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Abstract—In order to prevent the Advanced Encryption Standard (AES) from suffering from differential fault attacks, the technique of

error detection can be adopted to detect the errors during encryption or decryption and then to provide the information for taking further

action, such as interrupting the AES process or redoing the process. Because errors occur within a function, it is not easy to predict the

output. Therefore, general error control codes are not suited for AES operations. In this work, several error-detection schemes have

been proposed. These schemes are based on the ðnþ 1; nÞ cyclic redundancy check (CRC) over GF ð28Þ, where n 2 f4; 8; 16g.
Because of the good algebraic properties of AES, specifically the MixColumns operation, these error detection schemes are suitable

for AES and efficient for the hardware implementation; they may be designed using round-level, operation-level, or algorithm-level

detection. The proposed schemes have high fault coverage. In addition, the schemes proposed are scalable and symmetrical. The

scalability makes these schemes suitable for an AES circuit implemented in 8-bit, 32-bit, or 128-bit architecture. Symmetry also

benefits the implementation of the proposed schemes to achieve that the encryption process and the decryption process can share the

same error detection hardware. These schemes are also suitable for encryption-only or decryption-only cases. Error detection for the

key schedule in AES is also proposed and is based on the derived results in the data procedure of AES.

Index Terms—Advanced encryption standard, error control code, CRC, differential fault attacks.
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1 INTRODUCTION

THE Advanced Encryption Standard (AES) [10], the
successor to the Data Encryption Standard (DES), was

finalized in October 2000 by the US National Institute of
Standards and Technology (NIST), when the Rijndael
algorithm [12] was adopted. The data block size of AES is
128-bit and the key size can be 128-bit, 192-bit, or 256-bit. In
AES, although the data block is 128-bit, all operations are
byte-oriented over GF ð2Þ or GF ð28Þ. Therefore, several
kinds of AES implementations have been discussed. In
general, three main types of AES implementations have
been discussed, 8-bit, 32-bit, or 128-bit architecture. Each
architecture has its own applications. Feldhofer et al. [6]
designed an 8-bit AES chip to provide security for radio
frequency identification (RFID). Satoh et al. [13] introduced
a 32-bit implementation of AES. Mangard et al. [9] proposed
a scalable architecture for AES, which could process 128-bit
data or 32-bit data, depending on the number of Sbox.

The hardware implementation of AES would be coun-
tered by some side-channel attacks, such as Differential
Fault Attacks (DFA) or Differential Power Analysis (DPA).
Differential fault attacks was originally proposed by Biham
and Shamir [4]. Theses side-channel attacks actually
threaten the security of several cryptosystems because they
are practical for a crypto module. The idea of DFA is to
apply the differential attacks to a crypto module or a crypto

chip. The cryptanalyst injects errors by using microwave or
ionizing techniques during the encryption or decryption
process. These errors cause the encryption results to differ
from the correct results; hence, the cryptanalyst will receive
the difference of outputs. Therefore, such differential
attacks may be carried out in the real world. Dusart et al.
[5] broke the 128-bit AES under the assumption that you can
physically modify the hardware AES device. This attack
required 34 pairs of differential inputs and outputs to
obtain the final round key. Piret and Quisquater [11] broke
AES with two erroneous ciphertext under the assumption
that the errors occur between the antepenultimate and the
penultimate MixColumns.

To avoid the possibility of suffering such attacks, error
detection can be considered while implementing a cipher.
In 2002, Karri et al. [7] proposed a general error detection
method, called concurrent error detection (CED), for several
symmetric block ciphers including RC6, MARS, Serpent,
Twofish, and Rijndael. CED requires an inverse operation to
check whether errors have occurred in calculations or not
and has three levels: the operation level, the round level,
and the algorithm level. Taking an operation-level CED in
AES as an example, the InvSubBytes is required to detect
the errors occurring in SubBytes and vice versa. This
method has very high fault coverage, but it is time-
consuming and high hardware cost because inverse opera-
tions are required. In 2003, Karri et al. [8] proposed a parity-
based detection technique for general substitution-permu-
tation block ciphers. However, the size of the table, required
by the substitution box, is enlarged. In addition, the paper
did not address the error detection techniques for some
specific functions, such as MixColumns in AES. In 2004,
Wu et al. [14] applied the structure of [8] to AES and used
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one-bit parity for a 128-bit data block. The method of Wu
et al. [14] can let the parity pass through the MixCol-

umns. Bertoni et al. [1] used an error detection code of 16-
bit parity for a 128-bit data block. To be precise, this
approach uses one-bit parity for each byte and, thus, can
detect all single errors and perhaps all odd errors. In [2],
Bertoni et al. used the error detection scheme in [1] not
only to detect errors but also to locate errors. In 2004,
Bertoni et al. [3] implemented the model proposed in [2].
The introduction of the mode into AES brought the
performance 18 percent overhead of area and 26 percent
decreasing of throughput. According to the results given
in [1], their approach was able to detect most cases of
multiple faults. However, this approach is asymmetrical,
between MixColumns and InvMixColumns, because the
parity prediction of InvMixColumns is more complex
than that of MixColumns. Therefore, two circuits are
required to predict the parity while merging the encryption
and the decryption. Besides, the detection technique for
SubBytes doubled the table size of SubBytes in AES,
from 256 to 512 bytes. In addition, it cannot be easily
applied to an AES implementation of 8-bit architecture
because the parity prediction of MixColumns (InvMix-
Columns) requires information from other bytes and other
parities.

This work proposes several error-detection schemes for
AES. They are based on the ðnþ 1; nÞ cyclic redundancy
check (CRC) over GF ð28Þ, where n 2 f4; 8; 16g is the
number of bytes contained in the message. The proposed
schemes easily predict the parity of an operation’s output.
Because AES is byte-oriented and its constants are
ingeniously designed, the parity of the output can be
predicted from a linear combination of the parity of the
input. In most cases, the parity is the summation of the
input data; also, the proposed schemes are highly scalable
and are suitable for 8-bit, 32-bit, or 128-bit architecture. This
is important because many AES designs are in an AES
hardware designed as either 8-bit or 32-bit architecture.
Another advantage of the proposed approaches is that the
parity calculation between the encryption and the decryp-
tion is symmetric because the parity generation in encryp-
tion is quite similar to the one in decryption. This will bring
some benefits while integrating encryption and decryption
into one circuit.

