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Abstract

It is an important research issue to deal with mixture models when missing values occur in the data. In this paper, computational
strategies using auxiliary indicator matrices are introduced for efficiently handling mixtures of multivariate normal distributions when the
data are missing at random and have an arbitrary missing data pattern, meaning that missing data can occur anywhere. We develop a novel
EM algorithm that can dramatically save computation time and be exploited in many applications, such as density estimation, supervised
clustering and prediction of missing values. In the aspect of multiple imputations for missing data, we also offer a data augmentation
scheme using the Gibbs sampler. Our proposed methodologies are illustrated through some real data sets with varying proportions of
missing values.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Finite mixture models are known as powerful and flex-
ible tools, which have been fully developed and applied
in various theoretic and real problems as they are capable
of modelling a wide range of densities, see for example
Refs. [1–3]. However, missing values frequently appear
in many real-world multivariate data sets that complicate
data analyses and statistical inferences for practitioners.
Missing data imputation techniques under the assump-
tion of multivariate normal model have been well studied
by Refs. [4,5]. Recently, learning mixture models from
incomplete data becomes an important research issue in
multivariate analysis. The work on the use of Gaussian
component was pioneered by Ghahramani and Jordan
[6], denoted by GJ hereafter. They present how to imple-
ment the expectation–maximization (EM) algorithm [7]
to compute maximum likelihood (ML) estimates from
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multivariate data with arbitrary pattern of missingness. They
also compare the performance of EM imputation with a
common mean imputation (MI) heuristic for the supervised
classification of incomplete features.

Due to rapid advance of computational developments,
Bayesian sampling-based approaches are usually considered
as an alternative way in dealing with mixture models. There
are plenty of papers in the literature to address the problem
of fitting normal mixture models under Bayesian treatments.
For example, Diebolt and Robert [8] employ the data aug-
mentation (DA) technique of Tanner and Wong [9] as an ap-
proximation method for evaluating the posterior distribution
and show a duality principle. Escobar and West [10] present
a nonparametric Bayesian density estimation for Dirichlet
process mixture models. Richardson and Green [11] and
Zhang et al. [12] propose a full Bayesian inference for a
normal mixture model with unknown number of compo-
nents using the reversible jump MCMC algorithm proposed
by Green [13]. Stephens [14] and Fruhwirth-Schnatter [15]
demonstrate Bayesian strategies for the elimination of label
switching problems.
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In this paper, we offer an efficient EM algorithm for the
fitting of a likelihood-based normal mixture model using par-
tially observed data. To reduce computational burden during
the EM iterations, we incorporate two types of auxiliary bi-
nary indicator matrices corresponding to the observed and
unobserved components of each datum. With strategies sim-
ilar to EM, we also offer a DA computational technique for
efficiently imputting missing values and learning parameters
using the Gibbs sampler [16], which constructs a Markov
chain that converges to a tractable posterior distribution. The
feature of the chosen prior distributions is weakly informa-
tive to avoid mathematical and computational pitfalls of us-
ing improper priors in mixture model, see Celeux et al. [17].

The rest of the paper proceeds as follows. In the next sec-
tion, we describe the model and its notations, and present
some important statistical properties based on the missing
information framework. In Sections 3 and 4, two efficient
EM and DA algorithms are developed to cope with ML and
Bayesian estimation, respectively. We also investigate two
issues regarding classification and prediction of incomplete
features from both ML and Bayesian perspectives. In Sec-
tion 5, some real data sets are utilized to illustrate our pro-
posed methodologies with varying proportions of artificially
missing values. Also, empirical comparisons between ML
and Bayesian approaches in terms of classification and pre-
diction accuracies for incomplete features are demonstrated.
Finally, some concluding remarks are given in Section 6.

2. A normal mixture model with missing information

In the normal mixture model, we assume that Y =
(Y1, . . . ,Yn) form a p-dimensional random sample from a
population with g subclasses C1, . . . ,Cg , and each Yj has
the density

f (Yj | �) =
g∑

i=1

wi�p

(
Yj

∣∣µi , �i

)
, wi �0,

g∑
i=1

wi = 1, (1)

where wi’s are mixing probabilities, �p(·|µ, �) de-
notes a p-dimensional multivariate normal component
density with mean µ and covariance matrix �, and
� = (w1, . . . , wg, µ1, . . . ,µg, �1, . . . ,�g) is the vec-
tor of mixture model parameters subject to

∑g
i=1 wi = 1

and �i’s are positive definite matrices. Thus, there are
g(p + 1)(p + 2)/2 − 1 distinct parameters in model (1).

