
Computers & Operations Research 33 (2006) 1713–1740

www.elsevier.com/locate/cor

Ant colony optimization for the cell assignment
problem in PCS networks

Shxyong Jian Shyua,∗, B.M.T. Linb, Tsung-Shen Hsiaoa

aDepartment of Computer Science and Information Engineering, Ming Chuan University,
Gwei-Shan, Tao-Yuan County, Taiwan 333, ROC

bDepartment of Information and Finance Management, Institute of Information Management,
National Chiao Tung University, Hsinchu, Taiwan 300, ROC

Available online 8 March 2005

Abstract

Even though significant improvement to communications infrastructure has been attained in the personal com-
munication service industry, the issues concerning the assignment of cells to switches in order to minimize the
cabling and handoff costs in a reasonable time remain challenging and need to be solved. In this paper, we propose
an algorithm based upon the Ant Colony Optimization (ACO) approach to solve the cell assignment problem, which
is known to beNP-hard. ACO is a metaheuristic inspired by the foraging behavior of ant colonies. We model the
cell assignment problem as a form of matching problem in a weighted directed bipartite graph so that our artificial
ants can construct paths that correspond to feasible solutions on the graph. We explore and analyze the behavior
of the ants by examining the computational results of our ACO algorithm under different parameter settings. The
performances of the ACO algorithm and several heuristics and metaheuristics known in the literature are also em-
pirically studied. Experimental results demonstrate that the proposed ACO algorithm is an effective and competitive
approach in composing fairly satisfactory results with respect to solution quality and execution time for the cell
assignment problem as compared with most existing heuristics or metaheuristics.
� 2005 Elsevier Ltd. All rights reserved.

Keywords:Cell assignment; Ant colony optimization; Metaheuristic; Multi-agent

∗ Corresponding author. Tel.: +886 3 3507001x3402; fax: +886 3 3593874.
E-mail address:sjshyu@mcu.edu.tw(S.J. Shyu).

0305-0548/$ - see front matter� 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2004.11.026

http://www.elsevier.com/locate/cor
mailto:sjshyu@mcu.edu.tw


1714 S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740

1. Introduction

Since the last decade, there have been significant advances in the development of mobile communica-
tion systems. Mobile networks in the next few years could be efficiently migrated to broadband services
based on high-speed wireless access technologies[1]. The backbone networks that are fostering current
research include the public land mobile networks (PLMN), mobile Internet protocol networks, wireless
asynchronous transfer mode (WATM) networks, and low earth orbit satellite networks[2]. Even though
significant improvement to communications infrastructure has been attained in the personal communica-
tion service industry, the issues concerning the assignment of cells to switches in order to minimize the
cabling and handoff costs in a reasonable time remain challenging and need to be resolved. In this paper,
we address one of the critical problems concerning how to assign cells to switches in order to minimize
the cost that is usually considered by the designers of such mobile communication services or personal
communication services (PCS).

In PCS networks, each cell has an antenna that is used to communicate with subscribers over some
pre-assigned radio frequencies. Groups of cells are connected to a switch, through which the cells are
then routed to the terrestrial (PLMN,ATM, Internet) or satellite networks.Fig. 1shows an example where
cellsA andB are connected to switchs1 while cellsC andD are connected to switchs2. Suppose that
a subscriber is currently talking to someone and this call is transmitted through cellB and switchs1. If
the subscriber moves from cellB to A, switchs1 will perform ahandofffor this call. This call does not
trigger any location update in the database that records the position of the subscriber. Besides, the handoff
does not entail any network entity other than switchs1. Suppose that the subscriber moves from cellB to
C. Then the handoff involves not only the modification of the location of the subscriber in the database
but also the execution of a fairly complicated protocol between switchess1 ands2. Therefore, there are
two types of handoffs, one involves only one switch and the other involves two switches. The latter is
relatively more difficult and costly than the former. For a more comprehensive description of handoffs,
the reader is referred to Yacoub[3] and Merchant and Sengupta[4].

Obviously, the cells among which the handoff frequency is high should be assigned to the same switch
as far as possible to reduce the cost of handoffs. However, since the call handling capacity of each switch
is limited, we should take into account this constraint. Incorporating thecabling costthat occurs when a
call is connected between a cell and a switch, we have an optimization problem, called thecell assignment
problem[4], of assigning cells to switches such that the total hybrid cost, comprising handoff cost between
adjacent cells and cabling cost between cells and switches, is minimized under the constraints of the call
handling capacities of switches.

Fig. 1. Cells are assigned to switches.



S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740 1715

This problem is a generalized version of the bin-packing problem which is known to beNP-hard
[4,5]. Therefore, Merchant and Sengupta[4] proposed a heuristic based upon the greedy strategy to find
approximate solutions to this problem. Bhattacharjee et al.[6] proposed more heuristics for this problem
and compared their performances in terms of solution quality and execution time. Approaches based
upon metaheuristics for solving the cell assignment problem can also be found in the literature, including
simulated annealing[7], tabu search[8,9] or geneticandmemeticalgorithms[10].

In this paper, we will solve the cell assignment problem by applying the Ant Colony Optimization
(ACO) approach to explore the possibility of composing better solutions. ACO utilizes a nature metaphor
originating from the food seeking behavior of ant colonies. It has been successfully applied to cope
with many classical optimization problems. In general, metaheuristics might get solutions with a bet-
ter solution quality than simple heuristics at the expense of more computation time. Thus we expect
that our ACO algorithm can get satisfactory solutions in a reasonable time. Such a temporal require-
ment is critical for practical applications, especially in a dynamically changing environment where
the cell-to-switch assignment should be updated in a timely manner. Therefore the goals in this pa-
per are: (1) to design an ACO algorithm to deal with the cell assignment problem; (2) to conduct
experiments to investigate its behavior in the optimization process; and (3) to empirically study the
effectiveness and efficiency of our ACO algorithm and the heuristics and metaheuristics mentioned
above.

The rest of the paper is organized as follows. The mathematical model of the cell assignment problem
and the heuristics or metaheuristics already proposed in the literature for this problem are described in
Section 2. Section 3 presents the fundamental concept and structure ofACO. In Section 4, we shall propose
the specific features of the ACO algorithm for solving the cell assignment problem. Our preliminary
experiments for composing a satisfactory parameter setting for ACO and the computational comparison
among ACO and other approaches are presented in Section 5. Finally, we give some concluding remarks
in Section 6.

2. Mathematical model and heuristic approaches

2.1. Mathematical model

The cell assignment problem was mathematically formulated by Merchant and Sengupta[4] as follows.
Assumen cells are to be assigned tom switches. The locations of the cells and switches are fixed and
known. If cells i and j are assigned to different switches, then a cost is incurred every time a handoff
occurs between cellsi andj. Let hij be the cost per time unit for the handoffs that occur between cellsi
andj, 1�i, j �n. Usually,hij is proportional to the frequency of handoffs that occur between cellsi and
j per time unit. The frequency is assumed as known in advance. Letcik be the amortized cabling cost per
time unit between celli and switchk, 1�i �n and 1�k�m. Let �i denote the number of calls that cell
i handles per time unit andMk denote the call handling capacity of switchk. Our objective is to assign
each cell to a switch so as to minimize the total cost per time unit. The total cost per time unit consists
of two components: the handoff cost for handoffs between cells associated with different switches and
the cabling cost between the cells and the switches. The optimization issue has to be carried out in such
a way that the call handling capacity of each switch is not violated.



1716 S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740

To formulate this problem into an integer programming model, Merchant and Sengupta[4] first intro-
duce binary decision variables defined as

xik =
{

1, if cell i is assigned to switchk;
0, otherwise.

Since each cell must be assigned to exactly one switch, we have

m∑
k=1

xik = 1, 1�i �n. (1)

The capacity constraint of a switch is given by

n∑
i=1

�ixik �Mk, 1�k�m. (2)

The handoff cost between celli and j is determined by whether both cellsi and j are connected to a
common switchk. The situations are defined as

zijk = xikxjk, 1�i, j �n and 1�k�m (3)

and

yij =
m∑

k=1

zijk, 1�i, j �n. (4)

That is,yij = 1 if cells i andj are connected to some common switchk; otherwise it is 0. Consequently,
the total handoff cost per time unit among cells is given by

n∑
i=1

n∑
j=1

hij (1 − yij ).

The total cabling cost is

n∑
i=1

m∑
k=1

cikxik.

Therefore, the objective function of the cell assignment problem is to minimize

n∑
i=1

m∑
k=1

cikxik +
n∑

i=1

n∑
j=1

hij (1 − yij ). (5)

Combining formulae (1)–(5) and other constraints on the decision variables, Merchant and Sengupta[4]
successfully formulate the cell assignment problem as an integer programming problem. Some heuristic
or metaheuristic approaches to solving thisNP-hard problem are introduced in the next Sub-section.



