common stabilizers is guaranteed by Theorem 1. Note that the derived result agrees with that obtained by
Veillette [1].

Next, consider the case in which the outage of actuators are not confined within a pre-specified set. Moti-
vated by the previous case, we divide B, as given by (2), into several nested subsets, say B1; . . . ;Bs. Denote B�j
the worst case of Bj for 1 6 j 6 s. We can check that Condition (7) of Theorem 1 is equivalent to the following
condition:
xTPAx < 0 for all x 2
[s

j¼1

NðB�Tj P Þ n f0g. ð11Þ
In addition, it is not difficult to check that Condition (11) above is equivalent to Condition (12) below by
letting x = Wy and W = P�1:
yTAWy < 0 for all y 2
[s

j¼1

NðB�Tj Þ n f0g. ð12Þ
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Thus, the checking operation for the existence of a P satisfying Condition (7) can be simplified to proceed for
those worst cases associated with each nested set only.

To obtain a matrix P which meets Condition (11), we can choose a matrix among all the worst cases
B�1; . . . ;B�s , say B�1, having minimum rank. Let the rank of B�1 be l. That is,
rankðB�1Þ ¼ min
16j6s

rankðB�j Þ ¼ l. ð13Þ
Before proceeding the derivation of checking condition to provide relation (11) or (12), we present the next
lemma.

Lemma 1. Suppose L 2 Rn�n is a symmetric matrix, M 2 Rn�m and rank(M) = l. Then yTLy < 0 for all

y 2 N(MT)n{0} if and only if (M?)TLM? is a negative definite matrix, where M? is a n · (n � l) matrix whose

columns form an orthonormal basis for N(MT).

Proof. Note that, (M?)TLM? is a negative definite matrix if and only if vT(M?)TLM?v < 0 for every non-zero
v 2 Rn�l. Moreover, the latter condition is equivalent to that uTLu < 0 for every u = M?v 2 N(MT)n{0}. The
conclusion of the lemma is hence implied. h

Now, let L = AW + WAT with W = P�1. The next result follows readily from Eq. (10) and Lemma 1.

Theorem 2. Consider the class of systems (A, Bi), Bi 2 B. Suppose B�1 satisfies the relation (13) and P = W�1 > 0

is the solution of Eq. (10). Then P is a matrix satisfying Condition (11) or (12) if and only if for each j = 1, . . . , s,
ðB�j?Þ

TðAW þ WATÞB�j? is a negative definite matrix. Here, B�j
? denotes a matrix whose columns form an

orthonormal basis for NðB�j TÞ.

For the case of which rankðB�1Þ ¼ 1 and rankðB�j Þ ¼ 1 for some j 5 1, the checking condition (12) corre-
sponding to B�j as given in (14):
yTAWy < 0 for all y 2 NðB�j
TÞ ð14Þ
can be simplified by verifying the positivity of a scalar instead of checking negative definiteness of the
(n � 1) · (n � 1) matrix ðB�j

?ÞTðAW þ WATÞB�j
? as given in Theorem 2 above. Details are discussed as follows.

Suppose A is not a Hurwitz matrix. From Eq. (10) and W = P�1 that AW + WAT has exactly one unstable
eigenvalue. The unstable eigenvalue may be zero or a positive real number. If the unstable eigenvalue is zero,
then yTAWy < 0 for all y 62 E0 ¼ fz j ðAW þ WATÞz ¼ 0g. Here, E0 denotes the eigenspace of AW + WAT asso-
ciated with the zero eigenvalue. Thus, Condition (14) hold if and only if E0 6�NðB�Tj Þ ¼ RðB�j Þ

?. On the other
hand, if the unstable eigenvalue is a positive real number, an equivalent condition can be constructed. Details
are summarized in the next corollary.
Corollary 1. Suppose rankðB�1Þ ¼ 1, rankðB�j Þ ¼ 1 for some j 5 1 and P = W�1 > 0 denotes the solution of Eq.

(10). Let b be a non-zero column of B�j . Then the following two statements hold:

(i) If AW + WAT possesses a zero eigenvalue, then Condition (14) holds if and only if E0 6�RðB�j Þ
?

. That is,

bTv 5 0 for v 2 E0n{0}.

(ii) If AW + WAT has a positive eigenvalue, then Condition (14) holds if and only if
bTðAW þ WATÞ�1b > 0. ð15Þ
Proof. Statement (i) has been discussed in the preceding paragraph of Corollary 1. The proof of (ii) is given in
Appendix. h

To summarize the extended reliable design discussed above, a procedure for the construction of common
stabilizers for system (1) can be listed as follows.
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Algorithm for finding common stabilizers

Step 1. Divide all the stabilizable system pairs into different nested subsets B1; . . . ;Bs, and pick up one of
the worst cases, say B�1 2 B1, among those subsets.

