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Abstract: This paper reports very accurate vibration frequencies of moderately thick sectorial plates with var-
ious boundary conditions and vertex angles (� � 90�, 180�, 270�, 300�, 330�, and 355�) based on Mindlin
plate theory, and provides the nodal patterns of their vibration modes for the first time in the published lit-
erature. Most of the extensive frequencies presented are exact to the four digits shown. The classical Ritz
method is employed, using corner functions and algebraic trigonometric functions as the admissible func-
tions. Because the corner functions properly describe the singularity behaviors of moments and shear forces
in the vicinity of the vertex of a sectorial plate, they substantially enhance the convergence and accuracy of
the numerical results, which is shown by convergence studies.

Keywords: Mindlin sectorial plates, Ritz method, corner functions, vibration

1. INTRODUCTION

Plates are fundamental structural components, which are widely used in practical engineering
projects and have caught many researchers’ interests. Leissa (1969, 1977a, 1977b, 1981a,
1981b, 1987a, 1987b) reviewed more than one thousand technical publications on vibrations
of thin or thick plates published before 1985, while Liew et al. (1995) concentrated their
review on the vibrations of thick plates on pre-1994 publications. These reviews show that
there are far fewer studies on vibrations of sectorial plates than for circular, rectangular,
or even annular sector plates. The existence of moment and shear force singularities at
the vertex of a sectorial plate considerably increases the difficulty of numerically obtaining
accurate frequencies and mode shapes for this configuration.

A number of studies have been carried out on vibrations of thin sectorial plates. Based on
classical thin plate theory, Huang et al. (1993) provided the first known exact analytical solu-
tion for sectorial plates with simply supported radial edges. No exact analytical solutions are
possible with other boundary conditions along the radial edges. Various numerical solutions
were developed, such as those based on energy methods (Rubin, 1975� Bhattacharya and
Bhowmic, 1975), finite element method (Houmat, 2001), finite strip method (Cheung and
Chan, 1981), differential quadrature method (Wang and Wang, 2004), and the Ritz method
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636 C. S. HUANG ET AL.

(Leissa et al., 1993� McGee et al., 2003). Among these numerical solutions for thin plates,
the solutions developed by Leissa et al. (1993) and McGee et al. (2003) are the most ac-
curate because the admissible functions in the Ritz method include the corner functions,
which appropriately describe the singular behavior of moments in the neighborhood of the
vertex of a sectorial plate. Experimental studies were also performed by Waller (1952) and
Maruyama and Ichinomiya (1981) into the vibration behavior of free and clamped sectorial
plates, respectively.

Only a few investigations have been carried out into the vibrations of sectorial plates
based on Mindlin or Reissner plate theory, even though shear deformation and rotary inertia
are known to be important to any analysis of moderately thick plates, and in determining the
higher vibration frequencies of thin plates. Huang et al. (1994) obtained exact analytical
solutions for sectorial plates with simply supported radial edges, which involve ordinary and
modified Bessel functions. Liu and Liew (1999) applied the differential quadrature method
to analyze the free vibration of sectorial plates with edges either clamped or simply sup-
ported. They considered annular sector plates with an inner to outer radius ratio of 0.00001
and with free boundary conditions along the inner circular edge, so that no moment and shear
force singularities need to be taken into account. This was the same procedure used earlier
by Leissa et al. (1993) for thin annular plates, presented there in addition to the method em-
ploying corner functions. The accuracy of this approach depends on the inner to outer radius
ratio chosen and the boundary conditions along the inner circular edge. While a number of
researchers have investigated vibrations of thick annular sector plates using various methods
(e.g., Guruswamy and Yang, 1979� Cheung and Chan, 1981� Srinivasan and Thiruvenkat-
achari, 1985� Mizusawa, 1991� Xiang et al., 1993� Mizusawa et al., 1994� McGee et al.,
1995a� Liew and Liu, 2000), only Xiang et al. (1993) demonstrated results for plates with an
inner to outer radius ratio of 0.00001 and with sector angles not larger than 90�.