Typically, in the EM framework, mixture models can
be characterized as having an incomplete data structure.
It is convenient to formalize the missing part as a set
of membership labels Z = (Z1, . . . , Zn) with each la-
bel Zj = (Z1j , . . . , Zgj ) being a binary vector such that
Zij = 1 if Yj belongs to component i and Zij = 0 otherwise.
Given the mixing probabilities �, Z1, . . . , Zn independently

follow a multinomial distribution. We shall write Zj ∼
M(1; w1, . . . , wg).

For notational simplicity, let

�ij = (Yj − µi )
��−1

i (Yj − µi ), (2)

denote the Mahalanobis distance for Yj with respect to mean
µi and covariance matrix �i . The complete likelihood func-
tion for � is

Lc(�|Y, Z) ∝
n∏

j=1

g∏
i=1

(
wi |�i |−1/2 exp

(
−1

2
�ij

))Zij
.

(3)

We consider the maximum likelihood estimation problem
of model (1) when Y are not completely observed. We fur-
ther assume that the patterns of missingness are arbitrary and
missing at random (MAR), see Refs. [18,19] for more de-
tails. Generally speaking, MAR refers to the missingness de-
pending only on observed values but not on missing values.

Let Yj be partitioned into two components (Yo
j ,Ym

j ),
where Yo

j (po
j × 1) and Ym

j ((p − po
j ) × 1) denote the

observed and missing components of Yj , respectively. To
facilitate the EM algorithm, it is advantageous to introduce
two types of binary indicator matrices, denoted by Oj and
Mj hereafter, corresponding to Yj such that Yo

j = OjYj and
Ym

j =MjYj , respectively. Notice that Oj and Mj are po
j ×p

and (p − po
j ) × p matrices extracted from a p-dimensional

identity matrix Ip corresponding to row-positions of Yo
j

and Ym
j in Yj , respectively. We then have the following two

propositions.

Proposition 1. Suppose Yj is partitioned into two compo-
nents (Yo

j ,Ym
j ), where Yo

j = OjYj and Ym
j = MjYj . We thus

have

Yj =
{

Yo
j , if po

j = p;
O�

j Yo
j + M�

j Ym
j , if 1�po

j < p,

and O�
j Oj + M�

j Mj = Ip.

Proof. The proof is straightforward and hence is omitted.
�

Proposition 2. Let Yj ∼
g∑

i=1
wi�p(Yj |µi , �i ), and let Yo

j

and Ym
j be the observed and missing components corre-

sponding Yj , respectively. The marginal distribution of Yo
j

is denoted by Yo
j ∼ ∑g

i=1 wi�po
j
(Yo

j |µo
ij, �

oo
ij ), where

�po
j
(Yo

j |µo
ij, �

oo
ij ) = (2�)

−po
j /2|�oo

ij |−1/2 exp(− 1
2�o

ij),

and

µo
ij = Ojµi , �oo

ij = Oj�iO�
j ,

�o
ij = (Yj − µi )

�Soo
ij (Yj − µi ),

Soo
ij = O�

j (Oj�iO�
j )−1Oj . (4)
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Consequently, Ym
j |Yo

j ∼ ∑g
i=1 w∗

ij�p−po
j
(Ym

j |µm·o
ij , �mm·o

ij ),

where

�p−po
j
(Ym

j |µm·o
ij , �mm·o

ij ) = (2�)
−(p−po

j )/2|�mm·o
ij |−1/2

× exp(− 1
2�m·o

ij ),

and

w∗
ij = wi�po

j
(Yo

j |µo
ij, �

oo
ij )/

g∑
h=1

wh�po
j
(Yo

j |µo
hj , �

oo
hj ),

µm·o
ij = Mj (µi + �iSoo

ij (Yj − µi )),

�mm·o
ij = Eij�iM�

j ,

Eij = Mj (Ip − �iSoo
ij ),

�m·o
ij = (Yj − µi )

�Smm·o
ij (Yj − µi ),

Smm·o
ij = E�

ij(Eij�iM�
j )−1Eij. (5)

Proof. The sketch of the proof is given in Appendix A. �

To enhance the computational efficiency for estimation,
we suggest to rearrange Y according to unique missing
patterns of the data. The procedure can be implemented as
follows:

(a) Build a binary n × p indicator matrix, R = [rij], with
each entry rij =1 if Yij is missing and rij =0 otherwise.

