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Abstract

A parallel electrostatic Poisson’s equation solver coupled with parallel adaptive mesh refinement (PAMR) is developed in this paper. The
three-dimensional Poisson’s equation is discretized using the Galerkin finite element method using a tetrahedral mesh. The resulting matrix
equation is then solved through the parallel conjugate gradient method using the non-overlapping subdomain-by-subdomain scheme. A PAMR
module is coupled with this parallel Poisson’s equation solver to adaptively refine the mesh where the variation of potentials is large. The parallel
performance of the parallel Poisson’s equation is studied by simulating the potential distribution of a CNT-based triode-type field emitter. Results
with ∼100 000 nodes show that a parallel efficiency of 84.2% is achieved in 32 processors of a PC-cluster system. The field emission properties
of a single CNT triode- and tetrode-type field emitter in a periodic cell are computed to demonstrate their potential application in field emission
prediction.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Field emission display (FED) has attracted tremendous at-
tention in the past decade [1–6]. The advantages of apply-
ing FED in display technology include lower driving voltage,
higher lighting frequency, and possibly, better display resolu-
tion. From the Fowler–Nordheim law [7], the magnitude of the
electron flux emitted from the surface depends upon the lo-
cal electric field at the surface and the work function of the
solid. In addition to finding materials with lower work func-
tions, enhancing the local electric field near the surface is one
of the most critical tasks in improving field emission proper-
ties. As a trial-and-error method is often expensive in terms of
time and cost, a computer simulation may speed up the design
process by revealing the detailed physics with the FED. In prac-
tice, the geometry of the field emitter and the gates involved in
the FED design is three dimensional and often very compli-
cated [8–10]. Thus, it is important to develop a simulation tool
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which is accurate, fast, and capable of handling complicated
geometry for predicting the distribution of the electrical field
around the emitters. In the current study, we intend to present
a simulation tool using the finite-element method that has the
above-mentioned important features for field emission predic-
tion.

In the past, several numerical studies have been conducted
for the prediction of field emission properties, e.g., [11–16].
Most of these studies use either the 2D or 3D finite differ-
ence method [12–16], or the 2D finite element approach [11]
for discretizing the electrostatic Poisson’s equation. As men-
tioned earlier, a practical FED design often involves three-
dimensional objects with a complicated geometry, rendering
the use of the finite-difference method as very difficult or
unsuitable. The finite-element or finite-volume method using
unstructured grids should represent the best choice for the nu-
merical method in this regard. In addition, parallel processing
can be necessary in simulating the practical three-dimensional
design of field emitters or when including space-charged ef-
fect with high emission currents in the particle-in-cell (PIC)
method [14–16]. Otherwise, in Refs. [14–16], the computa-
tional time for a typical run to emit only a few electrons can
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take up to one week. Also, the accuracy of the electron-flux
prediction from the emitters strongly depends on the accu-
racy of the local electrical field at the surface, which makes
the grid resolution at the surface a critical issue in the simu-
lation. This concern necessitates the use of an adaptive mesh
refinement to achieve accuracy in predicting the electrical
field at the surface, which is the main concern of the current
study.

In this study, we present a parallel three-dimensional Pois-
son’s equation solver using the Galerkin finite-element method
coupled with parallel adaptive mesh refinement using an un-
structured tetrahedral mesh. In addition, the applications used
to predict the field emission properties are demonstrated in this
paper.

The finite-element method for modeling the Poisson’s equa-
tion is described next, followed by a detailed description of the
proposed parallel implementation. The general procedures of
PAMR are then enumerated step by step. In addition, the cou-
pling of this parallel Poisson’s equation solver with a parallel
adaptive mesh refinement is described. Then the results of the
parallel performance of this solver and the coupling of PAMR
are also discussed, respectively. Finally, the study is summa-
rized with some important conclusions and recommendations
for future researches.

2. Numerical method

2.1. Poisson’s equation

Poisson’s equation for the electrostatic distribution can be
written as,

(1)∇2φ = − ρ

ε0
,

where φ is the electric potential, ρ is the volume density of the
free charges, and ε0 is the permittivity of free space. Without
considering the space charge effect caused by the emitted elec-
trons around the emitters, Poisson’s equation is reduced to a
Laplacian equation. However, in the current study, we still dis-
cretize the Poisson’s equation, since our interest lies in includ-
ing the space charge effect using the particle-in-cell (PIC) [17]
method for the prediction of field emission and low-temperature
plasma in the very near future.