This paper is organized as follows: In Section 2, the AES
algorithm is briefly described and the notations used
throughout are defined. In Section 3, our proposed error
detection schemes for AES are described. Derivation of
error detection for each operation, including SubBytes,
ShiftRows, MixColumns, and AddRoundKey, is ex-
plained, as well as the design of the key schedule. The
undetectable errors of each proposed method are theoreti-
cally analyzed in Section 4, while, in Section 5, the
realization issues of three levels, operation level, round
level, and algorithm level, are described. In Section 6,
advantages and comparisons between this work and other
research studies are discussed and, in Section 7, the
detection capability of each scheme is simulated. Finally,
our conclusions are offered in Section 8.

2 AES ALGORITHM

The AES [10] consists of two parts, the data procedure and

the key schedule. The data procedure is the main body of the

encryption (decryption) and consists of four operations,

(Inv)SubBytes, (Inv)ShiftRows, (Inv)MixColumns,

and (Inv)AddRoundKey. During encryption, these four

operations are executed in a specific order—AddRoundKey,

a number of rounds, and then the final round. The number

of rounds is 10, 12, or 14, respectively, for a key size of

128 bits, 192 bits, or 256 bits. Each round is comprised of the

four operations and the final round has SubBytes,

ShiftRows, and AddRoundKey. The decryption flow is

simply the reverse of the encryption, and each operation is

the inverse of the corresponding one in encryption. In the

data procedure, the 16-byte (128-bit) data block is rear-

ranged as a 4� 4 matrix, called state S,

S ¼

s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

2
664

3
775; ð1Þ

where si denotes the ith byte of the data block. In this

context, S denotes the input of an operation and T denotes

the output. AES is operated in two fields, GF ð2Þ and

GF ð28Þ. In GF ð2Þ, addition is denoted by �, and multi-

plication is denoted by �. Similarly, the two symbols, þ and

�, denote addition and multiplication in GF ð28Þ.

2.1 SubBytes

Two calculations, the GF ð28Þ inversion and the affine

transformation, are involved in this operation. SubBytes

substitutes each byte si of the data block by

ti ¼ As�1
i þ 63; ð2Þ

where s�1
i is the inverse of the input byte, si 2 GF ð28Þ, A is

an 8� 8 circulant matrix of a constant row vector

½1 0 0 0 1 1 1 1� over GF ð2Þ, and 63 (the Courier font

number representing a hexadecimal value in this paper)

belongs to GF ð28Þ. As�1
i is a matrix-vector multiplication

over GF ð2Þ.

2.2 ShiftRows

The ShiftRows operation only changes the byte position

in the state. It rotates each row with different offsets to

obtain a new state as follows:

s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

2
664

3
775ShiftRows�������!

s0 s4 s8 s12

s5 s9 s13 s1

s10 s14 s2 s6

s15 s3 s7 s11

2
664

3
775: ð3Þ

The first row is unchanged, the second row is left circular

shifted by one, the third row is by two, and the last row is

by three.

2.3 MixColumns

The MixColumns operation mixes every consecutive four

bytes of the state to obtain four new bytes as follows:
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s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

2
664

3
775MixColumns��������!

t0 t4 t8 t12

t1 t5 t9 t13

t2 t6 t10 t14

t3 t7 t11 t15

2
664

3
775: ð4Þ

Let si, siþ1, siþ2, and siþ3 represent every consecutive four
bytes, where i 2 f0; 4; 8; 12g. Then, the four bytes are
transformed by

ti
tiþ1

tiþ2

tiþ3

2
664

3
775 ¼

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

2
664

3
775

si
siþ1

siþ2

siþ3

2
664

3
775: ð5Þ

Each entry of the constant matrix in (5) belongs to GF ð28Þ,
hence (5) is a matrix-vector multiplication over GF ð28Þ.

2.4 AddRoundKey and Key Expansion

Each round has a 128-bit round key which is segmented
into 16 bytes ki as (1); the AddRoundKey operation is
simply an addition,

ti ¼ si þ ki;where 0 � i � 15: ð6Þ

The key expansion expands a unique private key as a key
stream of ð4rþ 4Þ 32-bit words, where r is 10, 12, or 14. The
private key is segmented into Nk words according to the key
length, where NK is 4, 6, or 8 for a 128-bit, 192-bit, or 256-bit
cipher key, respectively. As Fig. 1 shows, then, it generates the
ith word (32 bits) by EXORing the ði� NkÞth word with either
the ði� 1Þth word or the conditionally transformed ði� 1Þth
word, where NK � i � ð4rþ 3Þ. The ði� 1Þth word is con-
ditionally transformed by RotWord, SubBytes and EXOR-
ing with Rcon½i=Nk� ¼ f02bi=Nkc; 00; 00; 00g, where the
polynomial presentation of 02bi=Nkc is xbi=Nkc over GF ð28Þ.
Finally, the key stream is segmented into several round keys
which are involved in the AddRoundKey operation.

3 ERROR DETECTION TECHNIQUES

The parts in decryption can be yielded in a similar way;

hence, the following context only addresses the error

detection in encryption. The differential faults attacks need

differential inputs and outputs to attack a cryptosystem;

hence, it is assumed that the states and round keys are

polluted by additive errors, as shown in Fig. 2. In this work,

one operation is the smallest granule for designing error

detection. In Fig. 2, the errors are assumed to be induced

between the previous operation and the current operation.

