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We have investigated the effect of the Rashba spin splitting and a magnetic field on the energy levels
of electrons in parabolic quantum dots. We find that with an increase in the Rashba parameter, the
spin-orbit interaction mixes states of higher angular momentum together. In the absence of a
magnetic field, the energy levels of the electrons are doubly degenerate and decrease as the Rashba
parameter increases. In the presence of a magnetic field, this degeneracy is removed and the energy
splitting of the spin states increases with the increase in both the Rashba parameter and the magnetic
field. The Fermi energy level as a function of the magnetic field shows oscillatory behavior due to
the crossings between the energy levels of the system. The magnetization of the electron gas is
investigated and shows strong oscillations with the magnetic field for large values of the Rashba
parameter. © 2006 American Institute of Physics. �DOI: 10.1063/1.2201847�
I. INTRODUCTION

The exploration of spintronics �spin electronics� for
quantum computing1–3 is one of the most exciting fields for
future developments in high-speed computing and data stor-
age. The use of spin states rather than charge states as quan-
tum bits in semiconductor materials is attractive because the
spin state is insensitive to electronic noise in the device
environment.4 The polarization of the spins is expected to
last long enough at low temperatures so that quantum com-
putation can be carried out. It has been demonstrated that
controlled spin transfers between electrons are possible in a
spin-polarized two-dimensional electron gas �2DEG�.5 The
Rashba6 spin-orbit interaction �SOI� due to the lack of inver-
sion symmetry caused by the confinement potential is con-
sidered as a possible mechanism to control and manipulate
electron states via gate voltages.7–11 It is also the basis of the
spin dependent field-effect transistor �spinFET� proposed
by Datta and Das.12 In order to gain better insight of the
influence of the electron spin on the carrier transport in
nonmagnetic semiconductor nanostructures, considerable
research has been done on the fundamental physics and ap-
plication aspects of the problem. The effect of a magnetic
field on the transport properties in low dimensional nano-
structures �quantum wells, wires, and dots� with the Rashba
SOI has been investigated both experimentally9–11 and
theoretically.13–24 One of the major tasks of the theoretical
investigations has been to evaluate the electron energy spec-
tra for the nanostructures in the presence of the Rashba SOI
by using the two-band13–24 and eight-band25 models. Re-
cently, theoretical investigations of the SOI effects in a para-
bolic quantum dot were reported using the two-band model
for the low field magnetization including the electron-
electron interaction effects by Chakraborty and Pietläinen22
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and for the energy levels by Kuan et al.21 Debald and
Emary23 have shown, using a model that is formally equiva-
lent to that of Jaynes and Cummings,24 that the SOI can
couple two states of adjacent angular momentum and oppo-
site spin which results in a energy splitting.

The main purpose of this paper is to study the influence
of the Rashba SOI on the energy levels of parabolic quantum
dots in magnetic fields. To solve the one particle Schrödinger
equation for electron spins �up and down�, we adopt the
wave functions proposed in Refs. 22 and 26 in polar coordi-
nates. We show that the assumption that the angular momen-
tum quantum number m is a good quantum number made in
Ref. 21 is incorrect in the presence of the Rashba SOI. To
ensure the correctness of the numerical results, we also solve
the same problem in the x-y coordinate system. In order to
study the variation of the Fermi energy level and the magne-
tization as functions of the magnetic field, 30 quantized en-
ergy levels of the system are used.

II. TWO-BAND MODEL

Consider an InAs/GaAs quantum disk in the x-y plane
and a magnetic field B applied in the crystal growth z direc-
tion. A quantum disk is formed by assuming that all carriers
are completely confined in the z direction and laterally con-
fined by a parabolic confinement potential27 Vc�x ,y�. The
spin dependence of the electron transport across the nonmag-
netic semiconductor heterostructures arises due to the
Rashba SOI. Because of the complete confinement of the
carrier in the z direction, the wave vector is taken to be
k= �kx ,ky ,kz� with kz=0. The single electron Hamiltonian for
electron spins �up and down� in the two-band model is given

by
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H =
1

2m* �p − eA�2 +
�

�
�� � �p − eA��z +

1

2
g�B�zB

+ Vc�x,y� , �1�

with Vc�x ,y�=m*�0
2�x2+y2� /2, where p= �k is the electron

momentum, m* is the electron effective mass, � is
the Rashba parameter for the spin-orbit interaction,
�= ��x ,�y ,�z� is the Pauli spin matrices, �0 is the charac-
teristic angular frequency of the confinement potential,27