2.2. Finite-element discretization of Poisson’s equation

By applying the Galerkin weighted residual method with the
trial solution (φ(e)) assumption, the Poisson’s equation is then
discretized in an element as
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where �τ (e)
n is the inward-normal flux to the element face. Note

that N
(e)
i (x, y, z) is the shape function, and n = 4 in Eq. (2)

since we use a tetrahedral element in the current study. Em-
ploying the linear shape function with
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where Vc is the element volume, and the coefficients of
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ition of the shape function in the finite-element theory, in which
N

(e)
i is unity at the supporting node i and zero at other nodes in

an element.
By assembling all element equations throughout the compu-

tational domain, the system matrix equation becomes,

(6)K
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where K
(s)
i,j is the coefficient matrix, and F

(s)
i is the loading

vector. This system matrix equation is then solved using the
conjugate gradient (CG) method with nonzero entries stored
in a compressed sparse row (CSR) format that is computation-
ally efficient both in storage and matrix operations [18]. In the
CSR format, a one-dimensional primary array is used to store
nonzero entries only, and another two indexing arrays are con-
structed to indirectly address the nonzero entries in the primary
array to the indices of the coefficient matrix. This CSR format
is very efficient in matrix-by-vector product operations, which
is the most time-consuming part for the most iterative scheme.

2.3. Parallel implementation of Poisson’s equation solver

In the current parallel FEM for the Poisson’s equation, a
geometrical non-overlapping subdomain-by-subdomain (SBS)
method is used [18]. The global coefficient matrix is stored as
a partitioned matrix, and the dominant matrix-by-vector prod-
uct and inner product of two vector operations of the coefficient
matrix in the conjugate gradient method are performed on the
SBS basis. In the SBS method, we first decompose the compu-
tational domain Ω into p non-overlapping subdomains as

(7)Ω =
p⋃

i=1

Ωi

and

(8)Ωi ∩ Ωj = {} when i �= j.
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Since domain Ω has been partitioned, the unknowns, ā, are
ordered in the following manner. Each of the interior vertices in
Ω1 (e.g., ā1) is followed by each of the interior vertices in Ω2
(e.g., ā2), etc. up to each of the interior vertices in Ωp (e.g., āp).
It then follows that the system equation which may be expressed
in a block matrix is formed as

(9)
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In Eq. (9), each of the submatrices in the block-arrowhead
structure of the coefficient matrix stems from the non-overlap-
ping domain decomposition. The formation of this block-
arrowhead structure of the coefficient matrix depends on how
we number the nodes in the current study. In each subdomain,
we number the internal nodes first followed by the interproces-
sor nodes.

During the process of element assembly, both the blocks

Ki and F i have contributions only from the internal nodes in

each processor i. For each processor i, the blocks Bi and B T
i

have contributions from the internal nodes to the interprocessor

nodes and vice versa. Both the blocks Ks and F s have contri-
butions only from all of the interprocessor nodes and require
communication among processors for element assembly. Once
each processor has concurrently assembled each of the blocks

Bi,B
T
i ,Ki , and F i , the system equation (9) is then stored in

a distributed manner. It is then ready to be solved by parallel
CG, the details of which can be found in Saad’s book [18] but
are skipped here for brevity. In the current study, the conver-
gence criterion of the relative residual in parallel CG is 10−7,
unless otherwise specified. In addition, a parallel multilevel
graph-partitioning library [19] is used to partition the computa-
tional domain whenever necessary since the unstructured mesh
is adopted in the current study.

2.4. Parallel adaptive mesh refinement (PAMR)

Fig. 1 shows the proposed overall procedures of parallel
adaptive mesh refinement for an unstructured tetrahedral mesh.
Only the general procedures are described in this paper, while
the details and results of the parallel implementation can be
found elsewhere [20]. Basically, the parallel mesh refinement
procedures in Fig. 1 are similar to those presented earlier for
serial mesh refinement in this journal [21]. In the serial mesh
refinement, the cells are first examined to identify if cell refine-
ment is necessary. If so, then they are refined “isotropically”
into eight child cells. The generated hanging nodes are then re-
moved following the procedures proposed in Wu et al. [21] in
which the cells are further refined into two, four, or eight child
cells.