If the errors occur in the output of the previous operation,

the erroneous input of the current operation will be treated

as a different state. Actually, this situation only exists in the

first round or in the first operation. The assumed error

model is logical, even in the case where the errors occur

during the operation. Because each operation of AES is

invertible, one unique error block e would exist for an

erroneous output T such that T ¼ fðS þ eÞ, where f denotes

any operation in AES.
This paper adopts a systematic ðnþ 1; nÞ cyclic redun-

dancy check (CRC) over GF ð28Þ to detect errors occurring

during encryption, wheren 2 f4; 8; 16g is the number of bytes

contained in the message. The generator polynomial is

gðxÞ ¼ 1þ x; ð7Þ

where the coefficients of (7) are over GF ð28Þ. Giving a

message sðxÞ of degree n� 1, a systematic codeword,

generated by gðxÞ, can be obtained from the following two

steps:

1. Obtain the remainder pðxÞ from dividing xsðxÞ by
the generator polynomial gðxÞ. The remainder pðxÞ is
a scalar p here because the degree of gðxÞ is one.

2. Combine pðxÞ and xsðxÞ to obtain the codeword
polynomial,

pðxÞ þ xsðxÞ ¼ pþ s0xþ s1x
2 þ � � � þ sn�1x

n;

where p; si 2 GF ð28Þ:
ð8Þ

In Step 1, while gðxÞ is 1þ x, the remaining pðxÞ is the

summation of all coefficients of the message,

pðxÞ ¼
Xn
i¼0

si: ð9Þ
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Fig. 1. The block diagram of key expansion in AES.

Fig. 2. The error model assumed in this work. The solid line part appears

in every operation and the dotted line part appears in some operations.



Therefore, the parity of a message may be obtained by

calculating the summation of the input message overGF ð28Þ.
Assume that the received polynomial tðxÞ is

tðxÞ ¼ t0 þ t1xþ t2x2 þ � � � þ tnxn; ti 2 GF ð28Þ: ð10Þ

The detection scheme checks whether the syndrome equals

zero or not, where syndrome u is

u ¼
Xn
i¼0

ti: ð11Þ

If the syndrome equals zero, then it is assumed that no

errors have occurred; otherwise, errors did occur.
In the channel coding field, it is assumed that the

message sðxÞ is transmitted over a noisy channel. The

channel does not modify the message if no errors occur.

Therefore, it is easy to predict that t0 is identical to p, with t0
being used to detect the errors. However, as shown in Fig. 3,

the message, S ¼ fs0; s1; . . . ; sn�1g, is transformed into

another message, ft1; t2; . . . ; tng, by an AES operation;

hence, t0 cannot be obtained instinctively. Therefore, this

paper investigates the function, predicting t0 from p as

shown in Fig. 3, for each operation to make error detection

possible in AES.
This work applies an ðnþ 1; nÞ CRC to AES, where

n 2 f4; 8; 16g. In the case where, n ¼ 16, a 128-bit AES state

is treated as a message; hence, only one parity is generated

for a 128-bit data block. When n ¼ 4, the error detection is

designed to check each column of the output state. In other

words, four 4-byte column vectors in an AES state,

ft4jþ1; t4jþ2; t4jþ3; t4jþ4g, 0 � j � 3, are checked separately.

Therefore, four parities are required for a 128-bit data block

when n ¼ 4. For n ¼ 8, two parities are required for a

128-bit data block. The following context addresses the two

cases, n ¼ 16 and n ¼ 4, because the ð9; 8Þ CRC for the AES

algorithm can be constructed under similar conditions to

the ð17; 16Þ or ð5; 4Þ CRC for AES.

3.1 In SubBytes

In this paper, two implementation types of SubBytes are

considered. The first type uses one table instead of the

GF ð28Þ inversion and the affine transformation. The second

type separately calculates the GF ð28Þ inversion and the

affine transformation and the implementation of the

GF ð28Þ inversion is not limited to the look-up-table method

or the combinational logical circuit. In this paper, the first

type is named united SubBytes and the second type is
separated SubBytes.

For united SubBytes, it is assumed that both the Sub

Bytes circuit and the InvSubBytes circuit are imple-
mented in a chip. Error detection is achieved by feeding
the output of SubBytes into InvSubBytes, then
comparing the input of SubBytes and the output of
InvSubBytes, and vice versa, as Fig. 4 shows. If both
are identical, then it is concluded that no errors have
occurred. Otherwise, the errors did occur. This error
detection method may be time-consuming, if only the
SubBytes operation is considered. However, in practical
terms, normal encryption could be further processed,
without waiting for the error detection result, because
SubBytes is either the first operation or the second
operation in each round. In other words, the operation
after SubBytes, such as ShiftRows, MixColumns, or
AddRoundKey, may continue, when the output of the
round would be intercepted if errors are detected in
SubBytes.

If separated SubBytes is adopted, error detection must be
applied separately to the GF ð28Þ inversion and the affine
transformation. Considering the error detection for the
GF ð28Þ inversion first, there are two schemes proposed
herein. Similarly to Fig. 4, the first scheme detects errors by
using the relationship of the mutual inverse. However, the
computation of the GF ð28Þ inversion is identical for both
SubBytes and InvSubBytes; hence, this scheme does not
require the encryption and decryption circuits to simulta-
neously exist in one chip. It can be used with the
encryption-only or decryption-only hardware.

The second scheme is the ðnþ 1; nÞ CRC and assumes
that the GF ð28Þ inversion is implemented in look-up-table
approach. Instead of the inverse value of a giving input, the
exclusive value of the giving input and its inverse is stored
in the table. Therefore, giving an input � 2 GF ð28Þ, the
value, � ¼ �þ ��1, is obtained from the table and then the
input � is added to � to yield ��1, as the marked block in
Fig. 5. The error is detected by the syndrome obtained by
the dashed line in Fig. 5. In this diagram, no errors are
introduced, hence the syndrome is zero.

For one GF ð28Þ inversion, according to Fig. 3 and the
error model given in Fig. 2, the errors induce a fault at the
input of the GF ð28Þ inversion, as shown in Fig. 6. Suppose
that the byte si is changed into another byte s0i by adding the
error e0. Then, the syndrome used to detect errors is
calculated as

ðsi þ e1Þ þ tiþ1 þ ðtiþ1 þ t�1
iþ1Þ ¼ e0 þ e1: ð12Þ

The one-byte structure of Fig. 5 could be extended to the
4-byte, 8-byte, or 16-byte structure. Taking the 16-byte
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structure into consideration, the input state is denoted as

S ¼ fs0; s1; . . . ; s15g and then the parity p is
P15

i¼0 si from (9).