Step 2. Attempt a reliable control design using the method of [1]. That is, given H > 0, solve for P in Eq. (10)
and check whether all the matrices A� B�i B�i

TP , B�i 2 Bi for all i 5 1, are Hurwitz. If it fails to provide
the desired reliable properties with respective to outages outside the pre-specified set of actuators,
then continue to Step 3. Otherwise, go to Step 4.

Step 3. Check the sufficient condition (11) or (12) by employing Theorem 2 or Corollary 1, with P being the
solution of the Riccati equation used in Step 2. If the condition holds, then a scaling of the feedback
gain matrix from Step 2 is guaranteed to work and continue to Step 4. Otherwise, go back to Step 2
with the choice of another worst case.

Step 4. Use the Routh–Hurwitz stability criteria to determine an appropriate scaling a of the control gain
from A� aB�i B�i

TP being Hurwitz for all i = 1, . . . , s.

Note that, if the above procedure fails to construct a common stabilizer, one might attempt to find a new
matrix P by the use of different weighting matrices H in the Riccati equation (10).

4. Illustrative example

This section presents an example to determine the application of the main results as summarize in the pro-
cedure above given in Section 3. As given in Example 2, the existence of common stabilizers for all admissible
faulty systems cannot be provided by using Veillett’s design [1] when both weighting matrices Q and R are
identity matrices.

Example 2. Consider system (1) with
A ¼
1 2 �1

0 0 0

0 1 �1

0
B@

1
CA and B ¼

1 0:1

10 0:05

9 0:01

0
B@

1
CA. ð16Þ
Let B1 and B2 be derived from B which correspond to the failure of the second and first actuators, respectively.
That is,
B1 ¼
1 0

10 0

9 0

0
B@

1
CA and B2 ¼

0 0:1

0 0:05

0 0:01

0
B@

1
CA. ð17Þ
It is easy to check that both (A, B1) and (A, B2) are stabilizable. This leads to B ¼ fB;B1;B2g, which is not
nested. Clearly, B contains two nested subsets B1 ¼ fB1;Bg and B2 ¼ fB2;Bg. The two worst cases associated
with B1 and B2 are B�1 ¼ B1 and B�2 ¼ B2, respectively.

According to Veillette’s method [1], the first thing to do is to solve the following ARE:
ATMi þMiA�MiBiR�1BT
i Mi þ Q ¼ 0; Q > 0 ð18Þ
for i = 1. Then, verify if the matrix A � B2R�1BTM1 is stable. If it is not, redo this process for i = 2 and check
if the matrix A � B1R�1BTM2 is stable. Unfortunately, the method proposed by Veillette does not work in this
example for both R and Q being the identity matrix. Indeed, for i = 1, the eigenvalues of A � B2R�1BTM1 are
{0.921, 0.026, �1.00}; and for i = 2, the eigenvalues of A � B1R�1BTM2 are {0.1, �1, �9.7 · 103}. Although
Veillette’s method might work for the construction of common stabilizers for this example by a suitable choice
of weighting matrices Q and R, however, no guideline of choosing matrices Q and R has been proposed in [1]
for reliable design.
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To employ the proposed methodology, we first solve the ARE (10) for H being the identity matrix. The
unique solution is calculated to be
P ¼
3:685 2:143 �2:469

2:143 1:670 �1:823

�2:469 �1:823 2:158

0
B@

1
CA. ð19Þ
Then, by direct calculation, the index as given in (15) is bT(AW + WAT)�1b = 6.639 · 10�4 > 0, where b is the
non-zero column of B�2 and W = P�1. According to Corollary 1, matrix P = W�1 as in (19) satisfies Condition
(11). The common stabilizer can hence be obtained from Theorem 1 in the form of
u ¼ �a � BTPx for some a > 0. ð20Þ

By applying Routh–Hurwitz criteria on A � a Æ B2BTP, this matrix is verified to be Hurwitz if a > 19.671. By
direct calculation, the eigenvalues of A � a Æ BBTP, A � a Æ B1BTP and A � a Æ B2BTP with a = 25 are found to
be {�392.522, �2.202, �1.076}, {�392.276, �1.224, �0.902} and {�0.128 ± 0.719j, �1.142}, respectively.
These verify the reliable stabilization of the system.