However, the detailed procedures and related data structure
become more complicated than those in serial mesh refinement
because of the parallel processing. Domain decomposition is
also used in line with parallel implementation of the current
Poisson’s equation solver. Each spatial subdomain belongs to a
specific processor in practice. The overall procedure shown in
Fig. 1 can be summarized as follows:

1. Preprocess the input data at the host processor, and distrib-
ute them to all other processors.

2. Index the cells which require refinement based on the re-
finement criteria. In the current study, we use the variation
of potentials among elements as the criterion for cell re-
finement which, in practice, is equivalent to a generally ac-
cepted error estimator as will be shown in the next section.

3. Check if further mesh refinement is necessary. If it is, then
proceed to the next step. If not, proceed to Step 9.

4. Add new nodes into those cells that require refinement.
(a) Add new nodes onto all edges of isotropic cells.
(b) Add new nodes into the anisotropic cells which require

further refinement as decided upon in the following
steps.

(c) Communicate the hanging-node data to corresponding
neighboring processor if the hanging nodes are located
at IPB.

(d) Remove the hanging nodes following the procedures
as shown in Wu et al. [21]. The basic idea is to remove
the hanging nodes for all kinds of conditions, and then
refine the cell into two, four, or eight child cells.

5. Unify the global node and cell numberings caused by the
newly added nodes in all processors.
(a) Add up the number of the newly added nodes in each

processor, excluding those located at interprocessor
boundaries (IPBs).

(b) Gather this number from all other processors, and add
them up to obtain the updated total number of nodes,
including old and new nodes, but excluding the newly
added nodes at IPBs.

(c) Build up the updated node-mapping and corresponding
cell-mapping arrays for those newly added nodes in the
interior part of each subdomain based on the results in
Step 5(b).

(d) Communicate the data of newly added nodes at the
IPBs among all processors.

(e) Build up the node-mapping array for the new nodes
received at IPBs in each processor.

6. Build up new connectivity data for all cells to include the
newly added nodes.

7. Build up the new neighbor-identifying array based on the
new connectivity data obtained in Step 6.
(a) Reset the neighbor-identifying array.
(b) Build up the neighbor-identifying arrays for all cells

based on the new connectivity data, excluding the data
associated with the faces lying on the IPBs that re-
quire the updated information of the global cell number
which is not yet known at this stage.

(c) Record all the neighbor-identifying arrays that have not
been rebuilt in Step 7(b).

(d) Broadcast all the recorded data in all processors.
(e) Build up the neighbor-identifying arrays on the IPBs,

considering the overall connectivity data structure.
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Fig. 1. Flowchart of the parallel mesh refinement module.
8. Decide if it reaches the preset maximum number of refine-
ment. If it does, then proceed to the next step. Otherwise,
return to Step 3.

9. Synchronize all processors.
10. The host processor gathers and outputs the data.
In the current study, by coupling the PAMR with the par-
allel Poisson’s equation solver as stated in Step 3, the maxi-
mum number of refinement is set to be “one”, since the option
whether further refinement is necessary is decided outside the
PAMR, as can be seen in the next section.
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2.5. Coupling of PAMR with parallel Poisson’s equation
solver

The PAMR presented in the previous section can be easily
coupled to the current parallel Poisson’s equation solver since
both utilize 3D unstructured tetrahedral mesh and MPI for data
communication. One can readily wrap up the PAMR as a li-
brary and insert it into the source code of any parallel numerical
solver to be used. However, some problems may occur due to
memory conflicts between the inserted library and the numeri-
cal solver itself that could reduce the problem size one can han-
dle in practice. As such, a simple coupling procedure, written in
shell script (Fig. 2) that is standard on all Unix-like systems, can
be prepared to link the PAMR and the current parallel Poisson’s
equation solver. In doing so, we can keep the source codes intact
and without alterations. Indeed, it is especially justified if only
a steady state of the physical problem is sought, in which nor-
mally only several times of mesh refinement is enough to have a
fairly satisfactory solution. Thus, the total I/O time, which is in
proportion to the number of couplings in switching between two
codes, can be reduced to a minimum in practical applications.
In addition, as shown in Fig. 2, after identifying those cells that
require refinement before PAMR, the domain is repartitioned
based on the new mesh refinement requirements. For example,
the weight factors of the cells (vertex in graph theory) are set as
eight for those cells which are flagged to be refined; otherwise,
they are set as unity. With this distribution of weight factors
as the input to ParMetis [19] (a graph-partitioning tool), an ap-
proximate (but rather good) load balancing can be achieved in
the PAMR module. Then the PPES reads in the output refined
mesh from the PAMR module and partitions the new mesh with
equal weight factors for all cells, in which the workload is bal-
anced in the PPES.
The current parallel Poisson’s equation solver along with
PAMR is implemented and tested on a PC-cluster system with
the Linux OS at the National Center for High-Performance
Computing in Taiwan (64-node, dual processor and 8 GB RAM
per node). The standard message-passing interface (MPI) is
used for data communication. It is thus expected that the cur-
rent parallel code will be highly portable among the memory-
distributed parallel machines that are running with the Linux
(or its equivalent) operating system.

