
Numerirul exwple:  The effectiveness of the harmonic analysis 
procedure developed is examined here for a signal given as 

s ( t )  = 

0.1 $0.3 C O S ( ~ T  x 25f+70°) +0.2 cos(2n x (50/&)t+60") 

+O.'icos(fl7r~ ( 5 0 / h + 0 . 5 ) t + 8 0 ° ) + l . 0  cos(27rx 50t)  

+ 0 . 5 C O S ( 2 i r X  ~x50t+90")+0.4cos(27rx3x50t+40") 
(6) 

This is an exacting test case. The signal s(t) has frequencies that 
have irrational number relationships to one another (e.g. 50, 50/d2 
and 50/1/3), together with harmonics which have closely similar 
frequencies (i.e. 50/d2 = 35.35Hz aiid 50142 + 0.5 = 35.85Hz). 

By monitoring i he test error, the minimum length for the train- 
ing set required is also identified. For the correct value of N = 6, 
the test error is within the specified tolerance when MI = 260. 
Increasing MI beyond 260 does not change the test error. The 
procedure developed therefore discloses a minimum data window 
length requirement in this example of 260 samples. The final 
results of harmonic analysis using the error minimisation method 
of the paper are summarised in Table 1. 

Overall, the analysis method guarantees very low errors in find- 
ing harmonic frequencies together with the magnitude and phase 
values of all harmonic components. The accurate identification of 
the two frequency components that are separated by only 0.SHz 
indicates the high resolvinl; power of the method. Spectral leakage 
errors are avoided completely. The low sensitivity of the method 
to the length of the training set and of the test set provides a good 
indication of the robustness of the method in practical use. 
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Fig. 1 Frequency spectrum of test wavefkom us fouudfiom DFT unulysis 

For our purposes, it is taken that there are 600 equally spaced 
data samples available corresponding to a tnne record length of 
200ms for a sainpling frequency of 3kHz. Initial DFT analysis 
over the complete record length of 600 samples gives the spectrum 
of Fig. I .  On ithe basis of the peaks in the spectrum, DFT analysis 
identifies the five frequency components summarised in Table 1 I 

Table 1: Resulkr of harmonic analysis 

All the numerous other frequency components of the spectrum 
of Fig. 1 are sjpurious and derive from spectral leakage. Of the two 
frequency cornponents that are separated in frequency by only 
OSHz, the one that dominates in Fig. 1 is the component of fie- 
quency 35.85Hz, whose magnitude is 0.7. 

Owing to spectral leakage, the D F T  process fails to resolve 
between the two signal components of frequencies 35.35Hz and 
35.85Hz. 

The separation of the total data file into training and test parti- 
tions is at choice. An iiiitial choice is made here of 500 data sam- 
ples in the training set, leaving 100 samples for the test set. 
Therefore, the maximum length for the training set is M1 = 500. 
That for the test set is MI, or 100. 

From the initial DFT processing, N = 5. Using the quasi-New- 
ton procedure, error minimisation for the training set leads to con- 
vergence at low error. However, the test errors are high, indicating 
a need to revise the initial value of N. There is no indication from 
the test error magaitude of whether N should be increased or 
decreased to lower the error. Choosing first to decrement N to a 
value of 4, increases the error in both the training set minimisation 
and the test set. Successively reducing N to 3, then to 2, and then 
to 1 confirms a trend of increasing error in both the training set 
and test set. Fkturning from this sequence to the initial choice of 
N = 5 and then incrementing to N = 6 leads to a low error of ICy 
in minimisation confined to the training set and le6 for the test 
error. FOJ- checking purposes, increasing N to 7 and then to 8 con- 
firms levels of test error similar to those for N = 4 or 3. The pro- 
cedurc therefore correctly gives the value N = 6. 
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Conclusions: The new method of parametric harmonic analysis 
based on data partitioning achieves a correct identification of the 
number of frequency components; a good estimate of the mini- 
mum record length required; a valid identification of all frequency 
components; a high resolution between frequency components in 
the signal waveform for which harnionic analysis is required. 
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Estimates of loss iprobabilities for delay- 
sensitive traffic in ATM networks 

K.-C. Lai and T.-H. L,ee 

Indexing terms: As~~fidironoii~~ trunsfer mode, Teleconzmunicution 
2ruf$c 

Simple estimates of loss probabilities Tor heterogeneous delay- 
sensitive traffic in ATM networks are presented. Cells of different 
connections can have different loss priorities. Numerical results 
show that the estimates, which are derived from the bufferless 
fluid flow model, are close to the actual cell loss probabilities. 

Introduction: Loss probability is considered to be an important 
measure of quality of service (QOS) in ATM networks. To make 
Fast admission control possible, the loss probability must be coni- 
puted in real-time. Unfortunately, it is often very lime consuming 
to compute the exact loss probability with queueing models. 