According to (12) and Fig. 3, the parity of the output

parity t0 could be predicted by

X15

i¼0

si þ
X15

i¼0

ðtiþ1 þ t�1
iþ1Þ; ð13Þ

and the syndrome is

t0 þ
X15

i¼0

tiþ1;

)
X15

i¼0

tiþ1 þ pþ
X15

i¼0

ðtiþ1 þ t�1
iþ1Þ:

ð14Þ

If no errors have occurred, the value t�1
iþ1 will equal si.

Therefore, the syndrome (14) is zero.
In this paper, all ShiftRows, MixColumns, and

AddRoundKey are protected by error detection code.

However, the detection technique of SubBytes is varied

with its implementation. According to the error detection

scheme for SubBytes, three proposed architectures for

AES are denoted by united-SubBytes detection (USBD, hybrid-

SubBytes detection (HSBD), and parity-based-SubBytes detec-

tion(PbSBD), as shown in Fig. 7.

For the affine transformation, error detection is achieved

by the ðnþ 1; nÞ CRC, where n 2 f4; 8; 16g. Considering n ¼
16 first, and according to (9), the parity p of an input state,

S ¼ fs0; s1; . . . ; s15g, where si 2 GF ð28Þ, is generated by

p ¼
X15

i¼0

si: ð15Þ

The output state is denoted as T ¼ ft0; t1; . . . ; t16g. From

(2) and Fig. 3, tiþ1 is Asi þ 63, where 0 � i � 15. The

hexadecimal constant 63 will be eliminated after taking

summation of the output state Tnt0, i.e.,

Xn�1

i¼0

tiþ1 ¼
Xn�1

i¼0

ðAsi þ 63Þ ¼ A
X15

i¼0

si ¼ Ap: ð16Þ

Therefore, t0 can be predicted by (16) with input parity p. If

no errors occur, the syndrome u must be zero,

u ¼
X16

i¼0

ti ¼ 0: ð17Þ

In the case of ð5; 4Þ CRC or ð9; 8Þ CRC, (16) also holds.

3.2 In ShiftRows

From (3), the ShiftRows operation simply rotates the

input state S, but does not alter the value of si. Therefore, t0

may be directly predicted by
Pn

i¼0 si in the case of n ¼ 16.

Similarly, the ShiftRows operation is error free if the

syndrome is zero

X16

i¼0

ti ¼ 0: ð18Þ

When n ¼ 4, because each column of the output state would

be detected, the four parities pj, where 0 � j � 3, are

p0 ¼ s0 þ s5 þ s10 þ s15;

p1 ¼ s4 þ s9 þ s14 þ s3;

p2 ¼ s8 þ s13 þ s2 þ s7;

p3 ¼ s12 þ s1 þ s6 þ s11;

hence, the tj;0 for each output message ft4jþ1; t4jþ2; t4jþ3; t4jþ4g
is pj. The case of n ¼ 8 is analogous to the case of n ¼ 4.
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Fig. 5. The block diagram of one GF ð28Þ inversion with the error

detection.

Fig. 6. An error is injected into the input state after entering the GF ð28Þ
inversion.

Fig. 7. The three proposed architectures for AES.



3.3 In MixColumns

The behavior of the MixColumns operation is more

complex because each byte in the input state S influences

four bytes in the output state T . However, because of the

ingenious design of the matrix coefficients, it is also possible

to apply the ðnþ 1; nÞ CRC directly, where n 2 f4; 8; 16g.
The MixColumns operation works as follows:

t4jþ1

t4jþ2

t4jþ3

t4jþ4

2
664

3
775

|fflfflfflfflffl{zfflfflfflfflffl}
T 0

¼

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

2
664

3
775

s4j

s4jþ1

s4jþ2

s4jþ3

2
664

3
775

|fflfflfflfflffl{zfflfflfflfflffl}
S0

;where 0 � j � 3:

ð19Þ

From (19), it is yielded that the summation of vector T 0

equals that of vector S0.

X3

k¼0

t4jþkþ1 ¼ ð02þ 01þ 01þ 03Þs4jþ

ð03þ 02þ 01þ 01Þs4jþ1þ
ð01þ 03þ 02þ 01Þs4jþ2þ
ð01þ 01þ 03þ 02Þs4jþ3;

¼ s4j þ s4jþ1 þ s4jþ2 þ s4jþ3;

¼
X3

k¼0

s4jþk:

ð20Þ

Therefore, when the ð5; 4Þ CRC is applied, the output parity

tj;0 of the jth column vector may be directly predicted from

the jth column vector of the input state by
P3

k¼0 s4jþk.

Similarly, in the case n ¼ 16, t0 is predicted by

t0 ¼
X3

j¼0

X3

k¼0

t4jþkþ1;

¼
X3

j¼0

X3

k¼0

s4jþk;

¼
X15

i¼0

si:

Because the summation of 02, 01, 01, and 03 is 01, (20)

can be satisfied for the ð17; 16Þ, ð9; 8Þ, or ð5; 4Þ CRC. The

coefficients of InvMixColumns display an identical phe-

nomenon. The summation of the four coefficients used in

decryption, 0B, 0D, 09, 0E, is also 01. Therefore, t0 or tj;0
can be predicted in the same way as that of MixColumns.

3.4 In AddRoundKey

Discussing the case n ¼ 16 first, it is assumed that each

round key already has a parity; hence, the round key is

represented as fk0; k1; . . . ; k16g, where k0 ¼
P15

i¼0 kiþ1 is the

parity and fk1; . . . ; k16g is the normal round key. The

AddRoundKey operation only adds the input state with a

normal key K ¼ fk1; k2; . . . ; k16g to yield the output state as

follows:

T ¼ S þK: ð21Þ

We apply the summation operation to (21) to obtain

X15

i¼0

tiþ1 ¼
X15

i¼0

si þ
X15

i¼0

kiþ1 ¼ pþ k0: ð22Þ

Accordingly, t0 may be obtained from pþ k0. The parities
for n ¼ 4 or n ¼ 8, pj, are calculated in the same way;
however, the round key must also have four or two parities.