The studies cited above reveal that there is a need to develop accurate solutions for vibra-
tion frequencies of thick sectorial plates with various boundary conditions and vertex angles,
and which may have moment and shear force singularities at the neighborhood of the vertex
of the sectorial plate. In the present work, a procedure recently developed for the analysis
of skewed plates with re-entrant corners (Huang et al., 2005) is extended to sectorial plates.
The Ritz method is used with displacement components, which are represented by a math-
ematically complete set of admissible algebraic-trigonometric polynomials in conjunction
with corner functions that appropriately represent the singular behaviors of moments and
shear forces in the neighborhood of the vertex. The corner functions significantly accelerate
the convergence of the numerical solutions. Accurate non-dimensional frequencies are pre-
sented for sectorial plates with various boundary conditions, vertex angles (� � 90�� 180��
270�� 300�� 330�� and 355��, and thickness-to-radius ratios (h�a � 0�1 or 0.2). The nodal
patterns are also shown.

2. METHODOLOGY

In the Ritz method, the vibration frequencies of plates are obtained by minimizing the energy
function

� � Vmax � Tmax� (1)
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Figure 1. Geometry and coordinate system of a sectorial plate.

where Vmax and Tmax are maximum strain energy and maximum kinetic energy during a
vibratory cycle, respectively. In terms of polar coordinates (see Figure 1), Vmax and Tmax are
expressed as

Tmax � �2�
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where w is the transverse displacement of the mid-plane, 
r and
� are the bending rotations
of the mid-plane normal in the r and � directions respectively, h is the thickness of the plate,
D � Eh3�12	1 � 
2� is the flexural rigidity, E is the modulus of elasticity, 
 is Poisson’s
ratio, �2 is the shear correction factor, G is the shear modulus, � is the density of the plate,
and � is a free vibration frequency.

The admissible functions for displacement components are assumed as the sum of two
sets of functions,


r 	r� �� � �r p	r� ����r c	r� ��� (4a)


�	r� �� � �� p	r� ����� c	r� ��� (4b)

�	r� �� � Wp	r� ���Wc	r� ��� (4c)
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where �rp, �� p and Wp consist of algebraic-trigonometric polynomials, and �rc, ��c and
Wc are three sets of corner functions accounting for the singular behaviors of moments and
shear forces at the vertex. The algebraic-trigonometric polynomials are expressed as

�rp	r� �� � g1	r�

�
f1	��

�
I1�

i�2�4

i�
j�2�4

Bi jr
i�1 cos j� �

I2�
i�3�5

i�
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�
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where Ai j , Bi j , Ci j , �Ai j , �Bi j and �Ci j are coefficients to be determined by minimizing �. In
equations (5), Ik can be different for different k. However, for simplicity, they are set to be
I1 � I3 � I5 � I7 and I2 � I4 � I6 � I8 in the following. Functions gi	r� and f j	�� are
chosen to make the admissible functions satisfy the geometric boundary conditions along the
circular and radial edges, respectively.

For different boundary conditions along the circular edge (r � a), gi	r� are chosen as
follows:

Clamped : gi	r� � 	1� r�a� for i � 1� 2� and 3�
Simply supported : g2	r� � g3	r� � 	1� r�a�� and g1	r� � 1�
Free : gi	r� � 1 for i � 1� 2� and 3�

Functions f j	�� 	 j � 1� 2� � � � � 6� are expressed as

f j	�� � �m j 	1� ����n j � (6)

where m j and n j are either zero or one depending on the boundary conditions along the
radial edges. For different boundary conditions along � � 0, m j is given as follows:
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Clamped : m1 � m3 � m5 � 1� the rest all equal to zero�
Simply supported : m1 � m5 � 1� the rest all equal to zero�
Free : all equal to zero�

The same rule is applied to n j for different boundary conditions along � � �. Notably, the
simply supported conditions given above simulate the mechanical support of a line hinge
along an edge.

