HfAlON n-MOSFETs Incorporating Low-Work Function Gate Using Ytterbium Silicide

C. H. Wu, B. F. Hung, Albert Chin, *Senior Member, IEEE*, S. J. Wang, F. Y. Yen, Y. T. Hou, Y. Jin, H. J. Tao, S. C. Chen, and M. S. Liang, *Fellow, IEEE*

Abstract—The authors have fabricated low-temperature fully silicided YbSi_{2-x}-gated n-MOSFETs that used an HfAlON gate dielectric with a 1.7-nm EOT. After a 600 °C rapid thermal annealing, these devices displayed an effective work function of 4.1 eV and a peak electron mobility of 180 cm²/V · s. They have additional merit of a process compatible with current very large scale integration fabrication lines.

Index Terms-HfAION, MOSFET, YbSi.

I. INTRODUCTION

ETAL-GATE/HIGH- κ is needed for highly scaled CMOS [1]–[11]. Unfortunately, the Fermi-level pinning causes the undesired large threshold voltage (V_t) in MOSFETs. Although high- κ n-MOSFET using TaC has shown low effective work function $(\phi_{m,\text{eff}})$ [1], [2], work is still needed to develop full silicidation (FUSI) gated high- κ n-MOSFET [3]–[5], [8]–[11] and deal with the $\phi_{m,{\rm eff}}$ reduction. This is because of the process compatibility with current poly-Si gate CMOS technology. In this letter, we have used $YbSi_{2-x}$ FUSI-gate for high- κ n-MOSFETs. The Yb has the lowest work function in Lanthanide that previously gave $YbSi_{2-x}$ low-electron barrier to Si contact with good uniformity [12]. However, the $YbSi_{2-x}/HfO_2$ showed large leakage current and failed. To overcome this problem, we have used the robust HfAlON by combining high-diffusion-barrier Al₂O₃ and oxynitride [13]–[16] with HfO₂. The YbSi_{2-x}/HfAlON showed good low $\phi_{m,\mathrm{eff}}$ of 4.1 eV and electron mobility of 180 cm²/V \cdot s, indicating the potential application for metalgate/high- κ n-MOSFETs.

II. EXPERIMENTAL PROCEDURE

Standard p-type Si wafers, with a resistivity of $1-10 \ \Omega \cdot \text{cm}$ $(10^{15}-10^{16} \text{ cm}^{-3} \text{ doping level})$, were used in this letter. A nonself-aligned MOSFET [9] was fabricated to study the effect of FUSI gate on high- κ HfAlON. After device isolation and

Digital Object Identifier 10.1109/LED.2006.874778

active area definition, the n⁺ source-drain regions are formed first by using a thick dummy SiO₂ gate and phosphorus ion implantation at 35 KeV. After removing the dummy gate by patterning, the HfAlON high- κ gate dielectric was formed on Si wafer by depositing HfAlO using physical vapor deposition (PVD), a postdeposition anneal (PDA), NH₃ plasma surface nitridation and followed a second 800 °C PDA. Subsequently, the \sim 25-nm amorphous Si was deposited and annealed at 950 °C rapid thermal annealing (RTA) for 30 s to activate the implanted dopant. The silicide was formed by depositing 60-nm Yb using PVD and 20-nm Mo using PVD, patterned and silicided at 400 °C-600 °C RTA for 30 s [9]-[11]. Here, the Mo is needed to cover the Yb and prevent oxidation during RTA silicidation. From the secondary ion mass spectroscopy (SIMS) and cross-sectional TEM measurements, little Mo can diffuse into the FUSI/high- κ interface and thus no effect on work function. For comparison, we also fabricated Al-, Yb-, or NiSi-gated devices on HfAlON, where the Al or Yb was directly deposited on HfAlON without silicidation thermal cycle. The fabricated n-MOS devices were characterized by capacitance–voltage (C-V) and current–voltage (I-V)measurements.