(b) Build a p×1 vector z=Rb, where b=(21, 22, . . . , 2p)�.
Notice that the number of unique missing patterns is
equal to the number of unique elements in z.

(c) Rank z in an ascending or descending order, denoted
by z∗. Rearrange Y according to the row positions of z∗
in z. This will yield clustering of identical patterns of
missingness in Y which are adjacent to each other.

3. An efficient EM procedure for ML estimation

Let Yo = (Yo
1, . . . ,Yo

n) and Ym = (Ym
1 , . . . ,Ym

n ) denote
the observed portion and missing portion of the data, re-
spectively. The complete-data log-likelihood function can be
reexpressed by

�c(�
∣∣Yo,Ym, Z )

= �c1(w
∣∣Yo,Ym, Z ) + �c2(�

∣∣Yo,Ym, Z )

=
g∑

i=1

n∑
j=1

Zij log wi

+ 1

2

g∑
i=1

⎛⎝log |�−1
i |

n∑
j=1

Zij−
n∑

j=1

Zij(�
o
ij+�m·o

ij )

⎞⎠,

(6)

where �=(w1, . . . , wg) and �=(µ1, . . . ,µg, �1, . . . , �g).

From Eq. (5), it is easy to verify that �−1
i =Soo

ij +Smm·o
ij and

O�
j Oj (Ip −�iSoo

ij )=0. Hence, we have the following result.

Proposition 3. The conditional expectation of Eq. (6) is
given by

Q(�|�̂(k)
) = E(�c(� | Yo,Ym, Z) | Yo, �̂

(k)
)

= Q1(w|�̂(k)
) + Q2(�|�̂(k)

).

It follows that

Q1(w|�̂(k)
) =

g∑
i=1

n∑
j=1

Ẑ
(k)

ij log wi , (7)

Q2(�|�̂(k)
) = 1

2

g∑
i=1

⎛⎝log |�−1
i |

n∑
j=1

Ẑ
(k)

ij

−tr

⎛⎝�−1
i

n∑
j=1

�(k)

ij

⎞⎠⎞⎠ , (8)

where

�(k)

ij = Ẑ
(k)

ij ((Ŷ
(k)

ij − µi )(Ŷ
(k)

ij − µi )
�

+ (Ip − �̂
(k)

i Ŝ
oo(k)

ij )�̂
(k)

i ), (9)

Ẑ
(k)

ij =
ŵ

(k)
i �po

j
(Yo

j |µ̂o(k)

ij , �̂
oo(k)

ij )∑g
h=1 ŵ

(k)
h �po

j
(Yo

j |µ̂o(k)
hj , �̂

oo(k)

hj )

, (10)

Ŷ
(k)

ij = µ̂
(k)
i + �̂

(k)

i Ŝ
oo(k)

ij (Yj − µ̂
(k)
i ), (11)

and Ŝ
oo(k)

ij is Soo
ij given in Eq. (4) with �i replaced by �̂

(k)

i .

Proof. The detailed proof is shown in Appendix B. �

By these propositions, a modification of GJ’s EM algo-
rithm can be implemented as follows:

E-step: Given � = �̂
(k)

, impute Ẑ
(k)

ij and Ŷ
(k)

ij for i =
1, . . . , g and j = 1, . . . , n, using Eqs. (10) and (11).

M-Step:

1. Update ŵ
(k)
i by maximizing Eq. (7) over wi subject to

their sum is unity, which gives

ŵ
(k+1)
i = 1

n

n∑
j=1

Ẑ
(k)

ij .

2. Fix �i at �̂
(k)

i , update µ̂
(k)
i by maximizing Eq. (8) over

µi , which leads to

µ̂
(k+1)
i =

∑n
j=1 Ẑ

(k)

ij Ŷ
(k)

ij∑n
j=1 Ẑ

(k)

ij

.
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3. Fix µi at µ̂
(k+1)
i , update �̂

(k)

i by maximizing constrained
Eq. (8) over �i , which leads to

�̂
(k+1)

i =
∑n

j=1 �̂
(k)

ij∑n
j=1 Ẑ

(k)

ij

,

where �̂
(k)

ij is �(k)

ij in Eq. (9) with µi replaced by µ̂
(k+1)
i .