A= 1
2B�−y ,x ,0� is the vector potential in one of the Landau

gauges, �B is the Bohr magneton, and g is the Landé factor
of the electron. The choice of A guarantees that B=curlA
holds. For convenience in the numerical calculations,
we choose the effective atomic units Ry*=Rym* /me

for the energy and aB
* =aBme /m* for the length. Here

Ry=13.6058 eV is 1 Ry, and aB=0.0529 nm is 1 bohr ra-
dius, and me is the free electron mass. In the Systéme Inter-
national �SI� system of units �=eB /2�. Notice that �2��−1/2

is the radius of the ground state cyclotron orbit. After replac-
ing kx with −i� /�x and ky with −i� /�y, Eq. �1� is cast in the
x-y coordinates and polar coordinates �r ,�� as

�H0± − E H+

H− H0± − E
��	1�r,��

	2�r,�� � = 0, �2�

H0±�x,y� = H0��x,y� − 2i��y
�

�x
− x

�

�y
� ±

1

4
g�BB ,

�3�

H0±�r,�� = H0��r,�� + i2�
�

��
±

1

4
g�BB ,

H± = ���±
�

�x
− i

�

�y
� − ��x 
 iy��

= �e
i��±
�

�r
−

i

r

�

��
− �r� , �4�

where 1/4g�BB is the Zeeman splitting for the spins up
�+� and down �−�. Here, the operator H0� describes the two-
dimensional isotropic harmonic oscillator in the x-y and po-
lar coordinate systems and is given by

H0��x,y� = − � �2

�x2 +
�2

�x2� + ��2 +
1

4
e0

2��x2 + y2� ,

�5�

H0��r,�� = − � �2

�r2 +
1

r

�

�r
+

1

r2

�2

��2� + ��2 +
1

4
e0

2�r2,

where e0= ��0 is the characteristic energy of the confine-
ment potential Vc. The eigenvalue problems for Eq. �5�
is H0�� =��, where � is the eigenvalue, and � is the eigen-
function. Because of the additional contribution of
the magnetic field to the confinement potential Vc, we set
e�= �4�2+e0

2�1/2 as a new characteristic energy. For the oscil-

lator in the x-y coordinates, both � and � are
ticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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�m,n�x,y� = Xm�x�Yn�y� ,

Xm�x� = �	2mm!x0�−1/2 exp�− qx
2/2�Hm�qx�,

m = 0,1,2, . . . ,

Yn�y� = �	2nn!y0�−1/2 exp�− qy
2/2�Hn�qy�,

n = 0,1,2, . . . , �6�

�m,n = e��m + n + 1� ,

x0 = y0 =	 2

e�
,

where Hn is the nth Hermite polynominal. We define
qx=x /x0 and qy =y /y0 with the respective classical turning
points x0=y0. For the oscillator in the polar coordinates, both
� and � are

�k,m�r,�� = Rk,m�r��m��� ,

�m��� =
1

	2
eim�, m = 0, ± 1, ± 2, . . . ,

�7�

Rk,m�r� =
1

r0
�2

k!

�k + 
m
�!�1/2

e−�/2�
m
/2Lk

m
���,

k = 0,1,2,3, . . . ,

r0 =	 2

e�

where Lk

m
 is the associated Laguerre polynomial. Here we

define �=r /r0, where the classical turning point is r0.
To solve the eigenvalue problem of Eq. �2�, we expand

	 j �j=1,2� into a linear combination of a set of orthonormal
basis functions and adopt the two-dimensional isotropic har-
monic oscillator wave functions �k,m�r ,�� in the polar coor-
dinates as the basis:22,26

	 j�r,�� = �
km

Akm
�j� �k,m+j−1�r,��, j = 1,2 �8�

where Akm
�j� are the appropriate expansion coefficients to be

determined. By substituting 	 j of Eq. �8� into Eq. �2�, mul-
tiplying Eq. �2� by Rk�m��m�, and integrating over the entire
x-y plane, we obtain a matrix equation which becomes inde-
pendent of �. We have

�
k

���m,k�
H0
m,k − E�k�,k�Ak,m
�1� + �m,k�
H+
m

+ 1,kAk,m
�2� ��m�,m = 0

�9�
�

k

��m + 1,k
H−
m,kAk,m
�1� + ��m + 1,k�
H0
m + 1,k

− E�k�,k�Ak,m
�2� ��m�,m+1 = 0

This procedure significantly simplifies the numerical calcu-
lations. After solving the matrix equation, the eigenenergies