III. RESULTS AND DISCUSSION

Fig. 1(a) and (b) shows the C-V and J-V characteristics for YbSi_{2-*x*}/HfAlON, Yb/HfAlON, NiSi/HfAlON, and control Al/HfAlON capacitors, annealed at different RTA temperatures. The Al-gated capacitor was used as a reference, since the pure metal displays little Fermi-level pinning on high- κ dielectrics due to the low-temperature process with less interface reaction [6], [7]. The shift of the C-V curves with different gate electrodes is due to the different work functions since the relative low-temperature silicidation thermal cycle has less effect on high- κ dielectric. However, the YbSi_{2-x}/HfO₂ device failed, which may be due to the Yb diffusion into HfO₂ and/or reaction of amorphous-Si with HfO2. Using the robust HfAlON, the thermal stability was improved with a reasonable leakage current of 2.3×10^{-4} A/cm at -1 V with an equivalent oxide thickness (EOT) of ~ 1.7 nm. The decreasing flat-band voltage $(V_{\rm fb})$ with increasing RTA silicidation temperature for $YbSi_{2-x}/HfAION$ capacitors may be due to increased Yb diffusion toward the HfAlON surface, increasing the work function. From the C-V shift referenced to the Al control gate, the extracted $\phi_{m,\text{eff}}$ of YbSi_{2-x}/HfAlON and Yb/HfAlON are 4.1 and 3.6 eV, respectively. Therefore, much improved Fermilevel pinning is obtained. We also measured the C-V in the

Manuscript received March 6, 2006. This work was supported in part by the National Science Council (NSC), Taiwan, R.O.C., under Grant 94-2215-E-009-062. The review of this letter was arranged by Editor A. Chatteriee.

C. H. Wu and S. J. Wang are with the Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C.

B. F. Hung and A. Chin are with the Department of Electronics Engineering, National Chiao-Tung University, University System of Taiwan, Hsinchu, Taiwan, R.O.C. (e-mail: achin@cc.nctu.edu.tw).

F. Y. Yen, Y. T. Hou, Y. Jin, H. J. Tao, S. C. Chen, and M. S. Liang are with the Taiwan Semiconductor Manufacturing Corporation, Science-Based Industrial Park, Hsinchu, Taiwan, R.O.C.

Fig. 1. (a) C-V and (b) $J_g - V_g$ characteristics for YbSi_{2-x}/HfAlON, Yb/HfAlON, Ni/HfAlON, and Al/HfAlON capacitors, measured under accumulation. The device area was 100 μ m \times 100 μ m.

Fig. 2. SIMS of Yb in the YbSi $_{2-x}$ /HfAlON structure. The inset figure is the XRD profiles.

MOSFET [9] and the same value of accumulation and inversion capacitance indicates the bottom surface of Si gate is silicided after 600 °C RTA without depletion. Thus, reasonable low $\phi_{m,\text{eff}}$ of 4.1 eV and a low gate-dielectric leakage current can be simultaneously achieved in YbSi_{2-x}/HfAlON MOS capacitors.

To further understand the desired negative shift of $V_{\rm fb}$ with increasing RTA temperature, we have down SIMS measure-

Fig. 3. $I_d - V_d$ characteristics of an YbSi_{2-x}/HfAlON n-MOSFET. The inset figure is $I_d - V_g$ curves. The gate length was 10 μ m.

Fig. 4. (a) Electron mobility extracted from the $I_d - V_d$ characteristics of an YbSi_{2-x}/HfAlON n-MOSFET and (b) the time-to-breakdown distribution and maximum operation voltage plots.

ments. As shown in Fig. 2, continuous diffusion of Yb toward interface was measured by $YbSi_{2-x}$ formation from X-ray diffraction (XRD) pattern (inset) [12], [17]. Here, the *x* is ~ 0.2 due to Si vacancy in silicide [17]. Such metal at interface is

known to unpin the Fermi level due to the high concentration of electrons in the metals [6], [7].