In this Letter we present simple estimates of loss probabilities 
for heterogeneouy delay sensitive traffic with multiple QOS 
requirements. Cells of different connections (and within a connec- 
tion) are allowed to have different loss priorities. Tlhe estimates are 
derived from the bufferless fluid flow model. Nnmerical results 
show that the estimates are close to the actual cell loss probabili- 
ties. 

Esliinutes of loss prohuhilitie,T: Consider a multiplexer with M 
independent connections that generate delay-sensi1.ive traffic. The 
link capacity is denoted by C. Since all connections generate 
delay-sensitive traffic, we assume that the buffer size in the multi- 
plexer is small and thus its effect can be neglected. 

Assume that the multipllexer supports N loss priorities. Number 
the priorities 1 to N so that the loss probability of priority i cells is 
smaller than or equal to ithat of priority j cells if i > j .  To cope 
with multiple loss probability requirements, the link capacity C is 
divided into N bands denoted by C;, C2, .,., C,. which can be 



dynamically adjusted to reduce connection blockirig probability. 
A cell of priority i can share bands C,, C,, ..., C,. Moreover, all 
cells of priority i or higher share band C, fairly. 

All traffic sources are assumed to be non-negative, bounded; 
stationary and ergodic. We adopt the fluid flow model [l] to ski- 
pliflr the calculation of loss probability. Let Z(t) denote the aggre- 
gate traffic generated by these A4 mutually independent 
connections. Under the above assumptions, to compute loss prob- 
abilities, it suffices to use a random variable 2 to represent the 
random process Z(t), so long as the density functions of Z and 
Z(t) are identical for all t. Let 2, denote the priorityj traffic gener- 
ated by the existing connections. It can be shown that as M 
appsoaches infinity 

with probability one [2], where MEAN = 421 and MEAN, = a?]. We prove a lemma concerning the average loss rate of prior- 
ity,j traffic in the following section. 

Lemma 1: Let L,(z) denote the average loss rate of priorityj traf- 
fic. It holds that 

where 

Proofi We prove this lemma by induction. Let lo.w,(z) denote the 
loss rate of priority j traffic so that L,(Z) = 4loss,(z)]. 
res,(Z) represent the traffic that will compete for band C,. 
have 

resJ+l (2) = (res, (2) - c,)+ z,+l 
2, 

Hence, by eqns. 2 and 3 we have 

For ,j = 1, we have resl(z) = Z and 

Suppose that 

For j = n + 1 5 N, we have, by eqn. 4 

&+l Zoss,+l(Z) = [res,+l - C T L + l ] + T  
Zn+l 

Therefore, it holds that 

L 

This completes the proof of Lenmia 1, 

Also, let 
Then we 

( 2 )  

( 3 )  

(4) 

Let P, denote the loss probability of priority j traffic. It is clear 
that 

which is difficult to compute in real-time. Fortunately, when the 
number of connections is large we have 

(5) 

where 

k = l  

We suggest using Pv, to approximate P,. Notice that pJ  can be 
easily obtained if the variables MEAN, and MEAN are stored. 
Hence. Q, can be computed in real time. In a real system the 
bands C, ~ C,; . . . , C,- may be dynamically adjusted to reduce con- 
nection blocking probability. In this case Q, needs to be recom- 
puted. which involves only a few divisions and thus can be 
accomplished in real time. 

The difficulty to obtain P y  is the computation of 42-41', A 
real-time computation algorithm for 42-.Q1] + can be found in [3]. 
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Fig. 1 Loss probability uguinst number of cutegory II connections 
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~V~ir~iei.icul examples: For the numerical examples, we assume C = 
15OMbps and N = 2. The link capacity is partitioned into two 
bands C, and C?, where C, = 9/10 C and C, = 1/10 C. All traffic 
sources are assumed to be on-off sources. Two categories of con- 
nection are considered. A connection of category I has peak bit 
rate MAX(') = 64kbit/s and average bit rate AVG(I) = 32kbiVs. 
The peak bit rate and average bit rate of a category I1 connection 
are MAX(" = 2Mbit/s and AVGm = 0.2Mbit/s, respectively. The 
percentage of high priority cells of category I and category I1 con- 
nections are denoted by d?(') and @, respectively. In our study, 

is chosen to be 0 (i.e. all cells are of low priority) and dJ2) = 1 
(i.e. all cells are of high priority). Fig. 1 illustrates the curves for 
Pv, and the actual cell loss probability PI. It can be seen that Pv, is 
an excellent approximation of the actual cell loss probability. 
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Conclusion: We have presented asymptotic estimates of loss proba- 
bilities of all priority classes for delay-sensitive traffic with multi- 
ple quality of service requirements. The asymptotic estimates can 
be computed in real time and are close to actual loss probabilities. 
The estimates can be used to design real-time resource allocation 
schemes. We hwe  also performed numerical examples for other 
cases (which are not presented here owing to space limitation), 
and have found that Pv, seems to be an upper bound of 6. 
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Frame decorrelation for noise-robust speech 
recognition 