When the problems under consideration are symmetric (i.e., have the same boundary
conditions along the two radial edges), one can take advantage of the symmetry and set
� � 0 as the symmetry axis. Then functions f j	�� ( j � 1� 2� � � � � 6) can expressed as

f j	�� � 	1� 2����k j 	1� 2����k j � (7)

where the rule for determining k j is the same as that for m j given above.
The sets of corner functions are written as

�rc	r� �� � g1	r�
K�

k�1



Bk Re	�rk	r� �� �k��� �Bk Im	�rk	r� �� �k��

�
� (8a)

��c	r� �� � g2	r�
K�

k�1


 	Ck Re	��k	r� �� �k��� �Ck Im	��k	r� �� �k��
�
� (8b)

Wc	r� �� � g3	r�
L�

l�1

Al W l	r� �� �k�� (8c)

where �r k� �� k and W l are established from the asymptotic solutions presented by Huang
(2003) and McGee et al. (2005). The expressions for �r k� �� k and W l used in this work
are listed in Table 1. When �k in Table 1 is a complex number, the corresponding �r k and
�� k are complex functions. Because 	�k is always real, W k is a real function. To meet the
regularity conditions at r � 0 the real parts of �k and 	�k have to exceed zero, and �k and 	�k

are ranked by increasing order of magnitude of the real part. �r k and �� k are usually more
complicated than the algebraic-trigonometric polynomials used in �r p and �� p.

Using the Ritz method, the free vibration problem is solved by substituting equations
(4), (5) and (8) into equations (2) and (3), and minimizing the energy functional � given in
equation (1) with respect to the coefficients Ai j , Bi j , Ci j , �Ai j , �Bi j , �Ci j , Al , Bk , 	Ck , �Bk , and
�Ck by partial differentiation. This yields a set of homogeneous linear algebraic equations in

terms of these coefficients, which lead to a standard eigenvalue problem. A similar formu-
lation for these equations in matrix form can be found in Xiang et al. (1993). The resulting
eigenvalues correspond to the vibration frequencies, and the corresponding eigenfunctions
describe the mode shapes.
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Table 1. Corner functions corresponding to various boundary conditions along radial
edges.

Boundary con- Corner functions
ditions along
radial edges

Clamped- �rk	r� �� � r�k
cos	�k � 1�� � 	k1�1 sin	�k � 1�� � cos	�k � 1��

Free ��1 sin	�k � 1����
��k	r� �� � r�k
� sin	�k � 1�� � 	k1�1 cos	�k � 1�� � 	k1 sin	�k � 1��

�	k1�1 cos	�k � 1����
W k	r� �� � r 	�k sin 	�k� ,

where

�1 � � �k	1� 
� cos	�k � 1�� � 	 	k1	�k � 1�� �k
 � 1� cos	�k � 1��

	 	k1	�k � 1�� �k
 � 1� sin	�k � 1�� � 	k1�k	1� 
� sin	�k � 1��

	k1 � � [2	1� 
�� 	1� 
�	�k � 1�]

[2	1� 
�� 	1� 
�	�k � 1�]
, and �k and 	�k are the kth root of

sin2 �� � 4� �2	1� 
�2 sin2 �

	3� 
�	1� 
� and cos 	�� � 0, respectively.

Simply �rk	r� �� � r�k
�2 sin	�k � 1�� � sin	�k � 1���,
supported- ��k	r� �� � r�k
�2 cos	�k � 1�� � 	k1 cos	�k � 1���,
Free W k	r� �� � r 	�k sin 	�k� ,

where �2 � � 	1� ��	1� 
�
�3� �� 
 � �


sin	�� 1��

sin	�� 1��
, and �k and 	�k

are the kth root of sin 2�� � � sin 2� and cos 	�� � 0, respectively.