�j�
E and the expansion coefficients Akm are determined. The
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polarization P of the system is calculated to be

P = �
k,m

�
Ak,m
�1� 
2 − 
Ak,m

�2� 
2� ,

�10�
�
k,m

�
Ak,m
�1� 
2 + 
Ak,m

�2� 
2� = 1,

where the double sums of the first �second� term give the
total probability of the electron with spin up �down�, and the
coefficients Akm

�j� are normalized.
Another approach to solve Eq. �2� is to expand 	 j into a

linear combination of a set of orthonormal basis functions
using the two-dimensional isotropic harmonic oscillator
wave functions �mn�x ,y� in the x-y coordinates as the basis:

	 j�x,y� = �
mn

Bmn
�j� �m,n�x,y�, j = 1,2 �11�

where Bmn
�j� are the appropriate expansion coefficients to be

determined. By substituting 	 j of Eq. �11� into Eq. �2� we
use the same procedure as we did in the case of polar coor-
dinates to obtain a matrix equation. The advantages of using
	 j�x ,y� are that the matrix elements can be evaluated ana-
lytically and the final matrix equation is Hermitian. The re-
sult of using 	 j�r ,�� in polar coordinates is that the final
matrix equation is a real asymmetric matrix.

To serve as a guide line, let us consider the simplest case
of m=0,1 and n=0,1 with B=0 in Eq. �6� in the x-y coor-
dinates. We obtain an 8�8 Hermitian matrix from the matrix
equation. Let us define the following quantities: e0=��0 and
a= 1

2�e0
1/2 in the effective atomic units. The eigenvalues

Ej �j=0–7� have analytical forms which are calculated to be

Ej = �3e0 ± p�/2, �5e0 ± p�/2, �3e0 ± q�/2,

�5e0 ± q�/2, �12�

with p= �e0
2+8a2�1/2, q= p �doubly degenerate�.

As an application, the magnetization M at a finite tem-
peratures T is calculated from the free energy Fr. Let the
number of electrons in the quantum disk be Ne, which is
governed by the Fermi-Dirac distribution:

Ne = �
n=1

1

1 + exp��En − EF�/kBT�
,

Fr = EFNe − kBT�
n=1

ln�1 + exp�EF − En

kBT
�� , �13�

M =
�Fr

�B
,

where Ef is the Fermi energy, kB is the Boltzmann constant
and En’s are all possible electron eigenenergies of the sys-
tem.

To end this section, we have a comment on Ref. 21 Let
the angular momentum in the z direction be Lz. Although the
commutator �Lz ,H0� is zero, the commutator �Lz ,H±� is not
zero because of the e±i� terms in Eq. �4�. We conclude that
the azimuthal quantum number m is not a good quantum

number when the Rashba spin-orbit interaction is taken into
ticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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account. Therefore, we need to use a wave function in which
a summation over m as shown in Eq. �8� is necessary. Ref-
erence 21 oversimplified their calculations by assuming that
m is a good quantum number, and a linear combination over
m in their wave function expansion was not used. In this
work, we expect to see entirely different numerical results
from those reported in Ref. 21 because the z component of
the angular momentum no longer represents a good quantum
number in the presence of the Rashba spin-orbit interaction.
Moreover, in the model used in Ref. 24, states with only
adjacent angular momentum quantum number were coupled
together by the SOI, while here we have shown that the SOI
mixes states of all different angular momentum quantum
numbers.

III. NUMERICAL RESULT AND DISCUSSION

For our numerical calculations, we choose Eq. �7� in
polar coordinates as the orthogonal set of basis functions and
setting 0�k�20 we obtain a matrix equation with a dimen-
sion N=42 from Eq. �2�. The oscillator wave fuctions
in the x-y coordinate system in Eq. �6� with 0�m�20 and
0�n�20 yield a Hermitian matrix, with a dimension of
N=441, and is employed to check our numerical results. For
InAs, the effective electron mass m*=0.023me and the Landé
factor for the electron16 g=−8 are used in our calculations.
We calculate the lowest five eigenvalues for each azimuthal
quantum number m :E�i ,m�, i=1–5. By examining the
convergence of the eigenvalues, the matrix equation with
N=42 guarantees that the errors in the largest eigenvalue E5