3. Results and discussions

3.1. Validation of the parallel Poisson’s equation solver

Many analytical solutions of Poisson’s equation are available
for comparison either with or without the source term. In the
current study, we have selected one problem without a source
term and another with a constant source term. The former is a
grounded conducting sphere with diameter (Dsphere) 2 meters
immersed in a uniform electric field ( �E = 10 volts/m, ∼40 000
elements, 20 processors), while the latter is a uniformly charged
distribution between two infinite, grounded conducting plates
at L = 0 m and L = 0.02 m (quasi-1D, number density of
singly-charged ions = 1016 m−3, ∼8500 elements, 20 proces-
sors). About ∼56 000 particles are used. The charge weighting
used in this is based on the volume coordinates which origi-
nated from the finite element method. The simulation and an-
alytic solutions of these two problems are both in excellent
agreement with the analytical solution as shown in Fig. 3(a)
and (b), respectively. These results validate the accuracy of the
current parallel Poisson’s equation solver.
Fig. 2. Flowchart of the coupled PPES-PAMR method.
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Fig. 3. Contours of the potential distribution of (a) a grounded conducting sphere immersed in a uniform electric field and (b) uniform positive charges distribution
between two infinite grounded conducting planes.
3.2. Parallel performance of the Poisson’s equation solver

The simulation of a typical single CNT field emitter within
a periodic cell using 0.47 million elements (∼97 000 nodes), as
shown in Fig. 4, is employed to test the parallel performance
of the current Poisson’s equation solver. This size of the mesh
is typical for further production run as will be presented later.
Only 1

4 of the volume is used for the simulation by taking ad-
vantage of the symmetry in this problem. The gate voltage is
applied with 150 volts, while the cathode and anode electrodes
are grounded and applied with 400 volts, respectively. At the
planes of symmetry, Neumann boundary conditions are used.
A very refined grid (Fig. 5) is used near the silicon tip to im-
prove the accuracy of the predicted electrical field. No parallel
adaptive mesh refinement is used in the simulation since at this
stage, we are only interested in obtaining the parallel perfor-
mance of the Poisson’s equation solver.

Fig. 6 illustrates the parallel speedup as a function of the
number of processors up to 32. The corresponding time break-
down of various components of the solver along with speedup
is summarized in Table 1. The runtime using a single processor
is about 138.17 s, while it is reduced to 5.13 s using 32 proces-
sors, which results in ∼26.93 of parallel speedup. Most of the
time is consumed in the parallel CG matrix solver, in which the
percentage of communication time generally increases with the
number of processors used. Note that the communication time,
including the send/receive and all reduce commands required in
a parallel CG solver, is relatively short (∼3.53 s or 4.5% of the
total time) at 2 processors which is attributed to the fast access
to the same memory by the dual-processor per node architecture
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Fig. 4. Schematic diagram of the simulation domain for a typical CNT tri-
ode-type field emitter within a periodic cell. The important geometrical para-
meters are: R = 500 nm, r = 10 nm, he = 600 nm, h = 500 nm, L = 49.3 µm,
d = 200 nm and W = 25 µm.

of this cluster system. An appreciable portion of the runtime
is spent in the communication for a large number of proces-
sors, e.g., 35.4% at 16 processors. A further improvement of
the solver efficiency by adding a robust parallel preconditioner
before the parallel CG solver is highly expected and will be re-
ported elsewhere in the future. Nevertheless, the present results
clearly show that the parallel implementation of the Poisson’s
equation using a subdomain-by-subdomain procedure performs
very well for the typical problem size we employ in the field
emission prediction. A smaller problem size is not tested in the
current study since it is irrelevant for this kind of application.
It is expected that the parallel speedup can be even better if a
larger problem size is simulated, e.g., for an array of field emit-
ters. Thus, the current parallel implementation can greatly help
to reduce the runtime required for the parametric study of opti-
mizing the field emitter design.