S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740 1717

2.2. Heuristic and metaheuristic approaches

Heuristic and metaheuristic approaches to solving the cell assignment problem have been proposed in
the literature since the middle 1990s. In this section, we describe some existing approaches. Merchant and
Sengupta[4] proposed a heuristic based upon a greedy strategy (denoted asH). The heuristic iteratively
findsb(> 1) minimum assignments for thejth, 1�j �n, cell-to-switch assignment that keeps the previous
j −1 assignments (containingbcandidates also) unaltered.As a result, it could produce a feasible solution
which might be better than that produced by simply applying a greedy method withb = 1. The heuristic
further performs pair-wise exchanges on the cell-to-switch assignments in this feasible solution if a
reduction of cost is attainable. Numerical results of their experiments show that for the instances where
the number of cells is less or equal to 30, this heuristic can come up with solutions that are close to the
optimum with an average relative error of 2%.

More heuristics and experiments could be found in Bhattacharjee et al.[6]. In the following, we briefly
introduce two of the most effective heuristics in their study, Heuristic II (H-II) and Heuristic IV (H-
IV). The idea of both heuristics arises from the concept about clustering: the cells among which the
handoff frequency is high should be grouped as a cluster (i.e., assigned to a switch) to possibly minimize
the handoff cost. Initially, every cell per se is a cluster. The clusters grow (or merge) by absorbing its
neighbor cells until the number of clusters is equal to the number of switches. The cumulative sum of
handoff costs of a cell with all its neighbors already assigned to some cluster is considered inH-II to
determine which switch the cell is to be assigned to without violating the capacity constraint.

In H-IV, the consideration is based on the average handoff cost of a cell, i.e., the ratio of handoff
cost to cabling cost. Therefore, a switch is represented as a cluster, and the cells attached to the switch
become the seeds of the cluster. All clusters simultaneously pick up their respective neighbor cells to
expand their coverage in an optimal way. Here the optimal way means to achieve an assignment with
a minimum handoff volume. That is, if a cell has a high handoff volume with one cluster, then it is
potentially beneficial to assign it into the cluster to reduce the incurred handoff cost. Bhattacharjee et
al. [6] designed computational experiments and the numerical results show that no single heuristic can
performs well in both aspects of cost and execution time. However, heuristicsH-II or H-IV outperform
other heuristics in most of their test cases where the number of cells ranges from 25 to 484.

Approaches based upon metaheuristics for the cell assignment problem include simulated annealing
(SA) [7,11] tabu search (TS)[8,9], and genetic and memetic algorithms[10]. It is beyond the scope of this
paper to go into details of these metaheuristics. The readers may refer to the above-mentioned papers. We
only point out that it is reported in[8,9] thatTSoutperformsSAwhen the number of cells ranges from 15
to 200 and the number of switches is between 2 and 7. Also, when the number of cells is generated from
the same range and the number of switches is between 5 and 7, the computational results in[10] reveal
that memetic algorithm (MA), a population-based evolutionary algorithm incorporating a local search
strategy (usingSAor TS), is superior to the standard genetic algorithm for both of the solution quality
and execution time; further,MA is slightly better thanTSandSAin delivering more satisfactory solutions
at the expense of more computation time.

3. Fundamentals and applications of ACO

Ant algorithms were first proposed by Dorigo and his colleagues[12,13]as a multi-agent approach to
solving difficult combinatorial optimization problems. ACO was inspired by some observations on real



1718 S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740

Fig. 2. Outline of the ACO metaheuristic.

ant colonies. While traveling from their colony to the food source back and forth, ants deposit pheromone
on the ground forming a pheromone trail.Ants can sense pheromone. When deciding a path to follow, they
tend to choose the ones with strong pheromone intensities. The pheromone trail guides the ants to find their
way back to the nest or to the food source. In this way, shorter paths would accumulate more pheromone
than longer ones. Thus the pheromone-trail-following behavior forms a positive feedback mechanism
such that a colony of ants may be able to exploit the pheromone trails formed by the individual ants to
discover the shortest path between the nest and the food source.

ACO has been successfully applied to resolve the traveling salesman problem (TSP)[12,14,15], graph
coloring problem[16], quadratic assignment problem[17], generalized minimum spanning tree (GMST)
problem[18], sequential ordering problem[19], vehicle routing problem[20–22]and scheduling prob-
lems[23–26]. Some researchers presented successful ACO applications in the area of telecommunication
networks[27–30]. Due to the attractiveness about the behavior of ants and the simplicity in implementa-
tions, ACO has been gaining more and more research attention since the early 1990s.

To design effectiveACO algorithms, we first transform the original problem into a certain structure, say
a graph, which is suitable for artificial ants (agents) to traverse and update pheromone trails. Second, we
need to design a heuristic, usually a greedy one, to guide the search for solutions in the early stage of the
computational process. Third, we devise an autocatalytic feedback process by managing the pheromone
trails in order to acquire knowledge or experience from synergetic ants. Meanwhile, the constraint satis-
faction method should be established to rule out infeasible solutions. Then, the probabilistic interaction
among the agents mediated by the pheromone trails could produce good solutions to the problem under
study.Fig. 2presents the outline of the ACO metaheuristic, a modified version from[31].



S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740 1719

Suppose that the problem has been transformed into a structure suitable for ants to traverse. Each ant
in the colony has a local memory to memorize its traversal information. A functional composition of the
locally available pheromone and heuristic values defines theant-routing tablefor a certain ant. Each ant
moves through adjacent states of the problem by applying astochastic local decision policy, thestate
transition rule, which depends upon the ant’s routing table, local memory and the problem constraints. By
moving from state to state, ants incrementally construct solutions to the original problem in a probabilistic
way. Ants can build an autocatalytic feedback process for the experiences about their search for good
solutions by adjusting the intensities of pheromone trails.An ant might perform alocal pheromone update
to change the pheromone of the just visited arc to favor the unvisited arcs whenever it moves to the next
state. After all ants in the colony have constructed their own solutions, the pheromone intensity would be
decreased due to theevaporationeffect to reflect the natural phenomenon so as to forget bad decisions
ever made. The global pheromone update mechanism will be triggered to add new pheromone onto the
path that corresponds to a solution that is better than others in the colony. Whenever the pheromone trails
are changed, the ant-routing table should be updated accordingly. The optionaldaemon_actions() can be
employed to implement the centralized actions such as depositing additional pheromone to reward some
best solution found thus far from a non-local perspective, or carrying out alocal searchprocedure to
improve the quality of the solution, and so on.

The design details of the ACO algorithm will be explained in the next section.

4. Applying ACO to cell assignment problem

The problem transformation, transition probabilities, pheromone updating rules, local search, and
stopping criterion of theACO algorithm for the cell assignment problem will be presented in the following
sub-sections respectively.

4.1. Problem transformation

First of all, we seek to devise a representation structure that is suitable for ants to search for solutions
to the problem. In the literature, graphs have been widely adopted as such intrinsic structures. To name a
few as examples, Dorigo et al.[14] and Dorigo and Gambardella[15] used a weighted directed graph for
TSP where acyclein the graph corresponds to a feasible solution to TSP; Shyu et al.[18] modeled the
GMST problem as a weighted undirected graph such that atreecould be a feasible solution to GMST. In
this paper, we shall model the cell assignment problem by aweighted directed bipartite graphwhere a
path represents a feasible solution as described in the following. Note that a bipartite graph has a set of
vertices decomposed into two disjoint sets such that no two vertices within the same set are adjacent.

Consider a cell assignment problem instancePwith n cells andmswitches. LetCdenote the set of the
ncells andSthe set of themswitches inP. We may use a directed bipartite graphG=(V , E) with weights
associated with both vertices and directed edges (or arcs) to representP, whereV = C ∪ S, C ∩ S = ],
the weight�i on vertexi ∈ C denotes the call volume of celli, the weightMk on vertexk ∈ S denotes
the capacity of switchk and the weightcik on arc〈i, k〉 ∈ E (i ∈ C andk ∈ S) denotes the cabling cost
between celli and switchk. As a way, a feasible assignment corresponds to a directed bipartite sub-graph
G′ = (C ∪ S, E′) ⊆ G, whereE′ = {〈i, k〉 | i ∈ C andk ∈ S} ⊆ E with the constraints: (1)|E′| = n and
if arcs 〈a, b〉, 〈c, d〉 ∈ E′, thena �= c, that is, every cell should be assigned to exactly one switch; and



1720 S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740

Fig. 3. Directed bipartite graph representation for the cell assignment problem (a)G and (b)G′.

(2)
∑

〈i,k〉∈E′ cik < Mk, 1�k�m, the constraint on each switch’s capacity should be satisfied. Note that
the existence of arc〈i, k〉 ∈ E′ in G′ indicates the assignment of celli to switchk.