are less than 10−5 meV.
We realize that for the two-dimensional isotropic har-

monic oscillator the �th excited state has a degeneracy of
�+1, where �=1,2 ,3 , . . . and the ground state is �=0. In the
absence of the magnetic field �B=0�, the variation of the
eigenenergy E�i ,m�, with the Rashba SOI parameter �, for
e0=10 meV is shown in Fig. 1. When � is zero, the two
coupled equations for spins up and down shown in Eq. �2�
are decoupled because of H±=0 and H0± reduce to H0�
�the Hamiltonian for the isotropic simple harmonic oscilla-
tor� because B=0. Figure 1 shows that at �=0 the �th

FIG. 1. Eigenenergy E�i ,m� vs � with B=0 and e0=10 meV.
excited state has �+1 doubly degenerate levels due to the
ct to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:
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spins and each level has an oscillator energy of ��+1�e0.
Each level of E�i ,m� is labeled as �i ,m�d or �i ,m�u, where u
and d are used to indicate the spin states up �u� and down
�d�. The spin up or down state is determined by examining
the wave functions 	1 and 	2 in Eq. �2�. A discussion of the
probability densities �=	 j

*	 j, j=1,2� for the spins is pre-
sented later. The lowest 20 levels of E�i ,m� are labeled as
follows: for �=0��1,−1�d , �1,0�u�; for �=1��1,1�u ,
�2,0�d , �1,−2�d , �2,−1�u�; for �=2��1,2�u , �2,1�d ,
�3,−1�d , �3,0�u , �1,−3�d , �2,−2�u�; for �=3��1,3�u ,
�2,2�d , �3,1�u , �4,0�d , �3,−2�d , �4,−1�u , �1,−4�d , �2,−3�u�.
For ��0 all the energy levels are doubly degenerate for
spins up and down; thus only the E�i ,m�’s with spin down
�i ,m�d are plotted in Fig. 1. The lowest energy level obtained
from Eq. �9� is E�1,−1�=9.969 86 meV, while E�1,−1� ap-
proximated by Eq. �12� is 9.97 meV for �=10 meV nm. So
long as B=0 and ��15 meV nm, Eq. �12� gives a good
estimate for E�1,−1�. With �=10 meV nm and e0=10 meV,
E�i ,m� vs B is plotted in Fig. 2�a� for the lowest 20 levels.
When B=0, there are �+1 doubly degenerate levels. When
B�0, all the degeneracies are lifted to yield 2��+1� levels
for �=0,1 ,2 ,3 but the energy splittings are too small to be
shown in Fig. 2�a�. If we choose �=50 meV nm and
e0=10 meV, the E�i ,m� vs B curves plotted in Fig. 2�b�

FIG. 2. Eigenenergy E�i ,m� vs B for e0=10 meV with �a� �=10 meV nm
and �b� �=50 meV nm.
show clearly that there are 20 different levels due to the
ticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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energy splitting. The probability densities are � j = 
	 j
2,
where j=1 is for spin up and j=2 is for spin down �see Eq.
�2�� with �1+�2=1. The probability densities as a function of
x=r cos � with B=1 T, e0=10 meV and �=50 meV nm for
the eigenenergies E�2,−2� and E�4,0� are plotted in Figs.
3�a� and 3�b�, respectively. In order to show both �1 and �2,
� is intentionally chosen to be large. Figure 3�a� shows that
�1 is the dominant component, and thus the �2,−2� state is
labeled with u �spin up� with a polarization of P= +0.54,
while Fig. 3�b� shows that �2 is the dominant component,
and thus the �4,0� state is labeled with d �spin down� with a
polarization of P=−0.49.

The energy splittings �Ej as a function of B for
�=10 meV nm and e0=10 meV are plotted in Fig. 4 with
E�1,0�−E�1,−1� labeled as �E1, E�2,0�−E�1,1� labeled as
�E2, and E�2,−1�−E�1,−2� labeled as �E3. Solid curves are
evaluated with g=−8 �including Zeeman splitting�, while
dashed curves are evaluated with g=0 �excluding Zeeman
splitting�.