3.3. Performance of parallel adaptive mesh refinement

A case with the same boundary conditions as the above
test case for parallel performance is used to demonstrate the
improvement of prediction using parallel adaptive mesh refine-
ment. Fig. 7 shows a close-up view of the mesh distribution
near the single CNT tip using PAMR where the initial mesh is
rather coarse (7006 nodes), while the level-5 mesh is very fine
(61 241 nodes) near the tip. In this case, an element is refined
into eight child elements if the standard deviation of the poten-
tials among the nodes of this element is larger than the value of
a preset criterion, εref. In this case, εref is set to 0.08. Table 2
lists the number of nodes/elements and the corresponding max-
imal electric field in the simulation domain at different levels
of mesh refinement. In addition, the data in the parentheses are
Table 1
Time breakdown and speedup of the different number of processors

Processor no. 1 2 4 8 16 32

Total time (seconds) 138.17 79.17 42.53 14.78 8.21 5.13

CG solver time (%) 98.8 99.1 94.33 76.79 85.14 94.54
Matrix assembling time (%) 0.44 0.36 0.32 0.47 0.42 0.31
Communication time (%) N/A 4.45 28.1 34.5 35.32 37

Speedup 1 1.74 3.25 9.35 16.83 26.93

Table 2
Evolution of simulation parameters at different levels of mesh refinement.
(EMAX is the local maximum electric field strength at the surface of CNT field
emitter.)

Refinement
level

Number of
nodes

Number of
elements

EMAX (V/nm)

0 7006 (7006*) 27 814 (27 814) 8.218482 (8.21848)

1 22 750 (24 892) 110 218 (12 1064) 10.20636 (10.20257)

2 34 927 (38 896) 175 254 (196 378) 11.50804 (11.50135)

3 44 080 (47 984) 225 156 (245 975) 11.54894 (11.51166)

4 51 638 (55 488) 264 259 (284 766) 11.32366 (11.32647)

5 61 241 (59 279) 313 092 (306 368) 11.32303 (11.32665)

6 67 173 345 307 11.32324

* Numbers in the parentheses represent numerical data obtained using a pos-
teriori error estimator with prescribed global relative error εpre = 0.0003.

obtained by using an a posteriori error estimator as proposed
by Zienkiewicz and Chu [24]. We have employed a very sim-
ple gradient recovery scheme by averaging the cell values of the
FE solution to extract the “exact” solution of the electric field
in each cell. A prescribed global relative error εpre of 0.0003 is
used to control the level of accuracy. The absolute error in each
element is then compared with a current mean absolute error
at each level, based on εpre, to decide if refinement is required.
From Table 2, it is clear that the results are nearly the same by
using either the variation of potential or the error estimator in
the current study, although the implementation of variation of
potential is more cost effective. For all the data presented in the
present study, mesh refinement based on variation of potential
is used throughout the study, unless otherwise specified.

After level-5 refinement, the maximum value of the electric
field near the tip reaches an approximately constant value of
11.323 V/nm. Note that the parallel performance of the PAMR
module is not discussed here for brevity purposes but it appears
in detail elsewhere [20]. All the cases shown in succeeding sec-
tions apply this mesh refinement module for a better resolution
near the emitter tip.