H.Y. Jung, D.Y. Kim and C.K. Un 

Indexing teims: Speech recognition, Signal processing 

The authors propose a frame decorrelation method to cope with 
background noise in speech recognition. Since noise is modelled 
as a stationary perturbation in most cases, it is cffective to reduce 
slow-varying components. One example ofnsing this principle is 
the highpass scheme. The proposed method has the same property 
as the h.ighpass scheme. It transforms feature vector sequences 
into decorrelated sequences and enhances transition regions. 
Simulation results show that this method is cffective for speech 
with significant noise, and works better than other highpass 
methods. 

Introduction: It is well known that the performance of a speech 
recognition system becomes degraded severely when training and 
testing are carried out at different noise levels. To overcome this 
problem, many researchers used the spectral subtraction method 
developed in the context of speech enhancement, but in this 
method noise in corrupted speech must be estimated, which is a 
very difficult arid unsolved problem in real environments. This 
necessitates a technique that requires no noise estimation. The 
proposed decorrelation method is a kind of highpass scheme [l, 21. 
With this method slowly varying components can slowly be 
reduced to deal with background noise, thus enabling the station- 
ary regions to be more attenuated than the transition regions 
between speech ;segments. This effect can be considered as decorre- 
lation since the stationary regions are more correlated than the 
transition regions. The frame decorrelation method removes corre- 
lations between feature vectors. It transforms feature vector 
sequences into decorrelated sequences and enhances the transition 
regions as in the highpass scheme. The enhancement of transition 
regions will provide good discrimination for speech recognition. 
According to speaker-independent isolated word recognition 
experiments, the proposed method is effective for significantly 
noisy speech and yields better performance than other highpass 
schemes. 

Estimation of the power spectrum: Here we need to estimate the 
power spectrum of feature vectors to apply this to the decorrela- 
tion procedure. This power spectrum is an important factor for 
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decorrelation between feature vectors. It is estimated from statis- 
tics of feature vectors, and filter bank outputs are used as feature 
vectors. We assume that the filter bank vector O(j; t)  (wherefrep- 
resents frequency and t represents frame index) is independent of 
frequency, and estimate individually the power spectrum in each 
frequency band. The power spectrum of frequency band AJ is rep- 
resented by 

T 
/S(fO, w)I2 = 1 ; 1 o(fo. t)eJ2ZU'fdt 

where Tis the frame length, oCr;,, t )  is a feature coefficient at fre- 
quencyf,, and w is a modulation frequency that describes the tem- 
poral variation of subband energy. Fig. 1 shows the average power 
spectrum obtained using 1500 words uttered by 20 male speakers. 
It has a similar envelope in each subband, and the :spectral enve- 
lopes are approximately a fimction of Uw2. Therefore, the power 
spectrum in each subband is approximated by 

Fmme decorrelation procedure: We assume that each feature vector 
Ov; t,) is independent of frcquency, and apply the decorrelation 
procedure to remove correlations between featuire coefficient 
sequences in each subband, i.e. the decorrelation procedure trans- 
forms feature sequences into decorrelated sequences. Assuming 
that the sequence of feature coefficients at subband ,fi, O(oY;,, t i ) ,  
ov;>, t2), ..., ov;, t ,)) is transFormed into Y = CyV;], t l ) ,  yvi ,  t2), ..., 
yvi,j ';)) by a decorrelation filter D, yv;,  t)  is represented as a tern- 
poral convolution of D and 0. Here, in order for Y lo be decorre- 
lated, the correlation function of Y must satisfy the following [3]: 

E ( y ( f o ,  t)y*(f,, t ' ))  = E ( ( D  . O ) ( D  ' O T )  = S ( f 0 ;  t - to 
( 3 )  

where 6 6 ;  t - t') is the Kronecker delta function which is one 
when t = t'. Thus, the Fourier transform of eqn. 3 is given by 

o(fo,w)R(fo,lu)D"(f,,m) = 1 (4) 
where RV;, w) is the power spectrum of feature sequences in sub- 
bandf,, and is represented by the sum of signal ancl noise power 
spectra i.e. !S(fi, w ) ! ~  + !N(W)!~. Note that, since the decorrelation 
filter removes slowly varying components, a lowpass filter is 
needed to remove fast varying noise. We use the least-squares 
optimal filtering method to obtain the lowpass filter. This filter 
transforms the corrupted signal (Scf;,, w) + N(w)) into the signal 
that is close to the uncorrupted signal SY;, w). The optimal filter 
obtained is 