Fig. 3(a) illustrates an instancePwith C ={c1, c2, c3, c4} andS ={s1, s2, s3}. InstanceP is represented
by a weighted directed bipartite graphG = (C ∪ S, E), where every vertex inC has three arcs pointing
to the three switch, every switch inS has four arcs pointing to the four vertices, and the weights (call
volumes for cells and capacities for switches) are annotated beside the corresponding vertices.Fig. 3(b)
shows a possible feasible assignment ofP, whereE′ = {〈c1, s2〉, 〈c2, s1〉, 〈c3, s1〉, 〈c4, s3〉}.

Although G′ describes well a possible feasible assignment ofP, the arcs inG′ are not connected
to form a path. Thus it is not easy for our artificial ants to traverse the arcs inG. We might rearrange
the order of the arcs inE′, sayE′ = {〈ca1, sb1〉, 〈ca2, sb2〉, 〈ca3, sb3〉, . . . , 〈can, sbn〉} where 1�ai �n and
1�bi �m for 1�i �n, and addE′′ = {〈sb1, ca2〉, 〈sb2, ca3〉, . . . , 〈sbn−1, can〉} into G′ whereE′′ ⊆ E and
|E′′| = n − 1 in such a way that the directed path composed of the 2n − 1 arcs ofE′ andE′′, namely
〈ca1, sb1〉, 〈sb1, ca2〉, 〈ca2, sb2〉, 〈sb2, ca3〉, . . . , 〈sbn−1, can〉, 〈can, sbn〉, not only holds the information of
each feasible cell-to-switch assignment but also forms a continuous directed path that is an ideal structure
for our artificial ants to traverse inG. Along such a path, the movement of an ant from cellar to switch
br corresponds to the assignment of cellar to switchbr , and the subsequent movement from switchbr

to cell ar+1 corresponds to the decision about choosing cellar+1 as the next cell to go on the following
cell-to-switch assignment. Therefore by makingn decisions on the two consecutive movements from a
cell to a switch and then from that switch to another cell, each ant can construct a certain feasible solution
to the cell assignment problem if all movements do not violate the problem constraints. Note that the
last decision involves only one cell-to-switch decision. As a result, such a directed path, or a subgraph
G′′ = (C ∪ S, E′ ∪ E′′) of G, whereE′, E′′ ⊆ E defined as above would be a appropriate representation
for an feasible assignment that our ants can traverse it out ofG.

To minimize the total cost, the best path shall contain the feasible assignment that minimizes

n∑
i=1

caibi
+

n∑
i=1

n∑
j=1

haiaj
faiaj

, 1�i, j �n, (6)

wherefaiaj
determines whether cellai and cellaj are assigned to the same switch:

faiaj
=

{
0, if bi = bj ;
1, otherwise.



S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740 1721

Fig. 4. Directed path inG corresponding to a solution toP.

Fig. 4depicts the graphG′′ corresponding to the feasible assignment inFig. 3(b), whereE′ = {〈c1, s2〉,
〈c3, s1〉, 〈c4, s3〉, 〈c2, s1〉}, E′′ = {〈s2, c3〉, 〈s1, c4〉, 〈s3, c2〉} and the associated path is〈c1, s2〉, 〈s2, c3〉,
〈c3, s1〉, 〈s1, c4〉, 〈c4, s3〉, 〈s3, c2〉, 〈c2, s1〉.

Since each cell should be assigned to some switch exactly once, we provide a short-term memory,
calledtabu(not the tabu list in the tabu search), for our artificial ants to memorize the cells that have been
already assigned. Meanwhile, multiple cells might be assigned to a switch if its capacity constraint is
not violated. Therefore, we associate each ant with another short-term memory, calledfeas, to keep track
of the availability of switches. To find solutions to the cell assignment problem, an ant, sayu, at cell i
confronts two successive decisions to make: (1) which switch to move on (that is, which switchk ∈ feasu

cell i will be assigned to), and (2) which unvisited cell to move on from the selected switch (namely,
which cellj /∈ tabuu to continue). We call it astepfor an ant to make these two decisions in sequence.
After n steps with the exception that thenth step needs only decision 1, the ant could construct a directed
path, which corresponds to a feasible assignment. Such ann-step process is called aniteration. Consider
the instance inFig. 4. The solid arcs are the outcome of decision 1 while the dashed arcs are the outcome
of decision 2. These arcs together constitute a directed path inG as shown inFig. 4. At this stage, we
have transformed the cell assignment problem to a weighted directed bipartite graph that facilitates the
ants to construct solutions by traversing a path with a sequence of 2n − 1 arcs alternatively from some
vertex representing a cell to a certain vertex representing a switch and then from this switch to another
vertex representing some not-yet-assigned cell.

4.2. State transition rules

Essentially, an ant decides its movements stochastically relying on the information elicited from the
pheromone intensityand theheuristic function. Since an ant has to make two successive decisions in
each step and these two decisions refer to different knowledge with respect to the problem status, (i.e.,
decision 1 is about choosing a switch with respect to the capacity constraint while decision 2 is about
selecting a cell with respect to its call volume,) we employ two different greedy heuristic functions to
reflect the different preferences for these two decisions, respectively. Also we utilize pheromone trails to
keep track of the ants’ experience in searching for good solutions on the visited arcs inG. Suppose that
antu is currently positioned at celli. The state transition rules for the two decisions are:

4.2.1. Choosing an arc from cell i to some switch k
Suppose that at stepr, antu chooses arc〈i, k〉 to move on from celli (also denoted asar ) to switchk

(also denoted asbr ), 1�r �n. A partial cost incurred during theser steps can be computed and employed



1722 S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740

as the basis of our heuristic. Letgarbr denote the partial cost incurred during theser steps. The partial
costgarbr can be calculated by

garbr =



ca1b1 if r = 1;
gar−1br−1 + carbr +

r−1∑
l=1

haral
faral

if r > 1 andfaral
=

{
0, if br = bl;
1, otherwise,

(7)

where the value offaral
depends on whether cellal (the cell visited by antu at stepl, 1� l < r) and cell

ar (the cell on which antu is) are assigned to the same switch.
We use the instance inFig. 4as an example to explain how to calculate the partial cost in decision 1.

At the first step, the ant moves from cell 1 to switch 2. Thusg12 = c12. At the second step, the ant moves
from cell 3 to switch 1. We haveg31 = g12 + c31 + h31f31. Note thatf31 = 1, because cells 3 and 1 are
not assigned to the same switch. After step three,g43 = g31 + c43 + h41f41 + h43f43, wheref41 = 1 and
f43 = 1. At the end of step four,g21 = g43 + c21 + h21f21 + h23f23 + h24f24, wheref21 = 1, f23 = 0
(because cells 2 and 3 are both assigned to switch 1) andf24 = 1.

We use the inverse value of the partial costgarbr as our heuristic function�arbr
at stepr of some

iteration. Then, the probability that antu positioned at celli (ar) moves to switchk (br) at therth step is
defined as follows:

pik =




1 if q �q0 andk = arg max
s∈feasu

{�is�
�
is} (exploitation),

�ik�
�
ik∑

s∈feasu
�is�

�
is

if q > q0 andk ∈ feasu (biased exploration),

0 otherwise(k /∈ feasu) (infeasible),

(8)

where �ik denotes the intensity of pheromone on arc〈i, k〉 referred in decision 1, i ∈ C and k ∈
S, q0(0< q0�1) is the relative preference for exploitation or exploration,�(��0) reflects the relative im-
portance between pheromone intensity and heuristic value, andfeasu denotes the feasible set of switches
that the cells can be assigned to without violating the capacity constraints for antu. Ant u at cell i picks
up a pseudo random numberq(0�q �1) to make its movement at stepr: if q �q0, it moves to switch
k through arc〈i, k〉 that achieves the maximum value of�ik�

�
ik; if q > q0, it moves to switchk with a

biased probability in order to avoidstagnationby exploring other areas in the solution space for better
solutions. It is easy to see that we prefer a switchk from cell i (an arc〈i, k〉) with a higher pheromone
intensity (more ant knowledge) and a higher heuristic value (lower partial cost by our greedy approach)
for decision 1.

Tuning the values ofq0 allows us to have an adaptive degree between exploitation and biased explo-
ration, i.e., to exploit the steps that seem to be the most promising or to probabilistically explore the search
space. The pheromone intensity�ik on arc〈i, k〉 would be decreased according to the local pheromone
update rule defined in the following (Section 4.3) to diversify the search. Once antuhas made the decision
that celli be assigned to switchk (switchkwould handle the calls from celli), the capacityMk of switch
k should be subtracted by�i . If Mk is no more available for any of the un-assigned cells, switchk be-
comes unavailable and it should be removed fromfeasu. At the end of each iteration,feasu is reset for the
next ant.