3.5 In the Key Expansion

The ðnþ 1; nÞ CRC is also adopted in key expansion, where
n 2 f4; 8; 16g. However, the ð5; 4Þ CRC is always used in the
interior of the key expansion. The key expansion and the
error detection scheme are jointly depicted in Fig. 8, where
the decision blocks are removed from Fig. 1 for a simple
description of error detection, as the conditions only
determine where the error detection is applied, not how it
is designed.

In this key expansion, with error detection, one word
contains five bytes and the symbol of a word is denoted by
W0½i� ¼ ½W½i� k parity�, where k is a catenation symbol. At
first, the parities of the first Nk words, where Nk 2 f4; 6; 8g,
are obtained by the generator 1þ x, i.e., the parity pi of
W½i� ¼ ½wi;0 wi;1 wi;2 wi;3� is

pi ¼ wi;0 þ wi;1 þ wi;2 þ wi;3: ð23Þ

Then, the Nk-pair parities and messages form new Nkwords,
W0½0�; W0½1�; . . . , and W0½Nk� 1�. The new words are succes-
sively put into the Nk shift blocks, from W0½i� Nk� to
W0½i� 1�, at the top of Fig. 8, after which, the key expansion
starts. A 128-bit round key and its one-byte parities are
collected after each period of four shifts. If ð17; 16Þ CRC is
chosen for AES, the one-byte parity of a round key is
obtained by summing the four parities of output words. If
ð5; 4Þ CRC is chosen, then the four parities are kept.

In the key expansion, the RotWord rotates the byte order
of W½i� 1�; hence, the parity is the same as that of W0½i� 1�.
For the SubWord operation because it is a function which
executes SubBytes on each byte of input, the error
detection scheme is the same as that in SubBytes,
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described in Section 3.1. However, in the case of united
SubBytes being used, the parity must be calculated
separately.

For the EXOR operation with Rcon½i=Nk�, the error
detection is achieved by EXORing the parity of temp and
that of Rcon½i=Nk�, where Rcon½i=Nk� ¼ f02bi=Nkc; 00; 00; 00g.
The parity of Rcon½i=Nk� equals 02bi=Nkc due to the three
bytes of zero value in Rcon½i=Nk�. At the end of the key
expansion, the parity t0 is the EXOR of the parity of current
data and the parity of W0½Nk� 1�.

3.6 More Details for ð5; 4Þ CRC

Although the ð5; 4Þ CRC has four parities, it is possible for
only one parity to be used in realization of this scheme. AES
can be implemented in a 32-bit structure, i.e., one column of
a state is processed once in every round. In this structure,
the position of ShiftRows must be shifted above the
SubBytes operation. After ShiftRows, each column
passes through the identical calculations, SubBytes,
MixColumns, and AddRoundKey; the parity generation,
or the syndrome calculation for each column, are also
identical, so only one circuit is required.

4 UNDETECTABLE ERRORS

Even though the AES algorithm propagates the errors during
encryption, the error coverage can be also analyzed mathe-
matically. Actually, only the MixColumns and SubBytes

operations cause numerous erroneous bits when a single-bit
error is injected, when ShiftRows or AddRoundKey do
not change the bit number of the errors. Several assump-
tions are made, as follows:

1. The error model is considered as Fig. 2.
2. All nonzero error block over GF ð28ðnþ1ÞÞ have the

same probability, where n 2 f4; 8; 16g.
3. Each operation has the same error injection

probability.

4.1 The Undetectable Errors in SubBytes

Because SubBytes is invertible, all errors injected into
input can be detected by InvSubBytes and vice versa.
Therefore, the united SubBytes, has 100 percent fault cover-
age. In separated SubBytes, both operations, the GF ð28Þ
inversion and the affine transformation, have their own
error detection. The GF ð28Þ inversion is also invertible, so it
has 100 percent fault coverage in hybrid SubBytes.

In parity-based SubBytes, the error detection capability of

the GF ð28Þ inversion is analyzed. According to (14), the

scheme only uses XOR operations, so all the codewords are

the undetectable errors in parity-based SubBytes. Therefore,

while applying the ð17; 16Þ CRC to a 128-bit data block, the

number of undetectable nonzero errors is ð28Þ16 � 1 and the

percentage of undetectable errors is ð2
8Þ16�1

ð28Þ17 ffi 0:4%. When

the ð5; 4Þ CRC is applied to a 128-bit data block, the total

number of undetectable nonzero errors is ðð28Þ4 � 1Þ4 and

the percentage is ðð2
8Þ4�1

ð28Þ5 Þ
4 � 100% ffi 2:56� 10�8%. Simi-

larly, the percentage of undetectable errors for the

ð9; 8Þ CRC is 0:16� 10�2%.

The affine transformation is detected by ðnþ 1; nÞ CRC.
Although five erroneous bits were caused, while injecting a
single-bit error, the error coverage can still be analyzed.

Theorem 1. Given an input state S ¼ fp; s0; s1; . . . ; sn�1g,
where parity p is

Pn�1
i¼0 si, and n 2 f4; 8; 16g, the output state

is T ¼ ft0; t1; . . . ; tng, where t0 is Ap from (16), and tiþ1,
0 � i � n� 1, is obtained from (2). Introducing an error E ¼
fe0; e1; . . . ; eng into the state S ¼ fp; s0; s1; . . . ; sn�1g, the
summation of the output T 0 will equal to zero if and only ifPn

i¼0 ei ¼ 0.