We remark two major advantages of the above EM al-
gorithm:

(a) With auxiliary matrices Oj ’s obtained at the initiation,
there is no need to take care of the associated row po-
sitions of missing values at each iteration.

(b) The implementation of the M-step has low computa-
tional cost as it is similar to the case of no missing
values. Therefore, the modified EM algorithm is more
straightforward than the version of GJ.

Applying Bayes’ theorem, the posterior probability of the
Yj belonging to Ci can be estimated by

ŵ∗
ij = Pr(Zij = 1|Yo, �̂)

=
ŵi �po

j
(Yo

j |µ̂o
ij, �̂

oo
ij )∑g

h=1 ŵh�po
j
(Yo

j |µ̂o
hj , �̂

oo
hj )

. (12)

By the ML classification theory [20], Yj is assigned to Cs

if ŵ∗
sj > ŵ∗

ij (i = 1, . . . , g; i �= s).

Consequently, an ML predictor for the missing component
Ym

j is given by

Ŷ
m
j = E(Ym

j |Yo, �̂)

= Mj

g∑
i=1

ŵ∗
ij(µ̂i + �̂i Ŝ

oo
ij (Yj − µ̂i )). (13)

4. A data augmentation scheme for Bayesian sampling

The DA algorithm [9] is a general and effective algorithm
for producing multiple imputation of missing data. The DA
has been broadly applied in a variety of missing data prob-
lems, see Refs. [4,19] and references therein. In this section,
we construct an efficient DA algorithm that combines the la-
tent variables Z and unobserved data Ym for simulating the
posterior density of �.

The DA algorithm consists of the imputation step (I-
step) and the posterior step (P-step). At the kth iteration of
the DA algorithm, the I-step is defined by drawing impu-
tations of Z(k)

j and Ym(k)

j from the predictive distributions

p(Zj | Yo, �(k)) and p(Ym
j | Yo, Zj , �(k)), respectively for

all j, and the P-step refers to generating �(k+1) from p(� |
Yo,Ym(k+1)

, Z(k+1)). If iterations are performed by a suffi-
ciently long burn-in period, then the simulations Z(k)

j , Ym(k)

j

and �(k) are distributed according to p(Zj | Yo), p(Ym
j |

Yo) and p(� | Yo), respectively for all k. To perform the

Bayesian inference for mixture models, it is necessary to
choose a proper prior distribution for each parameter to avoid
yielding improper posterior distributions [17].

In various mixture contexts, a vague Dirichlet distri-
bution, denoted by D(�, . . . , �), is the most natural prior
for mixing probabilities w. Its density is proportional to
w�−1

1 · · · w�−1
g−1(1 − w1 − · · · − wg−1)

�−1. For component
mean vectors µi , it is standard to adopt conjugate Gaus-
sian priors. As for the inverse covariance matrix �−1

i , the
Wishart distribution is often chosen as a conjugate prior.
A p-dimensional Wishart distribution with parameters �
and A (p × p) is denoted by Wp(�,A), and for ��p the
density is

f (U|A) ∝ |A|−�/2|U|(�−p−1)/2 exp

(
−1

2
tr(UA−1)

)
,

where A is called a hyperparameter matrix if U is consid-
ered random in Bayesian treatments.

Following the suggestion of [11,14] who base their rec-
ommendation on the use of conjugate priors, our chosen
priors are

w ∼ D(�, . . . , �),

µi ∼ Np

(
�, �−1

)
(i = 1, . . . , g),

�−1
i | B ∼ Wp

(
2 �, (2B)−1

)
(i = 1, . . . , g),

B ∼ Wp

(
2�, (2H)−1

)
,

where B is a hyperparameter matrix with a conjugate Wishart
distribution, and (�, H, �, �, �, �) are fixed as appropriate
quantities to reflect the flatness of priors. The joint prior
distribution function of � and B is

�(�, B) ∝ |B|g�+(2�−p−1)/2 exp(−tr(HB))

g∏
i=1

w�−1
i

×
g∏

i=1

|�−1
i |(2�−p−1)/2 exp

×
(

−1

2
(µi − �)��(µi − �) − tr

(
B�−1

i

))
. (14)

Upon multiplying Eqs. (3) and (14), we have the following
joint posterior density:

p(�, B,Ym, Z|Yo)

∝ w�−1
1 · · · w�−1

g | B|g�+(2�−p−1)/2 exp(−tr(HB))