S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740 1723

4.2.2. Following an arc from switch k to an un-visited cell j
We employ another greedy heuristic for ants to choose a cell not yet assigned to move on for decision

2. The not-yet-assigned cell with the heaviest call volume is considered first in each step. Since antu
memorizes the cells that have been traversed in the current iteration intabuu, the heuristic function�′

j is
defined as the call volume of cellj , which does not belong totabuu for antu, i.e.,�′

j = �j if j /∈ tabuu; 0
otherwise. We use the following probability function for antu at switchk to make its choice to move.

p′
kj =




1 if q < q0 andj = arg max
s /∈tabuu

{�ks�
′
s
�′ } (exploitation),

�kj �′
j
�′

∑
s /∈tabuu

�ks�′
s
�′ if q �q0 andj /∈ tabuu (biased exploration),

0 otherwise(j ∈ tabuu) (tabu),

(9)

where �kj denotes the intensity of pheromone on arc〈k, j〉 referred in decision 2, k ∈ S and i ∈
C, q0(0< q0�1) is the relative preference for exploitation or exploration,�′(�′′�0) is the relative im-
portance of the pheromone intensity and heuristic value, andtabuu denotes the set of cells that have been
visited by antu. As can be seen that we favor a cell with a higher call volume and a viable arc with a
higher pheromone intensity,tabuu should include cellj after it is chosen. At the end of each iteration,
tabuu would be reset.

4.3. Pheromone updating rules

Each ant deposits or removes some amount of pheromone on the visited arcs. This mechanism provides
a way of theindirect communicationsto share the knowledge about searching for good solutions amongst
the colony. When and how much do the ants deposit or remove the pheromone are essential issues in the
design of a good ACO algorithm. We prefer the arcs that constitute the minimum cost path derived thus
far. Therefore at the end of each iteration, we undertake aglobal pheromone updateon the arcs of the
best path derived in the most recent iteration. For simplicity, we call such a path theiteration-bestpath.
Let T + denote the iteration-best path andQ+ denote the cost ofT +. The global pheromone updating
rule is defined as follows:

�ij = (1 − �)�ij + � ��ij , ��ij =
{

n(Q+)−1 if 〈i, j〉 ∈ T +;
0 otherwise,

(10)

where�(0< ��1) is the pheromone evaporation coefficient. What we intend to do is to take into account
the tentative superiority ofT + by adding pheromone intensity by� ��, which is proportional to the quality
of Q+, onto the arcs belonging toT +, while at the same time the pheromone intensity on all arcs inE is
decreased according to the evaporation rate� to imitate the natural phenomenon evaporation over time
in order to let the ants forget inferior decisions made in the earlier stages of the search process.

To keep away from early convergence (also called stagnation), a situation in which all the ants recon-
struct the same solution and stop exploring new possibilities before some satisfactory solution is found,
we performa local (step-by-step) pheromone update. The local pheromone updating rule is defined as:

�ij = (1 − �)�ij + ��0, if 〈i, j〉 has been selected by some ant, (11)



1724 S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740

where�(0< ��1) is the parameter controlling the degree of pheromonedecay. The value of�0 is set to
be the same as the initial value of the pheromone trails. Whenever an ant moves from a cell to a switch
(or from a switch to a cell), the application of the local updating rule makes pheromone intensity on the
corresponding arc decrease. This mechanism is designed to make the visited arcs less attractive as they
are just visited by ants, and indirectly favor the exploration of unvisited arcs. As a consequence, ants tend
not to converge to a common path in the earlier iterations. Consider the case that antu1 moves from cell
i to switchk. Without pheromone decay, antu2 right afteru1 at cell i has a high probability to follow
u1 by choosing〈i, k〉 to move on (likewise for the subsequent movement along〈k, j〉). Thus, ants would
be easily led to a stagnation situation. The intensity-decreasing effect introduced by the local pheromone
update reduces the probability for early convergence to occur.

4.4. Local search

Whenever some ant finds an improved global-best solution at the end of some iteration, we employ
a local search to improve this new so far global-best solution until some local optimum is reached.
Our local search is a greedy approach. Suppose that a new global-best assignment is derived, i.e.,E′ =
{(ca1, sb1), (ca2, sb2), . . . , (can, sbn)} where 1�ai �n and 1�bi �m for 1�i �n. We would try to change
the current assignment of each cell at most once as long as the re-assignment leads to a better solution.
For each cell that has not been re-assigned yet, say cellai , we find the feasible re-assignment of cell
ai to switchbj , bj �= bi , which reduces the objective function by the largest amount. We then change
the assignment of cellai from switchbi to switchbj and mark cellai as re-assigned. We continue this
re-assigning process for those not yet re-assigned cells till the objective function cannot be further reduced
or all cells have been re-assigned once.

4.5. Stopping criterion

The stopping criterion of ACO could be specified by a maximum number of iterations, a specified
CPU time limit, or a given number of consecutive iterations within which no improvement on solutions
is attained. Unless otherwise specified, in this paper, we set our criterion to the last one, which dictates
the situation where further improvement is becoming less likely.

5. Experimental results and analysis

To test the effectiveness of our ACO algorithm (ACO) for the cell assignment problem, we design and
conduct a series of computational experiments in this section. The default values of the parameters inACO,
except when discussing their individual settings, are set as:�=�′=2, q0= 0.1, �= 0.05, �= 0.05, u=16
and� = n/100. These values were determined by extensive preliminary experiments. We also found that
these tentative parameter values are mutually independent in most of the test instances in our experiments.
The execution ofACOstops if no improvement on solutions can be found within 100 consecutive iterations.
All of the programs are coded by Borland C++ Builder 5 and executed on a personal computer running
MS-Windows 2000 with an AMD Athlon 1700+ CPU and 256 MB RAM.

Regarding the test problems, we assume that the cells lie on a hexagonal grid of roughly equal di-
mensions in two axes (seeFig. 1), and the antenna for each cell is at the center of the cell. Switches are
uniformly distributed over all the cells, and are assumed to be at the center of the cell. In Section 5.1, based



S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740 1725

upon the data sets generated from a simple uniform distribution, we present the results of our preliminary
experiments for composing a satisfactory parameter setting for ACO. Also, from these experiments we
investigate the detailed characteristics of the solution-finding sessions of the artificial ants. In Section 5.2,
based upon the test case generation scheme adopted by Merchant and Sengupta[4], we further implement
some heuristics and metaheuristics proposed in the literature and compare the performance of ACO with
those of these existing approaches.

5.1. Parameters setting

First of all, we testACO by using different parameters to determine the most advantageous setting
as well as to justify the performance of the artificial ants in searching for good solutions. The test data
generated in this section are simply based upon a uniform distribution. Call volume of celli per time
unit, �i , is uniformly distributed within interval [0.1, 8.0]. Cabling cost between celli and switchk, cik,
is proportional to their geometric distance. A call in celli, which hast neighbors: cellsi1, i2, . . . , it , is
uniformly generated according to�i . Further, with an equal probability, 1/(t +1), it is ended or transferred
to one of celli’s neighbors. Handoff costhij is proportional to the sum of�i and�j . The capacity of
switchk, Mk, is set to beMk = 1.2× ∑n

i=1 �i/m, 1�k�m, to make sure that its capacity has an overall
excess of 20% to the total call volume of the cells.

Except for otherwise mentioned, we adopt the default setting of parameters mentioned above to run
ACOand no local search is employed. Note that each value reported in this section is averaged from the
results of ten randomly generated problem instances.

5.1.1. Determination of�
Fig. 5summarizes some results of applyingACO to solve the cell assignment problem with different

values of�. The other parameters are set as the default values.
From Fig. 5(a), we find that the solution quality ofACOusing��1 is much better than that using

� = 0. Fig. 5(b) reveals thatACOcould find quite appealing solutions within 600 iterations by setting
��2. As can be seen fromFig. 5(c), the CPU time needed byACOusing��2 is no more than 180 s even
in solving a large instance like(n, m) = (250, 12).

By setting� = 0, the heuristic function is disabled and the search session of ants will be directed by
the pheromone trails only. The experimental results shown inFig. 5(a) demonstrate that such a search
strategy does not produce good solutions. Without the proper guidance of the greedy heuristic that finds
good approximate solutions in the earlier iterations, the ants might waste their efforts in exploring some
areas of the solution space that do not contain optimal or even satisfactory approximate solutions. Even
though some iteration-best paths explored by pioneering ants are not absolutely informative, the extra
pheromone intensity of� �� resulted from global pheromone updates still attracts other ants to follow
such thatACO tends to converge around some common paths in a short time (seeFig. 5(c)). In fact, the
setting of� = 0 implies thatACO is deploying a random heuristic with multiple agents (ants).

To learn more about the performances resulted from different settings of�, we depict the costs of the
iteration-best paths with respect to every 50 iterations for a particular problem instance with(n, m) =
(200, 10) in Fig. 6. For the comparison purpose, the total number of iterations is set to be 500.

In earlier iterations,� = 3 or 4 helps find better approximation solutions than� = 0, 1 or 2 as shown in
Fig. 6. In the state transition rule, a larger value of� makes the ants rely more on the greedy heuristic when
determining their next moves. Although such a greedy strategy directs ants to good solutions quickly in



1726 S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740

Fig. 5. Results for different values of�, (a) solution values, (b) number of iterations and (c) CPU time elapsed.