Simply �rk	r� �� � r�k

�
�sin	�k � 1��

sin	�k � 1��
sin	�k � 1�� � sin	�k � 1��

�
,

supported- ��k	r� �� � r�k

�
�sin	�k � 1��

sin	�k � 1��
cos	�k � 1�� � 	k1 cos	�k � 1��

�
,

Clamped W k	r� �� � r 	�k sin 	�k� ,

where �k and 	�k are the kth root of

sin 2�� � �	1� 
�
�3� 
 sin 2� and sin 	�� � 0, respectively.

Free- (1) Symmetric case

Free �rk	r� �� � r�k
�3 cos	�k � 1�� � cos	�k � 1���
��k	r� �� � r�k
��3 sin	�k � 1�� � 	k1 sin	�k � 1���
W k	r� �� � r 	�k cos 	�k�

where �3 � �
	k1	�k � 1�� �k
 � 1

�k	1� 
�
cos	�k � 1���2

cos	�k � 1���2
, and �k and 	�k

are the kth root of sin �� � �� sin� and sin 	���2 � 0, respectively.
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Table 1. Corner functions corresponding to various boundary conditions along radial
edges. (Continued)

Boundary con- Corner functions
ditions along
radial edges

(2) Antisymmetric case

�rk	r� �� � r�k
�4 sin	�k � 1�� � sin	�k � 1���
��k	r� �� � r�k
�4 cos	�k � 1�� � 	k1 cos	�k � 1���
Wk	r� �� � r 	�k sin 	�k�

where

�4 � �
	k1	�k � 1�� �k
 � 1

�k	1� 
�
sin	�k � 1���2

sin	�k � 1���2
, and �k and 	�k are the kth

root of sin �� � � sin� and cos 	���2 � 0, respectively.

Clamped- (1) Symmetric case:

Clamped �rk	r� �� � r�k

�
cos	�k � 1�� �

�
cos	�k � 1���2

cos	�k � 1���2

�
cos	�k � 1��

�
��k	r� �� � r�k

�
� sin	�k � 1�� � 	k1

�
cos	�k � 1���2

cos	�k � 1���2

�
sin	�k � 1��

�
Wk	r� �� � r 	�k cos 	�k�

where �k and 	�k are the kth root of

sin �� � ��	1� 
��3� 
 sin� and cos 	���2 � 0, respectively.

(2) Antisymmetric case

�rk	r� �� � r�k

�
sin	�k � 1�� �

�
sin	�k � 1���2

sin	�k � 1���2

�
sin	�k � 1��

�
��k	r� �� � r�k

�
cos	�k � 1�� � 	k1

�
sin	�k � 1���2

sin	�k � 1���2

�
cos	�k � 1��

�
W k	r� �� � r 	�k sin 	�k�

where �k and 	�k are the kth root of

sin �� � �	1� 
�
�3� 
 sin� and sin 	�k��2 � 0, respectively.

3. CONVERGENCE STUDIES

The Ritz method always gives upper-bound solutions for vibration frequencies. Because the
sets of polynomials (equations (5)) are mathematically complete, the numerical solutions
will converge to exact solutions when the number of admissible functions is sufficiently
large. The purpose of the corner functions (equations (8)) is to accelerate the convergence.
Here, convergence studies were conducted to verify the accuracy of the present solutions and
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Table 2. Convergence of �a2��h�D for a sectorial plate with C-F-F boundary conditions
and � � 90�.

Mode No. of corner (Ieven,Iodd) in Eqs.(5)
no. functions (16,15) (18,17) (20,19) (22,21) (22,23)

	�r c��� c�Wc� 437# 546# 667# 800# 872#

1 (0,0,0) 4.466 4.432 4.419 4.415 4.412
(10,10,10) 4.427 4.416 4.409 4.403 4.402
(20,20,20) 4.414 4.407 4.402 4.400 4.400

2 (0,0,0) 12.88 12.78 12.73 12.73 12.72
(10,10,10) 12.76 12.74 12.72 12.71 12.71
(20,20,20) 12.73 12.72 12.71 12.71 12.71