Proof. Because n is even, the value 63 will be cancelled.
Therefore, the summation of the erroneous output T 0 is

Xn
i¼0

t0i ¼ Apþ e0 þA
Xn�1

i¼0

ðsi þ eiþ1Þ;

¼ ApþA
Xn�1

i¼0

si

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0

þA
Xn
i¼0

ei;

¼ A
Xn
i¼0

ei:

Therefore,
Pn

i¼0 t
0
i equals to zero if and only if

A
Pn

i¼0 ei ¼ 0 is held. Because the matrix A is nonsin-
gular over GF ð2Þ, A

Pn
i¼0 ei is zero if and only if

Pn
i¼0 ei

is zero. tu
In the ðnþ 1; nÞ CRC, the nonzero errors are undetected,

when the equation
Pn

i¼0 ei ¼ 0 is held, i.e., errors are also
the codewords. According to Theorem 1, all undetectable
errors are also undetected after the affine transformation.
Therefore, while applying the ðnþ 1; nÞ CRC to a 128-bit
data block, the percentages of the undetectable errors are
0.4 percent, 0:16� 10�2%, and 2:56� 10�8%, respectively,
for n ¼ 16, n ¼ 8, and n ¼ 4.

4.2 The Undetectable Errors in MixColumns

MixColumns also has a diffusion property. It causes five or
11 erroneous bits while injecting a single-bit error in one
column vector of the input state. However, the coefficients
eliminate the diffusion of errors after summing the erroneous
column vector of the output state. TheMixColumns is shown
again below, and it is supposed that each byte of the input
vector is polluted by an error.

tiþ1

tiþ2

tiþ3

tiþ4

2
664

3
775 ¼

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

2
664

3
775

si þ ei
siþ1 þ eiþ1

siþ2 þ eiþ2

siþ3 þ eiþ3

2
664

3
775: ð24Þ

Then, the summation of the column vector tiþ1 is

X3

k¼0

tiþkþ1 ¼ ð02þ 01þ 01þ 03Þðsi þ eiÞþ

ð03þ 02þ 01þ 01Þðsiþ1 þ eiþ1Þþ
ð01þ 03þ 02þ 01Þðsiþ2 þ eiþ2Þþ
ð01þ 01þ 03þ 02Þðsiþ3 þ eiþ3Þ;

¼
X3

k¼0

ðsiþk þ eiþkÞ:

ð25Þ

The equation also holds for two or four columns vectors.
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Theorem 2. Giving an input state S ¼ fp; s0; s1; . . . ; sn�1g,
where p ¼

Pn�1
i¼0 si is the checksum of the input state and

n 2 f4; 8; 16g. After MixColumns and the parity prediction
(20), the output state is T ¼ ft0; t1; . . . ; tng, where t0 ¼ p, and
the rest is the output of MixColumns. Introducing an error
E ¼ fe0; e1; . . . ; eng into the state S ¼ fp; s0; s1; . . . ; sn�1g,
then the errors of the ðnþ 1; nÞ CRC in MixColumns are
undetectable if and only if the summation

Pn
i¼0 ei is zero.

Proof. The syndrome
Pn

i¼0 ti is used to check whether
errors occurred or not. It is assumed that no errors
occurred, if and only if the syndrome is zero. The
summation of the erroneous output state is

Xn
i¼0

t0i ¼ ðt0 þ e0Þ þ
Xn
i¼1

t0i:

From (25), because n is the multiple of four, the above
equation is represented as

Xn
i¼0

t0i ¼ ðt0 þ e0Þ þ
Xn
i¼1

ðsi�1 þ eiÞ;

¼ t0 þ
Xn�1

i¼0

si

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0

þ
Xn
i¼0

ei;

¼
Xn
i¼0

ei:

Therefore, the error is undetectable if and only if
Pn

i¼0 ei
is zero. tu
From Theorem 2, there are ðð28Þ16 � 1Þ nonzero errors

that are undetectable, when the ð17; 16Þ CRC is applied to a
128-bit data block. This result is the same as those in the
affine transformation described above. Similarly, the total
number of the undetectable errors for the ð9; 8Þ or ð5; 4Þ CRC
is ðð28Þ4 � 1Þ4 or ðð28Þ8 � 1Þ2, respectively.

4.3 The Undetectable Errors in ShiftRows or
AddRoundKey

ShiftRows does not change the value of the input state, and
AddRoundKey only EXORs the input state with a round key.
Therefore, the undetectable errors are the same as those
analyzed in the affine transformation or MixColumns.

5 DETECTION LEVELS

The proposed scheme may be used in operation-level, round-
level, or algorithm-level error detection. In operation-level
detection, the syndrome is checked at the end of each
operation. Similarly, if the syndrome is obtained at the end
of each round, it is round-level detection. The implementa-
tion of operation-level error detection is easy to figure out.
The syndrome is calculated at the end of each operation
according to the equations derived in Section 3. However, the
implementation of a round-level detection needs more
ingenuity, when the SubBytes is protected by united
SubBytes. The parity is generated at the end of the SubBytes
or the beginning of the ShiftRows. Then, the parity directly
passes through ShiftRows, and MixColumns because its
value will not be changed after the two operations. Finally,

the parity is EXORed with the key parity. The total path is
shown in Fig. 9. Obviously, the syndrome could then be
checked at the end of the round. In hybrid SubBytes, the
structure for round-level error detection is similar to Fig. 9,
but the parity is generated after the GF ð28Þ inversion.
Because the parity of the state, in the ith round, cannot pass
through the inversion of GF ð28Þ in iþ 1 round, the parity
must be regenerated in each round. Therefore, united-
SubBytes detection or hybrid-SubBytes detection cannot be
implemented as algorithm-level detection.

However, each operation of parity-based SubBytes is
protected by ðnþ 1; nÞ CRC, hence the parity could pass
through a round. Therefore, parity-based SubBytes could be
applied as an operation-level, round-level, or algorithm-
level error detection.

6 FEATURES AND COSTS

6.1 Scalability

In Section 3, it was found that the three error detections,
ðnþ 1; nÞ CRC, where n 2 f4; 8; 16g, had similar structures.
The calculations of parities or syndromes were all based on
Byte-EXOR (B-EXOR) operation and the length of the
message was a multiple of four bytes. Therefore, the
proposed approach is scalable with practical hardware
design; in other words, the three CRCs can be applied to an
AES implementation of an 8-bit, 32-bit, or 128-bit structure.
In general, the portable devices are more probable to
encounter DFA than a nonportable device. Therefore, the
scalability of error scheme is good for practical purposes
because 8-bit and 32-bit architectures are most commonly
used in portable applications, such as cell phones, Smart-
Card, or RFID tag.