Fig. 6. Solution value with respect to the number of iterations for� = 0, 1, 2, 3 and 4.

the earlier stage, the accumulated pheromone intensity from global updates on the arcs of some seemly
good paths found by the greedy heuristic as far may guide the fellow ants to converge to some common
paths, or we may say, some local optimums only. As can be seen inFig. 6, the solutions found by using
� = 1 or 2 would be better than those by� = 3 or 4 after 150 iterations. The setting of� = 2 seems to be
the best choice for the trade-off between the guidance of the greedy heuristic and that of the pheromone
intensity.

5.1.2. Determination ofq0
In Fig. 7, we show the experimental results of the solution values by settingq0 as 0, 0.1, 0.3, 0.5, and

0.9 forACO.



S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740 1727

Fig. 7. Results for different values ofq0, (a) solution values and (b) number of iterations.

It can be seen fromFig. 7(a) that the impact imposed by differentq0 values onACOis significant only
for large-scale instances, sayn�200 andm�10. Furthermore, the setting ofq0 = 0.1 forACOperforms
better than other settings in our experiments. Usingq0 = 0.1 means that it is more likely for ants to
conduct biased exploration than exploitation. That is, it is effective for the ants to depend more on biased
exploration in delivering satisfactory solutions. Note that in Dorigo and Gambardella’s experiments for
solving TSP[14,15], they applied the setting ofq0=0.9 which suggests ants to count more on exploitation.
On the contrary, the setting ofq0 = 0.9 yields inferior solution qualities in our test instances. Based upon
these observations, we know that it is necessary to tune the parameter values ofACO to best fit the
characteristics of the problem under study to achieve a better performance.

FromFig. 7(b), we find that the number of iterations needed byACOtends to be large whenq0 is small,
while it tends to be small whenq0 is large. It is quite natural that whenq0 is small, the ants have more
chances to explore the solution space so thatACOneeds more iterations. Whenq0 is large, the ants have
more chances to exploit the good solutions so far and this situation might lead to relatively premature
convergence and the number of iterations needed would be relatively small.

5.1.3. Effects of pheromone update
To examine the influence different pheromone updating rules might induce, we conduct experiments

with four strategies: (1)Both: applying both global and local updates, (2)GloOnly: applying global update
only, (3)LocOnly: applying local update only, and (4)None: applying no update (i.e., pheromone intensity
is not updated). Note that inBoth, the local pheromone updating rule is the same as the default setting,
� = (1− �)� + ��0, while inLocOnly, the local pheromone updating rule is set to be� = (1− �)� + � ��
where��=n/Q+. (If we apply the same local update rule as inBothfor LocOnly, the pheromone intensity
on all arcs would always be�0.) Fig. 8summarizes the results of some test instances for the four strategies.

Fig. 8(a) demonstrates thatNoneandLocOnly report the worst solution qualities.Nonekeeps the
intensities of pheromone trails at a constant (initial) level, i.e.,�0, which disables the possible influences
induced by pheromone trails. Thus, it becomes a pure greedy heuristic with which many ants search the
solution space in a random way. The heuristic function leads the ants to converge to only local optimums
rapidly (seeFig. 8(b)). With LocOnly, the pheromone intensities between before the pheromone decay
(�) and after((1 − �)� + ��) are so close that the significance of the heuristic value dominates that of



1728 S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740

Fig. 8. Results for different pheromone updating strategies, (a) solution values and (b) number of iterations.

Fig. 9. Results for different settings of pheromone updates. (a) Solution value with respect to number of iterations, (b) solution
values with respect to every 50 iterations and (c) average pheromone intensity on the solution path with respect to number of
iterations.

pheromone intensity. WithGloOnly, the solution quality ofACO is improved. Furthermore, withBoth,
ACOachieves the best solution quality in our experiments.

Fig. 9(a) illustrates the iteration-best costs by using these four pheromone updating strategies with
respect to the number of iterations for a particular problem instance with(n, m) = (200, 10). Fig. 9(b)



S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740 1729

summarizes the solution values every 50 iterations for better readability. The stopping criterion is set a
limit of 500 iterations. The effectiveness of both global and local pheromone updates could be clearly
evinced throughFig. 9(a) and (b).

As expected, the curves ofNoneandLocOnlyfluctuate sharply around poor solution values (local
optimums). Even in later iterations, their solution qualities are still inferior. Note that the curve ofGloOnly
in Fig. 9(a) tends to drop smoothly. It is the reinforcement due to global pheromone updates that provides
reliable guidance for ants to find good solutions. The curves ofBothor LocOnlyclimb up before the
early 30 or 80 iterations, respectively, and they drop afterwards. It is the forgetfulness incurred by local
pheromone updates that encourages the ants inBothandLocOnlyto explore more other solution areas
in the preliminary iterations so that the iteration-best solutions found during this stage might be worse.
In the case ofBoth, after 80 iterations, the joint effect of both reinforcement and forgetfulness in the
pheromone updating process leads the ants to find even better solutions than the others.

For the same problem instance,Fig. 9(c) focuses on the average pheromone intensities on the best
paths (i.e.,

∑
〈i,j〉∈��ij /(2n − 1) where� denotes the best path) found byBoth, GloOnlyandLocOnly,

respectively, with respect to the number of iterations. As mentioned before, the significance of heuristic
value dominates that of pheromone intensity inLocOnly. Thus the arcs in the best path have great
chances to be traversed by some ants during the earlier iterations. These arcs would be selected with a
high probability by the guidance of the heuristic value, thus their average pheromone intensity would be
rapidly decreased to reach a certain minimum value due to pheromone decay. Likewise, inGloOnly, the
arcs belonging to the best path might also be traversed in the earlier iterations. The pheromone trails on
the arcs of the best path evaporate regularly in each iteration and receive additional pheromone whenever
ants visit them again (referring to Eq. (10)). When using the default parameters in our experiments, the
average pheromone intensity in the best path decreases before the first 100 iterations. As time goes on,
the pheromone intensities on the arcs that are seldom visited by ants evaporate only in such a way that
they decrease faster than those in the best path. Thus, ants gradually move back and forth along the best
path and the average pheromone intensity in the best path starts to increase slightly after iteration 100.
In Both, ants rapidly concentrate upon the best path with a large possibility and the average pheromone
intensity, around 1.57 in this case, is a compromised result among the evaporation and reinforcement
from global updates as well as the decay via local updates.

5.1.4. Effects of evaporation in global pheromone update
To demonstrate the effectiveness of the evaporation process inACO, we compare the results of perform-

ing (1)Eva: evaporation on all arcs (referring to Eq. (10)), and (2)None: no evaporation at all (referring
to the equation� = � + � ��). Note that the local pheromone update is performed for both cases.

Fig. 10(a) clearly suggests that for most casesEvaproduces better solutions thanNone.Note that both
EvaandNoneemphasize the significance of the iteration-best paths by adding some extra pheromone
(���) on the corresponding arcs, while the evaporation ofEvadegrades the pheromone intensities for
all arcs in each iteration. Let us observe the difference of the pheromone intensities on the arcs between
those in the iteration-best paths and those not. Such a difference inNonewould be larger than that inEva.
Thus, the ants inNonetends to converge to some common paths earlier.Fig. 10(b) also evinces such a
premature phenomenon ofNoneby showing that the number of iterations needed inNoneis smaller than
that inEva.

From Fig. 11, which illustrates the solution values of the iteration-best paths with respect to the
number of iterations for a particular problem instance with(n, m) = (200, 10) by running 500 iterations,



1730 S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740

Fig. 10. Results for different modes of pheromone evaporation, (a) solution values and (b) number of iterations.

Fig. 11. Solution values for different evaporation modes.

we find thatEva leads the ants to better solutions. Both of the curves ofEva andNoneclimb up in
earlier iterations and drop afterward. We might say that evaporation prevents the pheromone trails from
accumulating knowledge too fast or forgets bad decisions made in earlier stages of the search process.
Without such a proper forgetfulness process on the learned experience, the extra pheromone added by
global updates will direct the ants to follow previous experiences without considering new alternatives.
This surely increases the risk of being trapped in the situation of stagnation. Note that both curves still
fluctuate to a certain degree in the later iterations. This means that during the later iterations observed,
the ants would still keep traveling on some alternative paths to search for better solutions.

To determine a proper value for the evaporation coefficient�, we test various values and summarize
the results inFig. 12. In most of the test cases,� = 0.05 outperforms other values.

5.1.5. Effects of decay in local pheromone update
Pheromone decay in the local pheromone update process is to reduce the risk that an ant might mostly

follow the same path traversed by its predecessors. Whenever an ant moves along an arc, decay occurs on
the traversed arc.Fig. 13compares the results of employing the pheromone decay in the local pheromone
update(Dec) (referring to Eq. (11)), and the results of ignoring the local pheromone update(None).
Note that in both cases, global pheromone updates are adopted.