3 (0,0,0) 23.22 23.17 23.12 23.08 23.08
(10,10,10) 23.15 23.11 23.07 23.07 23.06
(20,20,20) 23.10 23.07 23.06 23.06 23.06

4 (0,0,0) 32.42 32.27 32.23 32.22 32.21
(10,10,10) 32.27 32.23 32.21 32.20 32.20
(20,20,20) 32.22 32.21 32.20 32.20 32.20

5 (0,0,0) 48.01 47.87 47.81 47.80 47.78
(10,10,10) 47.89 47.85 47.80 47.77 47.77
(20,20,20) 47.81 47.79 47.77 47.77 47.77

Note: “#” denotes the total number of terms in �rp , �� p and Wp.

to show the effects of corner functions on the numerical solutions. The results given here are
for plates with 
 � 0�3 and �2 (shear correction factor) � �2�12.

The different combinations of boundary conditions along radial edges and circular edge
are considered in this section and the next are F-F-F, C-F-F, S-F-F, C-C-F, S-C-F, and C-C-C
(where S-C-F, for instance, denotes simply supported, clamped, and free boundary conditions
along edges 1, 2, and 3, respectively, on the sectorial plate shown in Figure 1).

Tables 2–4 list the nondimensional frequencies �a2��h�D of plates (h�a � 0�1), pro-
duced using different numbers of admissible functions, with C-F-F boundary conditions and
having � � 90�, 270� and 355�, respectively. Notably, increasing the vertex angle leads to
more severe stress singularities at the neighborhood of r � 0. It can be observed that the
results for the plate with � � 90� converge well even using only algebraic-trigonometric
polynomials, but that this is not the case for the plates with � � 270� and 355�. Adding
corner functions to the admissible functions accelerates the convergence of the numerical
results considerably, especially for larger �, where the stress singularities are more severe.
Using 20 corner functions for each of �r c� �� c and Wc and setting I2 � I4 � I6 � I8 � 22
and I1 � I3 � I5 � I7 � 21 in equations (4) gives results that are accurate to at least three
significant figures. Table 4 (� � 355�) shows that using 800 polynomial terms without any
corner functions, the fundamental frequency obtained is 39 percent higher than the accurate
value (1.712) obtained when 60 corner functions are added. It is worth noting that using Ik

larger than those given in Tables 2–4 may cause numerical difficulties through ill-conditioned
matrices.
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Table 3. Convergence of �a2��h�D for a sectorial plate with C-F-F boundary conditions
and � � 270�.

Mode No. of corner (Ieven,Iodd) in Eqs.(5)
no. functions (16,15) (18,17) (20,19) (22,21) (24,23)

	�r c��� c�Wc� 437# 546# 667# 800# 945#

1 (0,0,0) 2.482 2.425 2.388 2.359 2.335
(10,10,10) 2.191 2.036 1.983 1.966 1.965
(20,20,20) 2.032 2.012 1.966 1.964 1.962

2 (0,0,0) 2.974 2.906 2.832 2.804 2.774
(10,10,10) 2.484 2.296 2.225 2.204 2.201
(20,20,20) 2.299 2.244 2.204 2.200 2.198

3 (0,0,0) 4.684 4.635 4.629 4.617 4.596
(10,10,10) 4.535 4.468 4.373 4.370 4.368
(20,20,20) 4.465 4.397 4.369 4.366 4.366

4 (0,0,0) 8.157 8.063 8.046 8.030 8.009
(10,10,10) 7.868 7.808 7.803 7.795 7.791
(20,20,20) 7.808 7.804 7.794 7.789 7.787

5 (0,0,0) 12.54 12.50 12.48 12.47 12.45
(10,10,10) 12.27 12.18 12.16 12.16 12.15
(20,20,20) 12.19 12.16 12.16 12.15 12.15

Note: “#” denotes the total number of terms in �rp , �� p and Wp.

Table 4. Convergence of �a2��h�D for a sectorial plate with C-F-F boundary conditions
and � � 355�.