×
g∏

i=1

exp

(
−1

2
(µi − �)��(µi − �)

)
×
∣∣∣�−1

i

∣∣∣(2�−p−1)/2
exp(−tr(B�−1

i ))

×
n∏

j=1

g∏
i=1

(
wi | �−1

i |1/2 exp

(
−1

2
(�o

ij+�m·o
ij )

))Zij
,

(15)

where �o
ij and �m·o

ij are given in Eqs. (4) and (5), respectively.
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Proposition 4. The full conditional posteriors of �, B, Z
and Ym are as follows (the symbol “| · · ·” denotes condi-
tioning on all other variables):

p(Zj |Yo, �) ∝
g∏

i=1

(wi�po
j
(Yo

j |µo
ij, �

oo
ij )

Zij ,

p(Ym
j |Zij = 1, · · ·)
∝ exp

(
−1

2
(Ym

j − µm·o
ij )��mm·o−1

ij (Ym
j − µm·o

ij )

)
,

p(w| · · ·) ∝
g∏

i=1

w

∑n
j=1 Zij+�−1

i ,

p(µi | · · ·) ∝ exp

(
−1

2
(µi − µ∗

i )
��∗−1

i (µi − µ∗
i )

)
,

p(B| · · ·) ∝ |B|(2(g�+�)−p−1)/2

× exp

(
−tr

(
B

(
H +

g∑
i=1

�−1
i

)))
,

p(�−1
i | · · ·) ∝

∣∣∣�−1
i

∣∣∣(�∗−p−1)/2
exp

(
−1

2
tr(�−1

i Ai )

)
,

where µm·o
ij and �mm·o

ij are given by Eq. (5), and

�∗
i =

⎛⎝�−1
i

n∑
j=1

Zij + �

⎞⎠−1

, (16)

µ∗
i = �∗

i

⎛⎝�−1
i

n∑
j=1

ZijYj + ��

⎞⎠ , (17)

�∗
i =

n∑
j=1

Zij + 2�, (18)

Ai = 2B +
n∑

j=1

Zij
(
Yj − µi

) (
Yj − µi

)�, (19)

for i = 1, . . . , g and j = 1, . . . , n.

Proof. The proof is straightforward and hence is omitted.
�

In the simulation process, samples for Z, Ym, B and �
are alternately generated, the DA algorithm using the Gibbs
sampler can be implemented as follows:

I-Step:

1. Given �,Ym andYo, generate Zj fromM(1; r1j , . . ., rgj ),
where

rij =
wi�po

j

(
Yo

j |µo
ij, �

oo
ij

)
∑g

h=1 wh�po
j

(
Yo

j |µo
hj , �

oo
hj

) .

2. Generate Ym
j given Zij = 1, � and Yo, from Np−po

j(
µm·o

ij , �mm·o
ij

)
, where µm·o

ij and �mm·o
ij are as in Eq. (5).

P-Step:

1. Generate w given Z from D(n1 + �, . . . , ng + �), where
ni =∑n

j=1 Zij.

2. Generate µi given Z, �i , Yo and Ym from Np

(
µ∗

i , �
∗
i

)
with µ∗

i and �∗
i given in Eqs. (17) and (16), respectively.

3. Generate B given �1, . . . ,�g from Wp(2�∗, (2H∗)−1),
where �∗ = g� + � and H∗ = H +∑g

i=1 �−1
i .

4. Generate �−1
i given Z, µi ,Y

o andYm fromWp(�∗
i ,A−1

i ),
where �∗

i and Ai are given in Eqs. (18) and (19), respec-
tively.

To satisfy the “Principle of Stable Estimation” of Ed-
wards et al. [21] in the Bayesian treatment, we need to spec-
ify (�, �, �, �, H) so as to be insensitive to changes of the
prior. Specifically, it is often to choose � = 1. For � and
�, we let � be the empirical mean vector and �−1 = (1 −
�)−1diag{R2

1, . . . , R2
p}, where � is the percentage of missing

values of the data which is used to adjust the flatness and Ri

is the range of the observed values for the ith attribute. This
specification makes a weak prior information for µi . As a
generalization of [11], we take � = p + 1, � = (p + 1)/10
and H = 10�.