The energy splittings for the lowest two energy levels
�E1=E�1,0�−E�1,−1� vs B for �=10,30, 50 mev nm with
e0=10 meV are plotted in Fig. 4�a�. Here we observe that
�E1 can be suppressed due to the Zeeman splitting with

FIG. 3. Probability densities � j�j=1,2� as a function of x with B=1 T,
�=50 meV nm, and e0=10 meV for �a� the �2,−1� state and �b� the �4,0�
state. Solid curves for j=1 �spin up marked with u� and dotted curves for
j=2 �spin down marked with d�.
g=−8. Notice that �E1 is small; even when B is 6 T, �E1 is
ct to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:
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only 0.05 meV. However, �E1 can increase rapidly as � in-
creases. Figure 4�b� shows that the energy splittings for the
excited states �E2 and �E3 vs B. Both �E2 and �E3 calcu-
lated with the Zeeman splitting differ significantly from �E2

and �E3 calculated without the Zeeman splitting. The polar-
ization P defined in Eq. �10� versus B for �=10,30,
50 meV nm with e0=10 meV is plotted in Fig. 5�a� for
the lowest state �1,−1� and Fig. 5�b� for the excited state
�2,−1�. Figure 5�a� shows that when � is small the variation
of P with B is negligible ��−0.99 spin down�, but when � is
larger the variation of P with B becomes stronger. This rapid
change in P with B is even more evident for the �2,−1� state
as shown in Fig. 5�b�. It is interesting to note that in Fig. 5�b�
when B is larger than 4.8 T, the polarization P changes sign
from positive to negative.

As an application of our numerical calculations for
E�i ,m�, we discuss how the Fermi energy Ef and the mag-
netization M of the quantum disk at 0° K vary with B for the
case of e0=10 meV with strong SOI �=50 meV nm for vari-
ous Ne’s. Let us assume that the total number of electrons in
the system is a constant, then Ne in Eq. �13� indicates that
Ef must vary with B in order to keep Ne constant. We use

FIG. 4. Energy splitting �Ej as a function of B with e0=10 meV for
�a� �E1, �=10, 30, and 50 meV nm, and for �b� �E2, �E3 with
�=10 meV nm. Solid �dotted� curves represent Zeeman splitting
included �excluded�. ��E1=E�1,0�−E�1,−1�, �E2=E�2,0�−E�1,1�, and
�E3=E�2,−1�−E�1,−2��
30 E�i ,m� levels to plot Fig. 6. Figure 6�a� shows that
ticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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�1� when Ne is 2, Ef increases monotonically as B increases;
�2� when Ne is 4, Ef shows a small peak located at
B�0.3 T because crossing occurs between the ��2,0�d and
�1,2�d� states as depicted in Fig. 2�b�; �3� when Ne is 6, Ef

shows two small peaks located at B�1.2 T and 1.65 T be-
cause crossings occur between the ��2,−1�d and �1,2�d�
states and between the ��2,−1�u, �2,1�d� states, respectively,
as depicted in Fig. 2�b�; �4� when Ne is 8, Ef shows three
small peaks located at B�0.3, 2.1, and 2.55 T. At 0 K, M in
Eq. �13� reduces to �Etot /�B, where Etot is the total electron
energy of the system. M as a function of B is plotted in Fig.
6�b� and shows oscillatory behavior. The more electrons in
the disk, the more oscillations occur in M as a function of B.

IV. CONCLUSION

We have calculated the electron energy levels for quan-
tum disks with parabolic potential profiles in a magnetic field
by solving a 2�2 single electron Hamiltonian for electron
spins including the Rashba SOI. We showed that in the pres-
ence of the spin-orbit interaction, the azimuthal quantum
number m is no longer a good quantum number, and found
that the doubly degenerate electron energy levels E�i ,m� de-
crease as � increases and crossing occurs between energy
levels. When the magnetic field B is turned on, the double

FIG. 5. Polarization P as a function of B with e0=10 meV and �=10, 20,
30, 40, and 50 meV nm for �a� �1,−1� and �b� �2,−1� states.
degeneracy in the energy levels is removed, and the �th
ct to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:
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excited state splits into 2��+1� levels. The spin states are
determined by examining the wave functions for each corre-
sponding eigenvalue E�i ,m�. The energy splitting �Ej and
the polarization 
P
 increase as � and B increase. The Landé
factor of the electron spin for InAs �g=−8� can affect the
value of �Ej�B� significantly. The Fermi level versus B
shows oscillations because of the crossing behavior between
states E�i ,m�’s. The magnetization versus B also shows os-

FIG. 6. �a� The Fermi energy EF and �b� magnetization M vs B for �
=50 meV nm with e0=10 meV.
cillatory behavior.
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