It can be easily seen fromFig. 13(a) that we have better solution qualities by usingDec.The pheromone
decay reduces the pheromone intensity on the just visited arcs and suggests ants to explore other arcs.



S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740 1731

Fig. 12. Solution values for various settings of�.

Fig. 13. Solution values and numbers of iterations for various pheromone decay settings, (a) solution values and (b) number of
iterations.

Fig. 14. Solution values for different settings of pheromone decay.

It is also reasonable forDec to run with more iterations thanNone, as shown inFig. 13(b), before the
stopping criterion is satisfied.

Fig. 14 shows the costs of the iteration-best paths forDec andNonewith respect to the number
of iterations needed for solving a particular instance with(n, m) = (200, 10) by runningACO for 500
iterations. Let us focus on the difference of the pheromone intensities on the arcs between those belonging
to the iteration-best paths and those do not. Such a difference inNonewould be larger than that inDec.



1732 S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740

Fig. 15. Solution values for various values of�.

Fig. 16. Effects of local search, (a) solution values and (b) number of iterations.

Thus inNone, the ants tend to follow the guidance of the pheromone trails on those iteration-best paths
found by their predecessors. This makesNonemore likely to be trapped into a stagnation situation.

Fig. 15shows the solution values derived by using different values of the pheromone decay coefficient
�. Among most of the test cases, the setting of� = 0.05 provides more satisfactory solutions than other
settings.

5.1.6. Effects of local search
The local search is applied whenever a new global best solution is found. The effect of the local search

in ACOcan be justified fromFig. 16. Fig. 16(a) indicates that we see that the solution values obtained by
applying the local search(LS) are better than those obtained without local search (NoLS). Fig. 16(b) also
discloses thatACOwith local search would be more efficient in convergence speed as compared with
ACOwithout local search. Since the application of local search might improve the best cost found so far
from Q+ to beQ′+ (Q′+�Q+), the pheromone deposited in global update��LS(=n/Q′+) would be
no less than��NoLS(=n/Q+). That is, more pheromone might be deposited on the arcs of the paths that
are explored by adopting local search to guide the following ants. Such guidance is informative because
some of these arcs might have great chances to be the ones in the best path. Subsequently, the time needed
in LSmight be reduced. That is, the local search helps the ants not only to get better solutions but also to
reduce the time for convergence in our experiments.



S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740 1733

Fig. 17. Results for different settings of initial pheromone.

5.1.7. Determination of�0
We define the value of the initial pheromone�0 to ben/100, which depends only upon the number of

cells. As matter of fact, this value is not a critical factor to the quality of the solutions reported byACO
in our experiments. This can be observed fromFig. 17, which illustrates the solution values by adopting
various settings of�0, including�0=100, 1, n/Q0 or n/100, with respect to the number of iterations for a
particular instance with(n, m)= (200, 10), whereQ0 is the cost of an approximate solution produced by
the heuristic in Merchant and Sengupta[4]. Our setting of�0 asn/100 instead ofn(Q0)−1 also ensures
thatACOalone can handle the problem and there is no need to apply some heuristic to start with.

5.1.8. Determination of u
It is intuitive that more ants participating in the search process cooperatively might provide a synergetic

effect by exchanging their individual experiences via pheromone trails. To determine an appropriate
number of ants inACO, we compare the performances resulted from different numbers of ants inFig.
18. Fig. 18(a) indicates that when the problem instances become large, the solution values reported by
u = 16 or 20 are slightly better than those byu = 1, 4, or 10. It appears that employing more ants could
reinforce the cooperation among ants.Fig. 18(b) shows that the numbers of iterations need by various
numbers of ants are similar (except foru = 4). However, using a similar number of iterations does not
imply a similar elapsed time in this experiment. In fact, as shown inFig. 18(c), it takes more execution
time when more ants are employed. We setu = 16 because this setting achieves a reliable performance
with respect to solution quality in a reasonable execution time.

5.2. Comparison with other approaches

In this section, we generate the test instances by adopting the scheme suggested in Merchant and
Sengupta[4] and Pierre and Houeto[8,9]. We summarize their instance generation scheme as follows.
Cabling cost between celli and switchk, cik, is set to be proportional to the geometric distance between
them. The call rate�i of cell i follows a Gamma distribution with mean one and coefficient of variation
0.25. The call duration inside the cells is exponentially distributed with mean one. If cellj hast neighbors,
we divide [0, 1] intot + 1 intervals by selectingt random numbers from a uniform distribution between
0 and 1. At the end of the service period in cellj , the call could be either transferred to theith neighbor,
1�i � t , with a handoff probabilityrij equal to the length of theith interval, or ended with a probability



1734 S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740

Fig. 18. Results for different numbers of ants, (a) solution values, (b) number of iterations and (c) CPU time elapsed.

equal to the length of the(t + 1)th interval. A Jackson network[32] is applied to find a consistent set of
call volume and handoff rate. The incoming rate�i in cell i are computed from the following system:

�i −
n∑

j=1

�j rji = �i , 1�i �n.

The handoff ratehij is defined byhij = �irij . All switches have the same capacity as

Mk = (1 + K/100) ×
n∑

i=1

�i/m, 1�k�m,

whereK is a random number within [10, 50] to make sure a global excess of 10–50% of the switches’
capacity compared with cells’ volume of call.

To compare the performance ofACOwith other approaches mentioned in this paper, we implement
heuristics, includingH [4], H -II and H -IV [6], and metaheuristics, includingSA[7], TS [8,9] andMA
[10], which incorporatesTSas local search[10]. The parameters involved in the metaheuristics have
been tested in advance to get their better performances. Note thatACO is equipped with the local search
procedure.

First of all, we would like to know the error ratios of the solutions given by the approaches with respect
to the optimal solutions. Thus, we implement a straightforward enumerative algorithm to find optimal
solutions (OPT). Due to time limit, only small-size problem instances are considered. The problem sizes



S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740 1735

Table 1
Comparison between heuristics/metaheuristics andOPT

(n, m) Error ratio (%) CPU time (s)

H H-II H-IV SA TS MA ACO H/H -II/H-IV SA Tabu MA ACO OPT

(5, 2) 0.27 0.68 0.68 0.00 0.00 0.00 0.01 < 0.01 1.66 0.07 0.75 0.02 <0.01
(5, 3) 1.23 1.28 1.28 0.14 0.14 0.14 0.00 <0.01 0.29 0.01 0.20 0.02 <0.01
(8, 2) 1.41 1.40 1.31 0.11 0.11 0.10 0.01 <0.01 0.31 0.01 0.61 0.02 0.02
(8, 3) 1.66 1.62 1.62 0.47 0.47 0.46 0.51 <0.01 0.40 0.02 0.38 0.03 0.39
(10, 2) 4.21 5.41 4.21 6.61 5.82 6.03 5.83 <0.01 2.00 0.10 0.43 0.03 0.11
(10, 3) 1.89 3.80 3.44 4.71 3.55 2.09 3.47 <0.01 0.49 0.02 0.32 0.04 5.13
(18, 2) 2.13 1.32 1.69 0.07 0.07 0.07 0.01 <0.01 2.60 0.11 2.43 0.08 57.24
(20, 2) 1.54 1.28 1.24 0.03 0.03 0.13 0.00 <0.01 1.53 0.11 1.03 0.09 278.53
(25, 2) 1.91 1.62 1.74 2.66 1.02 1.08 0.52 <0.01 1.79 0.53 3.43 0.19 12713.32

aren = 5, 8, 10, 18, 20 or 25, andm = 2 or 3. Ten problem instances are generated for each pair ofn and
mand the results are averaged.Table 1summarizes the error ratios and the elapsed CPU time.

As can be seen fromTable 1, these heuristics or metaheuristics can produce quite attractive solutions. On
some occasions, even optimal solutions could be found. HeuristicsH, H -II andH -IV are much faster than
those metaheuristics. However, in most of our test cases, the solution qualities obtained by metaheuristics
are better than those by the three heuristics. For some smaller problem sizes,TSorMAgive better solutions
thanACO. But, for most of the test cases,ACOobtains slightly better results. FurthermoreACOhas a
shorter elapsed time as compared with other metaheuristics. Note thatOPT is only a straightforward
implementation to obtain the optimal solutions for the comparison purpose. Therefore, the CPU time
elapsed byOPT is relatively huge.

For large problem instances, we set the sizes to ben=25, 50, 100, 150, 200 or 250 andm=2, 3, 5, 7, 10
or 15. Besides, two larger problem instances withn = 350 or 500, andm = 20 are also tested. Thirty
problem instances are generated for each pair ofn andm. To have a concise comparison between the
solutions obtained through different approaches, we derive the relative deviations of solution values using
the solution reported byACOas the baseline.Table 2summarizes the deviations in percentages. The CPU
time needed by these approaches are averaged and summarized inTable 3.