The approach proposed by Bertoni et al. [1] cannot be
easily scaled down into the 8-bit architecture because the
parity of si requires the information from siþ1 and siþ2.
However, this work can easily be applied to an 8-bit, 32-bit,
or 128-bit AES architecture. The syndrome generation is
similar to parity generation. Fig. 10 shows a block diagram
of (17) and (16) for 8-bit AES architecture. While 16 bytes ti
are obtained, the syndrome u is obtained immediately,
where the initial value of parity registers as a zero byte. The
ShiftRows, MixColumns, or AddRoundKey have similar
structures to Fig. 10, but the matrix transformation, A, is not
required. The 32-bit or 128-bit AES can also be implemen-
ted, based on the concept in Fig. 10.

The 32-bit architecture is the most flexible structure from
the point of error detection because it could use ð17; 16Þ,
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ð9; 8Þ, or ð5; 4Þ CRC to achieve the error detection objective.
No matter which one is selected, it is possible that only a
one-byte register is required to store the parities. However,
the input must be a one-column vector, defined in AES;
thus, (20) may be used to detect faults for a one-column
calculation.

6.2 Symmetry

From Fig. 10, it can be seen that the proposed scheme is
symmetric in both encryption and decryption. This has the
advantage of the encryption and decryption being inte-
grated into one chip. However, the scheme proposed by
Bertoni et al. [1] is asymmetrical in MixColumns and
InvMixColumns. As shown in Table 1, the output parity
prediction of InvMixColumns is more complex than that
of MixColumns.

6.3 Costs

While introducing proposed error detection schemes into
AES, the hardware cost required by those schemes is
evaluated through their computational complexity. Error
detection consists of two parts—the parity and syndrome
generation. Discussing the cost in parity generation first, in
our proposed schemes, the parity requires only the EXOR
operation. A total of ðn� 1Þ � 16

n Byte-XORs (B-EXOR) is
required to calculate the parity of the input for the proposed
approach. Taking the ð5; 4Þ CRC for a 128-bit data block as
an example, one checksum of an input message is generated

by three B-EXORs and a total of 12 B-EXORs for four
parities. However, united SubBytes uses InvSubBytes to
check error, so no parity generation is required. In hybrid
SubBytes, the ðnþ 1; nÞ CRC is applied to the affine
transformation; 15, 14, or 12 B-XORs are required to
produce the parities for n of 16, 8, or 4, respectively. In
the method proposed by Bertoni et al. [1], 16� 7 bit-EXORs
(b-EXOR) were required to obtain 16 one-bit parities for an
AES state. In [7], they used the inversion operation to detect
the errors; hence, no parities were paid for. However, the
hardware of parity generation is minor because the parity
generation is required to perform at the beginning of the
parity-based detection is applied. In PbSBD, because the
parity can pass through each operation along with predict-
ing the parity, the parity generation only performs once. In
USBD and HSBD, the parity must be regenerated in
SubBytes of each round; nevertheless, only one circuit of
parity generation is required when one round is imple-
mented to achieve AES computing. In the approach of
Bertoni et al. [1], the parity can also pass through the round;
hence, one circuit of parity generation is required.

As regards the cost of the syndrome generation and
parity prediction, it varies from operation to operation.
United SubBytes uses the InvSubBytes to detect errors. In
hybrid SubBytes, the GF ð28Þ inversion is used to self-check
errors; the ðnþ 1; nÞ CRC is used to detect errors of affine
transformation. According to (17), 16 B-EXORs are required
to obtain the syndrome for every ðnþ 1; nÞ CRCs. However,
the execution number of affine multiplication to predict
parity, (16), depends on n; the number is one, two, or four
when n is 16, 8, or 4, respectively. For parity-based SubBytes,
the cost in affine transformation is the same as that in hybrid
SubBytes. However, the GF ð28Þ inversion also uses ðnþ
1; nÞ CRC; according to (14), 32 B-EXORs are required (note
that the ðtiþ1 þ t�1

iþ1Þ in (14) is obtained from a table, not
requiring EXOR calculation). In ShiftRows and MixCol-

umns, no prediction functions are necessary and the
syndrome is obtained by summing all output byte and the
parity. Therefore, in the two operations, 16 B-EXORs are
required. In AddRoundKey, the one, two, or four one-byte
parities of a round key are involved in the parity prediction,
requiring extra B-EXORs to be paid for. The results
summarized in Table 1 are the cost of the operation-level
detection, i.e., the error detection is at the end of every
operation. If round-level or algorithm-level are chose, only
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Fig. 10. The block diagram of error detection for 8-bit AES architecture.

TABLE 1
The Cost of Syndrome Generation and Parity Prediction in Each AES Operation in the Operation-Level Detection

B-EXOR = 8 b-EXORs, b-EXOR = bit EXOR operation, EN = encryption, DE = decryption, and AM = affine multiplication.



the cost of parity prediction is required in every operation
and the cost of syndrome generation is only paid at the end
of each round or of the AES algorithm, respectively.

The costs of Bertoni et al.’s [1] approach are also varied in
each operation. The SubBytes requires extra m 256-byte
memory spaces to predict the parity, where m is dependent
on the implementation of the AES. Taking an AES
implemented in a 32-bit structure as an example, four bytes
are calculated in parallel, thus four tables are required. The
size of a table with error detection, in [1], is a double of that
in AES, so a total of 512 bytes is for one table, i.e., 256 extra
bytes are caused for one table. The 256 extra bytes are
constants with odd parity, e.g., 00000000 1; therefore, one
comparison circuit or syndrome generation circuit is required
to detect the error. This detection method has been modified
by Bertoni et al. [3] and the extra memory size is reduced from
m� 256 bytes to m� 256 bits. Additionally, m� 9 b-EXORs
are introduced. The error detection of one byte, appended
with one-bit parity, requires eight b-EXORs (bit EXOR
operation) or a total of 16� 8 b-EXORs for a 128-bit data
block. However, Bertoni et al.’s scheme must predict the
output parity in MixColumns, therefore, the extra calcula-
tions of 16� 4 b-EXORs are required in the encryption
process. In decryption, the error-detection hardware for
InvMixColumns is more complicated than in encryption.
Because the prediction of InvMixColumn is not derived in
[1], the cost is not specified in Table 1. The costs of Karri
et al.’s scheme required the inversion of each operation and
it was also time-consuming. The operations in the key
expansion are similar to the four major operations of AES;
thus, the detailed comparisons of the key expansion are not
discussed. Although most operations require 16 B-EXORs to
compute the syndrome, it is possible to achieve the
computation with less B-EXORs.