3.4. Application to field emission prediction

A completed parallel Poisson’s equation solver with parallel
adaptive mesh refinement is used to compute the electric field
distribution of a CNT-based field emitter without considering
space-charge effect. The generally accepted Fowler–Nordheim
theory [7] for a clean metal surface relates the field emission’s
current density, J , to the electric field at the tip surface of the
emitter, E, in volts/nm and the work function of the emitter, φ,
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Fig. 5. Surface mesh distribution of a typical single CNT triode-type field emitter within a periodic cell. Only 1
4 of a periodic cell is simulated for the study of
parallel performance of the Poisson’s equation solver.
in electron volts (eV) by the equation,

(10)J = AE2

φt2(y)
exp

(
−B

φ3/2

E
v(y)

)
Ampere/cm2,

where

(10a)A = 1.5414 × 10−6,

(10b)B = 6.8309 × 107,

(10c)y = 3.79 × 10−4E1/2/φ

and y is the image charge lowering the contribution to the work
function. The functions t (y) and v(y) are approximated by
t2(y) = 1.1, v(y) = 0.95 − y2.

The Electron trajectory from the emitter surface to the an-
ode surface is traced on the unstructured mesh based on the
computed electric field distribution from the Poisson’s equa-
tion solver, by using the cell-by-cell particle tracking technique
developed previously for DSMC simulation [22]. The current
density is then computed as the time average of the accumu-
lated charges due to electron flow reaching the anode surface.

Fig. 4 depicts the simulation domain for a typical CNT
triode-type field emitter within a periodic cell. Only 1

4 of the
full emitter is used due to the intrinsic symmetry with Neumann
boundary conditions applied at all symmetric planes. Important
Fig. 6. Parallel speedup as a function of the number of processors on the
PC-cluster system (maximum 32 processors) for CNT triode-type field emitter
with gate voltage 150 volts, anode voltage 400 volts and the grounded cathode.
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Fig. 7. Close-up view of the unstructured adaptive surface mesh at different levels for a single CNT triode-type field emitter with gate voltage 150 volts, anode
voltage 400 volts and the grounded cathode (εref = 0.08). (a) Level-0 (7006 nodes). (b) Level-1 (22 750 nodes). (c) Level-2 (34 927 nodes). (d) Level-5 (61 241
nodes).
geometrical conditions (also summarized in part in Table 3)
include a tip radius of 10 nm, an emitter height of 600 and
400 nm, a distance of 0.5 µm between the gate and the cathode,
a gate radius of 0.5 µm above the emitter, a distance of 50 µm
between the anode and the cathode, a thickness of the gate of
0.2 µm, and the half width of each cell measuring 25 µm. The
applied voltage of the gate ranges from 110 to 190 volts, while
the cathode and anode are grounded and applied with 400 volts,
respectively. The refined final number of nodes used for the
simulation is approximately 90 000. The typical results of the
predicted potential distribution along with electric field distrib-
ution (gate voltage = 150 volts, height = 600 nm) are shown in
Fig. 8(a) and (b), respectively. The maximal value of the elec-
tric field can reach up to ∼11.47 V/nm at the emitter tip when
the gate voltage is 150 volts.

The predicted current and voltage data with an emitter height
of 600 nm are presented in Fowler–Nordheim format in Fig. 9,
with an anode voltage of 400 volts. It is clear that the com-
puted I–V data follow the Fowler–Nordheim law very well as
Table 3
The important geometrical parameters of CNT triode- and tetrode-type field
emitters

Triode-type (Fig. 7) Tetrode-type (Fig. 12)

he 600 nm 600 nm
r 10 nm 10 nm
R 500 nm 500 nm
Rf N/A 1500 nm
d 200 nm N/A
h 500 nm N/A
d1 N/A 200 nm
d2 N/A 200 nm
h1 N/A 500 nm
h2 N/A 500 nm
L 49.3 µm 48.6 µm
W 25 µm 25 µm

the gate voltage varies from 110 to 160 volts. The fitted field
enhancement factor (β = E d

V
) is 26.1, where V is the applied

cathode voltage, and d is the vacuum gap in the field emission
diode configuration. The corresponding electron trajectories are
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Fig. 8. Contours of the (a) electric potential and the (b) electric field distribution
near the tip of the CNT triode-type field emitter with gate voltage 150 volts,
anode voltage 400 volts and the grounded cathode.

illustrated in Fig. 10 at two different gate voltages (110 and
160 volts) with a height of 600 nm. The results show that the
spreading angle of electrons from the tip increases with the in-
creasing gate voltage. This is attributed to the fact that the area
of the tip surface which has a larger local electric field increases
as the applied voltage increases, which results in the greater
emission of electrons from the side of the emitter near the tip.
As will be shown later, adding a focusing gate can help to ef-
fectively reduce the spreading angle.