We are interested in the classification and prediction
problems for incomplete features. Under certain conditions,
quantities based on Rao-Blackwellization [22] often greatly
improve the precision of Monte Carlo estimates. Given a set
of converged Monte Carlo DA samples �(�) (�=1, . . . , L),
a Bayesian predictor for Ym

j is given by

Ỹ
m
j = 1

L

L∑
�=1

E(Ym
j |Yo

j , �
(�))

=Mj

1

L

L∑
�=1

(
g∑

i=1

r
(�)

ij (µ
(�)
i +�(�)

i Soo(�)

ij (Yj−µ
(�)
i ))

)
,

(20)

where

r
(�)

ij =
w

(�)
i �po

j
(Yo

j |µo(�)

ij , �oo(�)

ij )∑g
h=1 w

(�)
h �po

j
(Yo

j |µo(�)

hj , �oo(�)

hj )
.

Consequently, a Bayesian classifier for Yj can be estimated
by averaging over the draws of �(�)

r̂∗
ij = Pr(Zij = 1|Yo

j ) ≈ 1

L

L∑
�=1

r
(�)

ij . (21)

By the Bayesian classification rule, Yj is assigned to Cs

if r̂∗
sj > r̂∗

ij (i = 1, . . . , g; i �= s).
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Table 1
A comparison of CPU time (in seconds) and relative reduced time (RRT) between GJ-EM algorithm (old) and the proposed procedure (new) under
various missing rates (Replications = 500)

Data � = 10% � = 20% � = 30%

Old New RRT (%) Old New RRT (%) Old New RRT (%)

Iris 12.47 1.22 90.2 21.51 1.61 92.5 56.21 3.61 93.6
Crabs 34.72 3.27 90.6 78.77 6.78 91.4 265.01 20.68 92.2

RRT = (old − new)/old × 100%

Table 2
A comparison of prediction accuracies for MI, EM and DA imputations with the standard deviations in parentheses for the iris data set (Replications=500)

� (%) MAE MARE RMSE

MI EM DA MI EM DA MI EM DA

10 0.812 0.213 0.210 0.697 0.100 0.099 1.062 0.285 0.280
(0.081) (0.026) (0.026) (0.186) (0.027) (0.027) (0.096) (0.050) (0.050)

20 0.816 0.237 0.233 0.675 0.114 0.113 1.071 0.331 0.326
(0.053) (0.025) (0.025) (0.129) (0.031) (0.031) (0.065) (0.060) (0.060)

30 0.820 0.268 0.259 0.684 0.138 0.132 1.078 0.395 0.380
(0.046) (0.023) (0.022) (0.097) (0.033) (0.032) (0.058) (0.061) (0.060)

40 0.819 0.301 0.278 0.683 0.161 0.154 1.077 0.448 0.428
(0.035) (0.030) (0.026) (0.082) (0.038) (0.036) (0.041) (0.065) (0.063)

50 0.817 0.346 0.325 0.675 0.198 0.188 1.074 0.522 0.495
(0.029) (0.031) (0.028) (0.084) (0.043) (0.041) (0.036) (0.063) (0.060)

Table 3
A comparison of prediction accuracies for MI, EM and DA imputations with the standard deviations in parentheses for the crabs data set (Replications=500)

� (%) MAE MARE RMSE

MI EM DA MI EM DA MI EM DA

10 4.063 0.421 0.415 0.202 0.024 0.023 5.391 0.611 0.598
(0.337) (0.055) (0.050) (0.018) (0.003) (0.003) (0.427) (0.114) (0.105)

20 4.008 0.484 0.474 0.200 0.027 0.026 5.343 0.714 0.693
(0.227) (0.041) (0.037) (0.012) (0.002) (0.002) (0.305) (0.090) (0.083)

30 4.037 0.568 0.550 0.202 0.030 0.029 5.384 0.846 0.812
(0.169) (0.044) (0.041) (0.009) (0.002) (0.002) (0.225) (0.096) (0.091)

40 4.036 0.662 0.632 0.203 0.035 0.033 5.381 0.977 0.932
(0.138) (0.044) (0.042) (0.007) (0.002) (0.002) (0.188) (0.092) (0.094)

50 4.039 0.768 0.728 0.202 0.039 0.037 5.386 1.120 1.058
(0.108) (0.052) (0.050) (0.006) (0.002) (0.002) (0.142) (0.102) (0.100)