7 ERROR DETECTION CAPABILITY

In Karri et al. [7], because the four operations of AES are
bijective, their error detection capability is very high. If it is
assumed that only one 128-bit error occurs during encryp-
tion or decryption, then all nonzero error patterns can be
detected in the operation-level, round-level, or algorithm-
level detection. In Bertoni et al. [1], they used the parity-
based technique and the undetectable errors do exist.
Bertoni et al. [1] did a lot of tests to obtain the results
about error detection capability and the results will be
compared to ours in Fig. 14.

All simulations and statements of our proposed schemes,
addressed here, are also under the three assumptions given
in Section 4. Three architectures, USBD, HSBD, and PbSBD,
were proposed herein; each architecture has three types of
CRC, ð17; 16Þ, ð9; 8Þ, and ð5; 4Þ CRCs, as shown in Table 2.

Thus, nine methods were simulated. In PbBSD, the data
procedure is thoroughly protected by the ðnþ 1; nÞ CRC;
thus, each operation has undetectable errors. However, in
USBD, the fault coverage in SubBytes is 100 percent, so the
amount of overall undetectable errors is 80 percent of that in
USBD. Similarly, in HSBD, the amount is reduced to
75 percent of that in USBD.

The simulation model is shown in Fig. 11. Each method is
simulated by 26 tests distinguished by the bit number of the
injected errors. The last test in Fig. 12, Fig. 13, and Fig. 14,
labeled as random, used error patterns with random
erroneous bit number. Each error pattern has 107 blocks and
the bit length of every block is 136ð128þ 8Þ, 144ð2� ð64þ 8ÞÞ,
or 160ð4� ð32þ 8ÞÞ, respectively, for the ð17; 16Þ, ð9; 8Þ, or
ð5; 4Þ CRC. The all-one error block was considered as a
totally different state; hence, the maximum number of
erroneous bits was 135, 143, or 159 in a random test. Each
test used one data pattern of 107 data blocks, and every
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TABLE 2
The Possible Combinations of Our Proposed Schemes

Fig. 11. The simulation model. Each data block has 64 ones and the

position of ones uniformly distributed in a data block. The error bits

uniformly distribute in an error block. The assignment of error blocks

uniform distributes in both rounds and operations.

Fig. 12. Percentage of undetectable errors of the ð17; 16Þ CRC over

GF ð28Þ.



block has 64-bit ones of normal distribution. The erroneous

rounds and erroneous operation were also randomly

chosen.
As seen in Fig. 12, all the simulated odd-bit errors were

detected. The percentage of the undetectable errors

dropped dramatically as the erroneous bit number in-

creased. When the number of erroneous bits was greater
than eight, the percentage was below 1 percent and stable.

The test using random erroneous bits is about 0.3 percent

and it was close to the theoretic value obtained in Section 4,

0.4 percent. Obviously, all the experimental results followed

the curves of ideal values.
The same data patterns used in the above tests were also

used for the ð9; 8Þ CRC and the ð5; 4Þ CRC; all test
conditions, except for the error patterns, were identical to

those used to test the ð17; 16Þ CRC. The ð9; 8Þ CRC generated

two parities for a 128-bit data block. Because the values in

the two tests, 2-bit and 4-bit erroneous bits, are too large,

they were dependently shown in Fig. 13. All odd-bit errors

were also detected. The percentage also dropped dramati-
cally when the erroneous bits increased, as shown in Fig. 13.

For the random test, the percentage is about 0:14� 10�2%,

very close to the theoretical value of 0:16� 10�2%.
In Fig. 14, the results of the ð5; 4Þ CRC and Bertoni et al.

[1] are shown. Obviously, this percentage is very small in

contrast to the ð17; 16Þ CRC or the ð9; 8Þ CRC. When the

number of erroneous bits was larger than 16, the percen-
tages of undetectable errors dropped to zero. The percen-

tage in the random test was 0 percent, very close to the

theoretic value of 2:56� 10�8%. Of course, all odd-bit errors

could be detected.
Fig. 14 also shows the results in Bertoni et al. [1]. The test

models of Bertoni et al. [1] are different from ours. They

have injected multiple bit errors (between 2 to 16) at the
beginning of the round. From Fig. 14, their scheme has

better error detection than ours, when the errors are

between 2 and 6, and the cases of 8-bit errors are close.

When the number of erroneous bits is above 10, the

performance of the proposed scheme is better than that of

Bertoni et al. [1].

8 CONCLUSIONS

This work has proposed a simple, symmetric, and high-

fault-coverage error detection scheme for AES. Although

the erroneous bits are diffused in AES, this work used the

linear behavior of each operation in AES to design a

detection scheme. This scheme only uses an ðnþ 1; nÞ CRC

to detect the errors, where n 2 f4; 8; 16g, and the parity of

the output of each operation is predicted in a simple

fashion. Even though the number of parities is two or four,

respectively, for n ¼ 8 or n ¼ 4, it is possible to use only one

8-bit register for storing the parities during hardware

implementation. This error detection may also be used in

encryption-only or decryption-only designs. Because of the

symmetry of the proposed detection scheme, the encryption

and decryption circuit can share the same error detection

hardware. The proposed schemes can be applied in the

implementation of AES against differential fault attacks and

can be easily implemented in a variety of structures, such as

8-bit, 32-bit, or 128-bit structures.
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