The effects of CNT height and gate voltage to the emission
current under an applied voltage of 400 volts are presented in
Fig. 11, with the CNT measuring 400 and 600 nm, respectively.
Fig. 9. FN plot of the field emission characteristics of CNT triode-type field
emitter (height is 600 nm) with gate voltage 110–160 volts, anode volt-
age 400 volts and the grounded cathode. (S ≡ slope = −3244.25φ3/2/β ,
φ = 4.52 eV.)

The results show that the turn-on voltage increases with the de-
creasing height of the CNT emitter. Also, the emission current
increases dramatically with the given CNT height. This is rea-
sonable since the larger the height of the CNT, the larger the lo-
cal electric field which results at the tip surface (shorter anode-
cathode distance with the same voltage difference), which in
turn induces greater emission of electrons.

Fig. 12 shows schematically the same field emitter as shown
in Fig. 4 with an additional focusing gate in-between the gate
electrode and anode. Most geometrical conditions (also sum-
marized in part in Table 3) are the same as those in Fig. 4,
except for the distance between the focusing electrode and the
gate electrode measuring 0.5 µm, the thickness of the focus-
ing electrode measuring 0.2 µm, and the radius of the hole in
the center of the focusing electrode which is 1.5 µm. Similar to
that in the previous case without the focusing gate, only 1

4 of a
periodic cell is used for the simulation. Fig. 13(b)–(d) present a
comparison of the focusing effects of electron trajectories using
different focusing electrode voltages (5, 0, −5 volts). Likewise,
data involving the absence of focusing electrode are presented
for the purpose of comparison (Fig. 13(a)). The results show
that the addition of a focusing electrode above the gate elec-
trode can effectively reduce the spreading angle of the electron
trajectories, which can possibly increase the resolution and the
intensity at the anode. Among the cases simulated, focusing the
electrode with 5 volts represents the best choice in focusing the
electron flows at the anode.

The above computational examples (Figs. 4 and 12) only
serve to demonstrate the capability of the current parallel Pois-
son’s equation solver using FEM with parallel adaptive mesh
refinement in predicting field emission properties with com-
plicated geometries. No thorough parametric studies have been
explored in the current study, although such are worthy of fur-
ther investigation.
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Fig. 10. Trajectories of the emitted electrons inside the periodic cell of CNT triode-type field emitter with the grounded cathode, anode voltage 400 volts and two
different gate voltages: (a) 110 volts, (b) 160 volts.
Fig. 11. Effect of the gate voltage on the emission current for two different CNT
triode-type field emitter heights with anode voltage 400 volts and the grounded
cathode.

4. Conclusions

A parallel electrostatic three-dimensional Poisson’s equa-
tion solver using the Galerkin finite-element method coupled
with parallel mesh refinement (PAMR) using an unstructured
tetrahedral mesh is developed in this paper. The parallel perfor-
mance of the parallel Poisson’s equation is also studied using
a triode-type CNT field emitter. The results show that a par-
allel efficiency of 84.2% is achieved using 32 processors with
a problem size pertinent to the application in the prediction of
field emission properties. A completed code is then applied to
Fig. 12. Schematic diagram of the simulation domain for a typical CNT
tetrode-type field emitter within a periodic cell. The important parameters
are: R = 500 nm, Rf = 1500 nm, r = 10 nm, he = 600 nm, h1 = 500 nm,
h2 = 500 nm, L = 48.6 µm, d1 = 200 nm, d2 = 200 nm and W = 25 µm.

compute the field emission properties of the triode-type CNT
field emitter with and without a focusing electrode to demon-
strate its capability in predicting field emission properties with
complicated geometries. Parametric studies using this code for
some practical cases considering multi-CNT emitters are cur-
rently in progress and will be reported in the near future. In
addition, a study predicting the field emission current by con-
sidering the space-charge effect caused by emitted electrons
using the particle-in-cell method [23] is also in progress.
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Fig. 13. Comparisons of the trajectories of the emitted electrons between (a) CNT triode-type field emitter with the grounded cathode, anode voltage 400 volts and
the gate voltage 150 volts and tetrode-type field emitter with the additional three different focusing voltages: (b) 5 volts, (c) 0 volts, (d) −5 volts.
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