Fig. 3 displays the transistor $I_d - V_d$ characteristics as a function of $V_g - V_t$ for 600 °C RTA annealed, YbSi_{2-x}/HfAION n-MOSFETs. The well-behaved $I_d - V_d$ curves showed little degradation of the device performance from using an YbSi_{2-x} gate. The inset figure is the $I_d - V_g$ characteristics. A V_t as low as 0.1 V was obtained from the linear $I_d - V_g$ plot, which is consistent with the large $\phi_{m,\text{eff}}$ of 4.1 eV from the C-V curves. Fig. 4(a) shows the electron mobility extracted from the measured $I_d - V_g$ curves of the n-MOSFETs. A peak electron mobility of 180 cm²/V · s was obtained for the YbSi_{2-x}/HfAION n-MOSFETs. Further mobility improvement to recently published data [18], [19] may be reachable by using HfSiON and/or forming gas anneal. Fig. 4(b) is the dielectric time-to-breakdown plot. Good reliability of large extrapolated voltage of 3.5 V is obtained for a ten-year operation.

IV. CONCLUSION

Good device performance has been demonstrated for long channel YbSi_{2-x}/HfAlON n-MOSFETs with low $\phi_{m,\text{eff}}$ and V_t values. This promising n-MOS device has the merit of process compatibility with existing VLSI lines.

REFERENCES

- [1] H.-H. Tseng, C. C. Capasso, J. K. Schaeffer, E. A. Hebert, P. J. Tobin, D. C. Gilmer, D. Triyoso, M. E. Ramón, S. Kalpat, E. Luckowski, W. J. Taylor, Y. Jeon, O. Adetutu, R. I. Hegde, R. Noble, M. Jahanbani, C. El Chemali, and B. E. White, "Improved short channel device characteristics with stress relieved pre-oxide (SRPO) and a novel tantalum carbon alloy metal gate/HfO₂ stack," in *IEDM Tech. Dig.*, 2004, pp. 821–824.
- [2] J. K. Schaeffer, C. Capasso, L. R. C. Fonseca, S. Samavedam, D. C. Gilmer, Y. Liang, S. Kalpat, B. Adetutu, H.-H. Tseng, Y. Shiho, A. Demkov, R. Hegde, W. J. Taylor, R. Gregory, J. Jiang, E. Luckowski, M. V. Raymond, K. Moore, D. Triyoso, D. Roan, B. E. White, Jr., and P. J. Tobin, "Challenges for the integration of metal gate electrodes," in *IEDM Tech. Dig.*, 2004, pp. 287–290.
- [3] B. Tavel, T. Skotnicki, G. Pares, N. Carrière, M. Rivoire, F. Leverd, C. Julien, J. Torres, and R. Pantel, "Totally silicided (CoSi₂) polysilicon: A novel approach to very low-resistive gate (~ 2Ω/□) without metal CMP nor etching," in *IEDM Tech. Dig.*, 2001, pp. 815–828.
- [4] W. P. Maszara, Z. Krivokapic, P. King, J. S. Goollgweon, and M. R. Lin, "Transistors with dual work function metal gate by single full silicidation (FUSI) of polysilicon gates," in *IEDM Tech. Dig.*, 2002, pp. 367–370.
- [5] T. Nabatame, M. Kadoshima, K. Iwamoto, N. Mise, S. Migita, M. Ohno, H. Ota, N. Yasuda, A. Ogawa, K. Tominaga, H. Satake, and

A. Toriumi, "Partial silicides technology for tunable work function electrodes on high-k gate dielectrics-fermi level pinning controlled $PtSi_x$ for $HfO_x(N)$ pMOSFET," in *IEDM Tech. Dig.*, 2004, pp. 83–86.