From Table 2, we realize that in most of the test cases,ACO reports better solutions than the other
approaches, whereas, in a few cases,TSgets better solutions. When the size of the problem is larger, the
effectiveness ofACObecomes more significant. The solution qulity ofMA approaches to that ofACO.
We may say that these metaheuristics are competitive to each other. In general, the solutions obtained
from metaheuristics are better than those from simple heuristics when the size of the problem instances
becomes large, while for some cases that the number of switches is small, heuristics might have appealing
results. The performance ofSAis also pretty good for some smalln orm (sayn = 25, 50 orm = 2, 3).

The results of execution time needed by these approaches are reported inTable 3. It reveals that simple
heuristics can find out solutions in a very short time. This phenomenon is reasonable because metaheuris-
tics need more iterations before they satisfy the stopping criterion. On the other hand, metaheuristics
usually produce better solutions. For the most time-consuming case withn = 500 andm = 20,SA, T S

andACO take about 36, 32 and 25 min, respectively, on an average. AlthoughH(H-II andH-IV) takes
only 3 s (0.3 and 0.3, respectively), the solution is 19.43% (14.14% and 12.63%, respectively) worse than



1736 S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740

Table 2
Relative deviation for solution values by different heuristics with respect toACO

(n, m) (H-ACO)/ACO (H-II-ACO)/ACO (H-IV-ACO)/ACO (SA-ACO)/ACO (TS-ACO)/ACO (MA-ACO)/ACO
×100 (%) ×100 (%) ×100 (%) ×100 (%) ×100 (%) ×100 (%)

(25, 2) 1.67 3.43 2.42 2.58 3.44 3.04
(25, 3) 3.24 7.53 6.05 1.23 0.06 3.99
(25, 7) 1.86 9.08 8.37 1.19 −0.03 0.65
(25, 10) 2.48 8.92 7.05 0.80 2.78 0.63
(25, 15) 2.92 13.82 12.97 0.42 4.09 1.22

(50, 2) 1.91 1.93 2.78 0.43 −1.54 1.05
(50, 3) 6.24 6.61 4.67 1.03 −0.91 2.82
(50, 5) 8.17 7.52 7.04 1.50 2.36 3.98
(50, 7) 8.34 9.17 6.23 1.37 7.88 1.64
(50, 10) 8.94 10.71 10.46 1.82 2.31 1.99
(50, 15) 7.62 10.59 9.08 2.77 0.66 0.99

(100, 2) 6.83 3.29 2.08 1.53 0.90 1.53
(100, 3) 6.37 4.53 6.69 1.32 1.80 2.67
(100, 5) 6.02 6.80 7.74 3.62 5.97 4.16
(100, 7) 15.04 8.62 9.49 4.14 −0.53 0.64
(100, 10) 11.30 8.94 8.37 5.52 5.74 4.58
(100, 15) 9.88 11.98 10.08 6.88 9.82 4.50

(150, 2) 13.81 3.69 2.29 0.64 0.94 1.35
(150, 3) 14.45 2.35 1.88 1.55 −0.91 3.14
(150, 5) 14.99 6.57 5.05 7.25 11.20 0.94
(150, 7) 16.85 8.97 8.81 3.41 2.78 1.63
(150, 10) 14.85 13.26 11.58 5.40 3.77 1.60
(150, 15) 13.34 11.86 11.67 7.46 9.88 3.12

(200, 2) 6.45 1.47 0.84 0.62 0.77 0.34
(200, 3) 9.69 4.95 2.77 1.21 0.99 0.06
(200, 5) 10.32 5.51 4.52 2.57 0.84 3.46
(200, 7) 10.49 6.88 7.41 4.13 9.52 3.16
(200, 10) 19.66 11.96 9.69 6.54 8.27 3.87
(200, 15) 22.64 14.12 12.57 7.37 10.92 4.89

(250, 2) 0.75 2.47 1.53 1.14 4.13 1.71
(250, 3) 1.56 2.83 0.48 3.13 3.06 3.48
(250, 5) 12.43 8.12 4.48 2.80 4.34 0.24
(250, 7) 19.64 6.71 5.25 1.40 6.94 1.32
(250, 10) 11.68 6.98 6.95 3.77 6.52 3.21
(250, 15) 15.71 13.52 9.85 6.75 4.68 2.98

(350, 20) 18.71 12.82 12.66 8.58 4.18 3.47
(500, 20) 19.43 14.14 12.63 10.77 4.29 4.11



S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740 1737

Table 3
CPU time (s) needed by different heuristics

(n, m) H H-II H-IV SA TS MA ACO

(25, 2) <0.1 <0.1 <0.1 1.8 0.5 3.4 0.2
(25, 3) <0.1 <0.1 <0.1 0.9 0.2 3.3 0.2
(25, 7) <0.1 <0.1 <0.1 0.8 0.6 2.8 0.4
(25, 10) <0.1 <0.1 <0.1 1.1 0.7 2.5 0.7
(25, 15) <0.1 <0.1 <0.1 2.3 1.2 3.7 1.1

(50, 2) <0.1 <0.1 <0.1 1.3 0.7 20.4 0.5
(50, 3) <0.1 <0.1 <0.1 1.3 1.7 23.9 0.6
(50, 5) <0.1 <0.1 <0.1 1.8 1.7 17.3 1.2
(50, 7) <0.1 <0.1 <0.1 3.1 4.2 17.7 2.1
(50, 10) <0.1 <0.1 <0.1 2.9 3.6 20.5 3.3
(50, 15) <0.1 <0.1 <0.1 3.6 5.0 16.5 4.7

(100, 2) <0.1 <0.1 <0.1 3.7 4.8 89.3 2.0
(100, 3) <0.1 <0.1 <0.1 6.0 5.8 94.1 4.1
(100, 5) <0.1 <0.1 <0.1 8.7 5.6 102.2 5.6
(100, 7) <0.1 <0.1 <0.1 14.4 6.6 105.9 7.7
(100, 10) <0.1 <0.1 <0.1 17.4 8.7 104.5 7.3
(100, 15) 0.1 <0.1 <0.1 29.9 14.7 144.7 16.4

(150, 2) <0.1 <0.1 <0.1 8.8 10.8 662.7 3.2
(150, 3) <0.1 <0.1 <0.1 14.2 11.6 785.0 5.9
(150, 5) 0.1 < 0.1 <0.1 28.4 15.2 693.7 12.8
(150, 7) 0.1 <0.1 <0.1 37.6 14.6 679.5 18.8
(150, 10) 0.2 <0.1 <0.1 40.5 15.7 742.9 33.0
(150, 15) 0.1 <0.1 <0.1 50.6 42.7 697.0 45.0

(200, 2) <0.1 <0.1 <0.1 14.5 18.3 1834.5 9.7
(200, 3) <0.1 <0.1 <0.1 16.7 27.9 2128.1 13.2
(200, 5) 0.1 <0.1 <0.1 22.9 19.8 2561.3 19.7
(200, 7) 0.1 <0.1 <0.1 30.2 33.6 2270.4 34.5
(200, 10) 0.2 <0.1 <0.1 39.7 41.7 2735.2 62.3
(200, 15) 0.2 0.1 <0.1 <0.1 <0.1 2800.7 88.6

(250, 2) 0.1 <0.1 <0.1 87.5 22.3 6729.4 13.2
(250, 3) 0.1 <0.1 <0.1 100.5 41.8 7416.7 19.6
(250, 5) 0.1 <0.1 <0.1 105.6 41.7 7603.9 42.2
(250, 7) 0.2 0.1 0.1 221.7 49.1 7528.0 62.0
(250, 10) 0.2 0.1 0.1 188.3 112.2 7329.2 90.8
(250, 15) 0.3 0.2 0.1 309.2 236.0 7910.7 178.4

(350, 20) 1.2 0.1 0.1 1072.8 943.4 86155.8 735.5
(500, 20) 3.0 0.3 0.3 2152.7 1884.6 119328.7 1495.3



1738 S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740

that found byACO.Therefore it is informative for the designers of PCS networks to apply metaheuristics
such asSA, T S or ACO to resolve the cell assignment problem if the cost minimization is the most
critical concern. On the contrary, if a prompt response is demanded, heuristics likeH -II or H -IV are
quite attractive to offer feasible solutions. Although the solution values obtained byMA are competitive
to ACO, it takes a much longer execution time (about 33 h for the problem size of(n, m) = (500, 20))
thanACO (about 25 min).MA might be impractical for real-world applications. We would suggest that
ACOis an effective approach to delivering solutions with satisfactory qualities in a reasonable time, even
though the statistics of our experiments does not imply the absolute superiority over the other approaches
for all of the test cases.

6. Concluding remarks

The problem of cell-to-switch assignment is essential to the development of PCS or global commu-
nication services. In this paper, we have developed anACOalgorithm to solve this problem. We model
the problem in a form of the matching problem in a weighted directed bipartite graph so that our arti-
ficial ants can construct their paths on the graph. Such an abstract structure might be helpful for ACO
designers to model their own problems. We have also conducted experiments to capture the behavior of
ants in problem optimization and empirically study the performances of ACO and other approaches with
large-scale problem instances.