5. Experimental results

For illustration purposes, we start to apply results de-
veloped in Sections 2–4 to two famous multivariate data
sets. One is the iris data taken from Anderson [23] or
Fisher [24]. It consists of four-dimensional measurements
in centimeters on the attributes of petal length, petal
width, sepal length and sepal width for 50 flower spec-
imens of each of three species: setsosa, versicolor, and
virginica. The other is the crabs data of Campbell and
Mahon [25] on the gensus Leptograpsus. It consists of

Table 4
A comparison of average misclassification rates (%) between ML and
Bayesian classifiers (replicates = 500)

� (%) Iris Crabs

ML Bayesian ML Bayesian

0 3.33 3.00 7.50 7.30
10 3.85 3.75 9.75 9.50
20 5.20 5.00 13.66 13.55
30 6.90 6.10 19.22 18.80
40 10.15 9.20 26.75 25.20
50 13.42 12.30 35.21 33.00
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Fig. 1. ML and Bayesian density estimation for the two-component salmon data (•, both attributes are completely observed; �, one of the two attributes
is missing).

five-dimensional morphological measurements on the at-
tributes of width of frontal lip, rear width, length along the
mid-line of the carapace, maximum width of the carapace
and body depth for 50 crabs of each of four groups: blue

male, blue female, orange male and orange female. Both data
sets are included as a part of the R package, which is freely
available at the web site http://cran.r-project.
org.

http://cran.r-project.org
http://cran.r-project.org
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To conduct experimental studies, we first generate 500
artificially missing data sets by deleting at random from
the three data sets under various specified missing rate �
(proportion of missing values) while we maintain each da-
tum to have at least one observed attribute. Table 1 presents
the computation times of our developed EM algorithm and
those of using GJ-EM. All computations are solely carried
out by R package in the environment of a desktop PC (CPU:
3Gb-MHz/Intel Pentium 4 Processor; RAM: 1Gb/DDR-
400). Since the programming implementations have many
characteristics (e.g., vector or matrix subroutines instead of
loops), the CPU times in Table 1 might not be directly com-
parable, but provide a sense of their actual performances
in a practical setting. As seen in the table, all computation
times are dramatically reduced over 90% by using the new
EM procedure.

To exemplify the predictive performance for the EM and
DA imputation methods, see Eqs. (13) and (20), together
with the traditional mean imputation (MI) method, known as
“filling-in” with the sample mean of the associated attribute,
we utilize the pseudo-cross-validation (PSV) of Stone [26]
to evaluate these three approaches. A relative tolerance of
10−8 for the log-likelihood function and parameter estimates
are used as the convergence criterion for the EM algorithm.
As for the DA algorithm, we take the ML estimates as the
initialization and carry out 2000 iterations with the first 1000
iterations as burn-in and the remaining 1000 iterations as in-
ference samples. It is noted that our chosen burn-in number
is much larger than needed based on checking the multi-
variate potential scale reduction factor (MPSRF) of Brooks
and Gelman [27]. As for discrepancy measures, we use the
mean absolute error (MAE), the mean absolute relative error
(MARE) and root mean square error (RMSE). Comparison
results are listed in Tables 2 and 3. As seen in the tables,
we found that both EM and DA substantially outperform
MI for all cases. Furthermore, DA imputation exhibits con-
siderable promising accuracy in the prediction of missing
values when compared to the EM imputation, especially as
the size of observed values becomes small (i.e., missing rate
increases).

As another illustration, we attempt to explore classifica-
tion accuracies between the ML classifier Eq. (12) and the
Bayesian classifier Eq. (21) via PSV. Experimental results
in Table 4 indicate that both classifiers are comparable at
low-level missing, but Bayesian classifier yields lower mis-
classification rates as the missing rate increases, though im-
provements are not substantial.

Finally, we are interested in comparing behaviors of den-
sity estimation from both ML-fitted and Bayesian posterior
predictive aspects. To illustrate this, we use the salmon data
taken from Johnson and Wichern [28]. This data set has
two attributes, the diameter of rings for the first-year fresh-
water growth and the diameter of rings for the first-year
marine growth (both measured in hundredths of an inch),
for each of 50 Alaskan-born and Canadian-born salmon
fishes. The ML-fitted density estimation is obtained by

plugging the ML estimates into Eq. (1). As for Bayesian
predictive density, it can be approximated by the use of
Rao-Blackwellization

p(y|Yo) =
∫

p(y|Yo, �)p(�|Yo) d�

≈ 1

L

L∑
�=1

p(y|�(�))

= 1

L

L∑
�=1

(
g∑

i=1

w
(�)
i

(
(2�)−p/2|�(�)

i |−1/2

× exp

(
−1

2
�(�)

ij

)))
, (22)

where �(�)

ij = (y − µ
(�)
i )��(�)−1

i (y − µ
(�)
i ) and �(�) (� =

1, . . . , L) is a set of converged Monte Carlo samples gen-
erated from the DA algorithm.