- [6] C. S. Park, B. J. Cho, L. J. Tang, and D. L. Kwong, "Substituted aluminum metal gate on high-K dielectric for low work-function and Fermi-level pinning free," in *IEDM Tech. Dig.*, 2004, pp. 299–302.
- [7] M. Koyama, Y. Kamimuta, T. Ino, A. Kaneko, S. Inumiya, K. Eguchi, M. Takayanagi, and A. Nishiyama, "Careful examination on the asymmetric V_{fb} shift problem for Poly-Si/HfSiON gate stack and its solution by the Hf concentration control in the dielectric near the Poly-Si interface with small EOT expense," in *IEDM Tech. Dig.*, 2004, pp. 499–502.
- [8] K. Takahashi, K. Manabe, T. Ikarashi, N. Ikarashi, T. Hase, T. Yoshihara, H. Watanabe, T. Tatsumi, and Y. Mochizuki, "Dual workfunction Ni-silicide/HfSiON gate stacks by phase-controlled fullsilicidation (PC-FUSI) technique for 45 nm-node LSTP and LOP devices," in *IEDM Tech. Dig.*, 2004, pp. 91–94.
- [9] C. H. Huang, D. S. Yu, A. Chin, W. J. Chen, C. X. Zhu, M.-F. Li, B. J. Cho, and D. L. Kwong, "Fully silicided NiSi and germanided NiGe dual gates on SiO₂/Si and Al₂O₃/Ge-On-Insulator MOSFETs," in *IEDM Tech. Dig.*, 2003, pp. 319–322.
- [10] C. Y. Lin, D. S. Yu, A. Chin, C. Zhu, M. F. Li, and D. L. Kwong, "Fully silicided NiSi gate on La₂O₃ MOSFETs," *IEEE Electron Device Lett.*, vol. 24, no. 5, pp. 348–350, May 2003.
- [11] D. S. Yu, K. C. Chiang, C. F. Cheng, A. Chin, C. Zhu, M. F. Li, and D. L. Kwong, "Fully silicided NiSi:Hf/LaAlO₃/smart-cut-Ge-on-insulator n-MOSFETs with high electron mobility," *IEEE Electron Device Lett.*, vol. 25, no. 8, pp. 559–561, Aug. 2004.
- [12] S. Zhu, J. Chen, M.-F. Li, S. J. Lee, J. Singh, C. X. Zhu, A. Du, C. H. Tung, A. Chin, and D. L. Kwong, "N-type Schottky barrier source/drain MOSFET using ytterbium silicide," *IEEE Electron Device Lett.*, vol. 25, no. 8, pp. 565–567, Aug. 2004.
- [13] C. C. Liao, C. F. Cheng, D. S. Yu, and A. Chin, "The copper contamination effect on Al₂O₃ gate dielectric on Si," *J. Electrochem. Soc.*, vol. 151, no. 10, pp. G693–G696, Oct. 2004.
- [14] Y. H. Lin, F. M. Pan, Y. C. Liao, Y. C. Chen, I. J. Hsieh, and A. Chin, "The Cu contamination effect in oxynitride gate dielectrics," *J. Electrochem. Soc.*, vol. 148, no. 11, pp. G627–G629, Nov. 2001.
- [15] A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, "Device and reliability of high-k Al₂O₃ gate dielectric with good mobility and low D_{it}," in *VLSI Symp. Tech. Dig.*, 1999, pp. 133–134.
- [16] C. H. Huang, M. Y. Yang, A. Chin, W. J. Chen, C. X. Zhu, B. J. Cho, M.-F. Li, and D. L. Kwong, "Very low defects and high performance Ge-on-insulator p-MOSFETs with Al₂O₃ gate dielectrics," in *VLSI Symp. Tech. Dig.*, 2003, pp. 119–120.
- [17] K. S. Chi and L. J. Chen, "Formation of ytterbium silicide on (111) and (001)Si by solid-state reactions," *Mater. Sci. Semicond. Process.*, vol. 4, no. 1–3, pp. 269–272, Feb. 2001.
- [18] T. Hirano, T. Ando, K. Tai, S. Yamaguchi, T. Kato, S. Hiyama, Y. Hagimoto, S. Takesako, N. Yamagishi, K. Watanabe, R. Yamamoto, S. Kanda, S. Terauchi, Y. Tateshita, Y. Tagawa, H. Iwamoto, M. Saito, S. Kadomura, and N. Nagashima, "High performance nMOSFET with HfSi_x/HfO₂ gate stack by low temperature process," in *IEDM Tech. Dig.*, 2005, pp. 911–914.
- [19] M. Inoue, S. Tsujikawa, M. Mizutani, K. Nomura, T. Hayashi, K. Shiga, J. Yugami, J. Tsuchimoto, Y. Ohno, and M. Yoneda, "Fluorine incorporation into HfSiON dielectric for V_{th} control and its impact on reliability for Poly-Si gate pFET," in *IEDM Tech. Dig.*, 2005, pp. 425–428.