Example 3. Consider system (1) with
A ¼
�1 0 0

0 2 0

0 0 2

0
B@

1
CA and B ¼

1 0 0

0 1 0

1 0 1

0
B@

1
CA. ð21Þ
Since rank(A � 2I) = 1, if follows that the control system cannot be stabilizable if any two actuators fail. For
cases in which only one actuator fails, it is easy to check that the control system is stabilizable when the first or
the third actuator fails. The system is not stabilizable if the second actuator fails, however. This means that
there are two worst cases as defined below:
B�1 ¼
0 0 0

0 1 0

0 0 1

0
B@

1
CA and B�2 ¼

1 0 0

0 1 0

1 0 0

0
B@

1
CA. ð22Þ
The two worst cases are found not to be inclusive.
The solution of Eq. (10) with H being chosen to be the identity matrix is found to be
P ¼
0:5 0 0

0 4:236 0

0 0 4:236

0
B@

1
CA. ð23Þ
By direct calculation, the matrix ðB�1
?ÞTðAW þ WATÞB�1

? and ðB�2
?ÞTðAW þ WATÞB�2

? are solved to be �4 and
�1.528,respectively,whicharenegativedefinite.AccordingtoTheorem2,matrixP = W�1as in(23)hencesatisfies
Condition (11). Theorem 1 then implies the existence of common stabilizers. By applying Routh–Hurwitz criteria
on A � a Æ B2BTP, this matrix is verified to be Hurwitz if a > 0.62. With a = 1, the eigenvalues of A � a Æ BBTP,
A � a Æ B1BTP and A � a Æ B2BTP are calculated to be {�1.105, �2.236, �6.867}, {�1, �2.236, �2.236} and
{�0.367, �3.369, �2.236} respectively, which verifies the reliable stabilization of the system.
5. Conclusions

In this paper, we has employed the Lyapunov approach to study the existence conditions of common sta-
bilizers for linear control systems. The control systems considered in this paper result from an actual system
where some actuators failed. The unique aspect of this study, compared with earlier studies, is that the possible
outage of the actuators is not confined within a pre-specified set. In this paper, we have obtained a sufficient
condition for the existence of common stabilizers and provided a procedure to implement such a condition.
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When the possible outage of actuators are confined within a pre-specified set, the obtained results agree with
those previous findings [1].

Acknowledgement

This research was supported by the National Science Council, Taiwan, ROC under Grant NSC 92-2213-E-
009-124 and NSC 91-2213-E-009-034.

Appendix. Proof of (ii) for Corollary 1

Suppose AW + WAT is in diagonal form. Let AW þ WAT ¼ diagðk2
1;�k2

2; . . . ;�k2
nÞ. We now show that Con-

dition (15) implies Condition (14). Denote b = (b1, . . . , bn)T and y ¼ ðy1; . . . ; ynÞ
T 2 NðB�j

TÞ n f0g. Condition
(15) then becomes
Xn

i¼2

b2
i =k

2
i < b2

1=k
2
1. ðA:1Þ
This implies that b1 5 0. From the structure of AW + WAT, if y1 = 0, we then have yT(AW + WAT)y < 0. For
y1 5 0, bTy ¼ b1y1 þ

Pn
i¼2biyi ¼ 0, which implies that
�1 ¼
Xn

i¼2

biyi

b1y1

¼
Xn

i¼2

bi

b1

k1

ki

ki

k1

yi

y1

� �
. ðA:2Þ
By employing Cauchy–Schwartz inequality from (A.2) and the inequality from (A.1), we have
1 6
Xn

i¼2

b2
i k

2
1

b2
1k

2
i

 ! Xn

i¼2

k2
i y2

i

k2
1y2

1

 !
<
Xn

i¼2

k2
i y2

i

k2
1y2

1

; ðA:3Þ
which leads to
Pn

i¼2k
2
i y2

i > k2
1y2

1 and yTðAW þ WATÞy ¼ k2
1y2

1 �
Pn

i¼2k
2
i y2

i < 0.
Next, we show that Condition (14) implies (15) by contradiction. Suppose there exists a non-zero vector

y 2 NðB�j
TÞ such that Condition (15) does not hold. Thus, we have b2

1=k
2
1 �

Pn
i¼2b2

i =k
2
i 6 0. This implies that

(b2, . . . , bn)T is a non-zero vector since b is a non-zero vector. Choose y ¼ ð
Pn

i¼2b2
i =k

2
i ;�b1b2=k

2
2; . . . ;

�b1bn=k
2
nÞ

T. It is clear that y is a non-zero vector and y 2 NðB�Tj Þ. That is, bTy = 0. By direct calculation,
we have
yTðAW þ WATÞy ¼ k2
1

Xn

i¼2

b2
i

k2
i

 ! Xn

i¼2

b2
i

k2
i

� b2
1

k2
1

 !
P 0.
For the case of which AW + WAT is not a diagonal matrix, a similarity transformation can be pre-applied
to fulfill the proof. Since AW + WAT is a symmetric matrix, there exists an orthogonal matrix U such that
UTðAW þ WATÞU ¼ diag ðk2

1;�k2
2; . . . ;�k2

nÞ, where ki > 0 for all i = 1, . . . , n. Let z = Uy and D = diagðk2
1;

�k2
2; . . . ;�k2

nÞ. It is clear that zTDz < 0 for all z 2 NððUB�j Þ
TÞ and Condition (15) becomes (Ub)TD�1(Ub) > 0.

The rest of the proof is similar to the one given above and is hence omitted. The conclusion of Corollary 1 is
hence implied. h
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