The contour plots obtained by the ML-fitting and Bayesian
predictive densities Eq. (22) for both completely observed
data (�=0%) and partially observed data (�=30%) are de-
picted in Fig. 1, respectively. Both look similar when data
are not missing but using Eq. (22) seems to have a relatively
smoother appearance. In addition, we found that the ML-
fitted contour shapes tend to be distorted at high-level miss-
ing and even for moderate-level missing (� = 30%). How-
ever, the distortion rarely happened while using Eq. (22).
This indicates that Bayesian learning is more resistant to
missing values.

6. Conclusions

In this paper, two novel EM and DA computational algo-
rithms for learning normal mixture models under a missing
information framework are presented. It should be empha-
sized that our proposed procedures offer neat ways to pro-
gram with low-cost computation. Experimental results indi-
cate that Bayesian treatment is a worthwhile tool for mixture
modelling under a considerable extent of missing informa-
tion.

Recently, Bayesian and non-Bayesian robust mixture
model modelling using the t distribution has received no-
table attentions, see Refs. [29–32]. Future work will make
some kind of comparisons theoretically or empirically
among various competitive models.
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Appendix A. Proof of Proposition 2

Suppose Y ∼ Np(µ, �), then for any q×p matrix A with
rank q(q �p), we can obtain AY ∼ Np(Aµ,A�A�). With
similar arguments, the marginal distributions of Yo

j and Ym
j

are:

Yo
j = OjYj ∼

g∑
i=1

wi �po
j
(µo

ij, �
oo
ij ), µo

ij = Ojµi ,

�oo
ij = Oj�iO�

j ,

Ym
j = MjYj ∼

g∑
i=1

wi �p−po
j
(µm

ij , �
mm
ij ), µm

ij = Mjµi ,

�mm
ij = Mj�iM�

j .

Note that the �ij in Eq. (2) can be reexpressed as

�ij =
[

Yo
j − µo

ij

Ym
j − µm

ij

]�[ �oo
ij �om

ij

�mo
ij �mm

ij

]−1 [Yo
j − µo

ij

Ym
j − µm

ij

]
, (23)

where �om
ij =Oj�iM�

j and �mo
ij =Mj�iO�

j . Also, the second

and third factors on the right hand side of Eq. (23) can be
represented by[

�oo
ij �om

ij
�mo

ij �mm
ij

]−1

=
[

I −�oo−1

ij �om
ij

0 I

]⎡⎣�oo−1

ij 0
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⎤⎦
×
[ I 0
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,

and[
Yo

j − µo
ij

Ym
j − µm

ij

]
=
[

Oj (Yj − µi )

Mj (Yj − µi )

]
=
[

Oj

Mj

]
(Yj − µi ).

We then have the following standard results:

�mm·o
ij = �mm

ij − �mo
ij �oo−1

ij �om
ij

= Mj�iM�
j − Mj�iO�

j (Oj�iO�
j )−1Oj�iM�

j

= Mj (Ip − �iSoo
ij )�iM�

j = Eij�iM�
j ,

where Eij = Mj (Ip − �iSoo
ij ), Soo

ij = O�
j (Oj�iO�

j )−1Oj .

Since
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=
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it suffices to show that

µm·o
ij = µm
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ij (Yo
j − µo

ij)

= Mjµi + Mj�iO�
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Hence,
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Using the fact that |�i | = |�oo
ij ||�mm·o

ij | and above results,

we have

f (Ym
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Appendix B. Proof of Proposition 3
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(k)

ij =E(Zij|Yo, �̂
(k)

), �̂
(k)

ij =E(ZijYj |Yo, �̂
(k)

)

and �̂
(k)

ij =E(ZijYjY�
j |Yo, �̂

(k)
), we can show that

Ẑ
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oo(k)

ij (Yj − µ̂
(k)
i ))

= µ̂
(k)
i + �̂

(k)

i Ŝ
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oo(k)

ij )�̂
(k)

i )

− 2Ẑ
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