Numerical results of the experiments have demonstrated the effectiveness of ourACOalgorithm in
coping with the cell assignment problem. AlthoughACO takes a longer time than the three heuristics
H, H -II and H -IV, it could find much better approximate solutions. In fact, the time needed byACO
is also reasonable when compared with those needed by exact algorithms. When compared with other
metaheuristics,ACO is also effective and efficient with respect to both solution quality and execution
time. The concern of solution quality against temporal issue is a trade-off for PCS designers. For the
cell assignment problem,ACO is a promising approach for practical implementations. It is also easy
to tailor ACO to resolve some extensions of the cell assignment problem such as theon-line version
where the cells or switches would grow or shrink due to environment change or communications traffic,
or theconstrainedversion where precedence or priority relationships among cells and switches might
be considered, just to name a few. At the same time the paper was published, an independent study by
Fournier and Pierre[33] hybridized thek-opt local optimization technique with the conventional ACO
meta-heuristic to deal with the problem considered.

Since the decision about moving from a cell to a switch and that about moving from a switch to a cell are
intrinsically different, we employ two heuristic functions to accommodate their effectiveness respectively.
This idea is different from most of the traditional ant algorithms. It is worthy of generalizing this idea of
our ACO algorithms for solving combinatorial optimization problems that could be structured by hybrid
decision criteria. The parameter setting used in our ACO algorithm is quite different from those used in
Dorigo et al.[14] and Dorigo and Gambardella[15]. It means that ACO needs to be tuned, in accordance
with the characteristics of the studied problem, to establish the appropriate search strategy. When tuning
the parameters, we examine the behavior of ACO in optimizing the problem. These experiences might
encourage us to use the ACO algorithms to deal with other combinatorial optimization problems.



S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740 1739

Acknowledgements

The authors would like to express their appreciation to the anonymous referees and the Editor-in-
Chief for their constructive comments which make the paper more comprehensive. This research was
partially supported by the National Science Council of the ROC under Grants NSC-90-2213-E-130-001
and NSC-91-2416-H-260-001.

References

[1] Cheng M, Rajagopalan S, Chang LF, Pollini GP, Barton M. PCS mobility support over fixed ATM networks. IEEE
Communication Magazine 1997;35:82–92.

[2] Akyildiz IF, McNair J, Ho J, Uzunalioglu H,WangW. Mobility management in current and future communication networks.
IEEE Network Magazine, 1998.

[3] Yacoub MD. Foundations of mobile radio engineering. Boca Raton, FL: CRC Press; 1993.
[4] Merchant A, Sengupta B. Assignment of cells to switches in PCS network. IEEE/ACM Transactions on Networking

1995;3(5):521–6.
[5] Garey MR, Johnson DS. Computer and intractability: a guide to the theory ofNP-completeness. NewYork:W.H. Freeman;

1979.
[6] Bhattacharjee PS, Saha D, Mukherjee A. Heuristics for assignment of cells to switches in a PCSN: a comparative study.

ICPWC’99, 1999. p. 331–4.
[7] Demirkol I, Ersoy C, Caglayan MU, Delic H. Location area planning in cellular networks using simulated annealing.

INFOCOM, 2001. p. 13–20.
[8] Pierre S, Houéto F. A tabu-search approach for assigning cells to switches in cellular mobile networks. Computer

Communications 2002;25(5):464–77.
[9] Pierre S, Houéto F. Assigning cells to switches in cellular mobile networks using taboo search. IEEE Transactions on

Systems, Man, And Cybernetics—Part B 2002;32(3):351–6.
[10] Quintero A, Pierre S. Evolutionary approach to optimize the assignment of cells to switches in personal communication

networks. Computer Communications 2003;26(9):927–38.
[11] Menon S, Gupa R. Assigning cells to switches in cellular networks by incorporating a pricing mechanism into simulated

annealing. IEEE Transactions on Systems, Man, and Cybernetics—Part B 2004;34(1):558–65.
[12] Dorigo M, Maniezzo V, Colorni A. Positive Feedback as a Search Strategy. Technical Report 91-016, Dipartimento di

Elettronica, Politecnico di Milano, Italy, 1991.
[13] Dorigo M. Optimization, learning and natural algorithms. Ph.D. thesis, Dipartimento di Elettronica, Politecnico di Milano,

Italy, 1992, (in Italian).
[14] Dorigo M, Maniezzo V, Colorni A. The Ant System: Optimization by a colony of cooperating agents. IEEE Transactions

on Systems, Man, and Cybernetics — Part B 1996;26(1):29–41.
[15] Dorigo M, Gambardella LM. Ant colonies for the traveling salesman problem. BioSystems 1997;43:73–81.
[16] Costa D, Hertz A. Ants can color graphs. Journal of the Operational Research Society 1997;48:295–305.
[17] Maniezzo V, Colorni A. The ant system applied to the quadratic assignment problem. IEEE Transactions on Knowledge

and Data Engineering 1999;11(5):2063–70.
[18] Shyu SJ, Yin PY, Lin BMT, Haouari M. Ant-Tree: an ant colony optimization approach to the generalized minimum

spanning tree problem. Journal of Experimental and Theoretical Artificial Intelligence 2003;15(1):103–12.
[19] Gambardella LM, Dorgio M. Ant colony system hybridized with a new local search for the sequential ordering problem.

INFORMS Journal on Computing 2000;3:237–55.
[20] Di Caro G, Dorigo M. Mobile agents for adaptive routing. Proceedings of the 31st Hawaii International Conference on

System, IEEE Computer Society Press, Los Alamitos, CA, 1998. p. 74–83.
[21] Bullnheimer B, Hartl RF, Strauss C. Applying the ant system to the vehicle routing problem. In: Voß S, Martello S, Osman

IH, Roucairol C, editors. Metaheuristics: advances and trends in local search paradigms for optimization. Boston, MA:
Kluwer Academic Publishers; 1999. p. 285–96.



1740 S.J. Shyu et al. / Computers & Operations Research 33 (2006) 1713–1740

[22] Gambardella LM, Taillard ED, Agazzi G. MACS-VRPTW: a multiple ant colony system for vehicle routing problems with
time windows. In: Corne D, Dorigo M, Glover F, editors. New ideas in optimization. London, UK: McGraw-Hill; 1999.
p. 63–76.

[23] Jayaraman VK, Kulkarni BD, Karale S, Shelokar P. Ant colony framework for optimal design and scheduling of batch
plants. Computers and Chemical Engineering 2000;24:1901–12.

[24] McMullen PR. An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives.
Artificial Intelligence in Engineering 2001;15(3):309–17.

[25] T’kindt V, Monmarché N, Tercinet F, Laügt D. An ant colony optimization algorithm to solve a 2-machine bicriteria
flowshop scheduling problem. European Journal of Operational Research 2002;142(2):250–7.

[26] Merkle D, Middendorf M, Schmeck H. Ant colony optimization for resource-constrained project scheduling. IEEE
Transactions on Evolutionary Computation 2002;6(4):333–46.

[27] Di Caro G, Dorigo M. AntNet: distributed stigmergetic control for communications networks. Journal of Artificial
Intelligence Research 1998;9:317–65.

[28] Maniezzo V, Carbonaro A. An ANTS heuristics for the frequency assignment problem. Future Generation Computer
Systems 2000;16:927–35.

[29] Schoonderwoerd R, Holland O, Bruten J, Rothkrantz L. Ant-based load balancing in telecommunications networks.
Adaptive Behavior 1997;5(2):169–207.

[30] Varela GN, Sinclair MC. Ant colony optimisation for virtual-wavelength-path routing and wavelength allocation.
Proceedings of the Congress on Evolutionary Computation (CEC’99), Washington DC, USA, July 1999.

[31] Dorigo M, Di Caro G, Gambardella LM. Ant algorithm for discrete optimization. Artificial Life 1999;5:137–72.
[32] Kleinrock L. Queueing systems I: theory. New York: Wiley; 1975.
[33] Fournier JRL, Pierre S.Assigning cells to switches in mobile networks using an ant colony optimization heuristic. Computer

Communications 2005; 28(1):65–73.


	Ant colony optimization for the cell assignmentproblem in PCS networks
	Introduction
	Mathematical model and heuristic approaches
	Mathematical model
	Heuristic and metaheuristic approaches

	Fundamentals and applications of ACO
	Applying ACO to cell assignment problem
	Problem transformation
	State transition rules
	Choosing an arc from cell i to some switch k
	Following an arc from switch k to an un-visited cell j

	Pheromone updating rules
	Local search
	Stopping criterion

	Experimental results and analysis
	Parameters setting
	Determination of beta
	Determination of q0
	Effects of pheromone update
	Effects of evaporation in global pheromone update
	Effects of decay in local pheromone update
	Effects of local search
	Determination of tau0
	Determination of u

	Comparison with other approaches

	Concluding remarks
	Acknowledgements
	References