Mode No. of corner (Ieven,Iodd) in Eqs.(5)
no. functions (16,15) (18,17) (20,19) (22,21)

	�r c��� c�Wc� 437# 546# 667# 800#

1 (0,0,0) 2.504 2.448 2.375 2.319
(10,10,10) 1.808 1.745 1.717 1.714
(20,20,20) 1.745 1.714 1.712 1.712

2 (0,0,0) 3.029 2.918 2.839 2.765
(10,10,10) 2.401 2.286 2.184 2.182
(20,20,20) 2.304 2.183 2.180 2.177

3 (0,0,0) 3.717 3.654 3.624 3.597
(10,10,10) 3.421 3.338 3.275 3.272
(20,20,20) 3.344 3.296 3.267 3.266

4 (0,0,0) 5.452 5.335 5.281 5.237
(10,10,10) 5.096 4.782 4.735 4.725
(20,20,20) 5.007 4.733 4.725 4.722

5 (0,0,0) 8.041 7.979 7.927 7.880
(10,10,10) 7.595 7.383 7.343 7.339
(20,20,20) 7.385 7.340 7.337 7.336

Note: “#” denotes the total number of terms in �rp , �� p and Wp.
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Tables 2 to 4 show corner functions accelerating the convergence of the numerical so-
lution, but the corner functions themselves are rather too complicated. Can one use some
simplified corner functions having the same singular order as the original corner functions
and get accurate results? To answer this question, a simple convergence study was conducted
for F-F-F and C-F-F sectorial plates with � � 355� and h�a � 0�1. Tables 5 and 6 show
the results obtained by using the corner functions given in Table 1 and by using simplified
corner functions defined as follows:
For clamped-free radial edges,

�rc	r� �� � g1	r�
K�

k�1

rRe[�k ]
Bk sin	Re[�k]��� �Bk� cos	Re[�k]���� (9a)

��c	r� �� � g2	r�
K�

k�1

rRe[�k ]
 	Ck sin	Re[�k]��� �Ck� cos	Re[�k]���� (9b)

Wc	r� �� � g3	r�
K�

k�1

Akr 	�k sin	 	�k��� (9c)

For free-free radial edges,

�rc�S	r� �� � g1	r�
K�

k�1

�BkrRe[�k ] cos	Re[�k]��� (10a)

��c�S	r� �� � g2	r�
K�

k�1

	CkrRe[�k ] sin	Re[�k]��� (10b)

Wc�S	r� �� � g3	r�
K�

k�1

�Akr 	�k cos	 	�k��� (10c)

and

�rc�A	r� �� � g1	r�
K�

k�1

BkrRe[�k ] sin	Re[�k]��� (11a)

��c�A	r� �� � g2	r�
K�

k�1

�CkrRe[�k ] cos	Re[�k]���� (11b)

Wc�A	r� �� � g3	r�
K�

k�1

Akr 	�k sin	 	�k��� (11c)

where the subscripts “,S” and “,A” denote the symmetric and antisymmetric modes, respec-
tively. These simplified corner functions give the correct singularity orders of moments and
shear forces at r � 0. The simplified corner functions for �r c and �� c are much simpler
than the original corner functions, especially those for clamped-free radial edges.
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Table 5. Comparison of �a2��h�D for a completely free sectorial plate with � � 355�

and h�a � 0�1 by using different corner functions.

Mode No. of corner (Ieven,Iodd) in Eqs.(5)
no. functions (16, 15) (18,17) (20,19) (22,21) (24,23)

	�r c��� c�Wc�

1 (0,0,0) 5.261 5.244 5.242 5.240 5.237
(A) (1,1,1) 4.875 4.814 4.779 4.755 4.750

[4.890] [4.819] [4.783] [4.758] [4.752]
(5,5,5) 2.782 2.760 2.747 2.740 2.736

[2.795] [2.763] [2.752] [2.746] [2.740]
2 (0,0,0) 5.345 5.301 5.297 5.296 5.294
(S) (1,1,1) 4.713 4.690 4.642 4.601 4.579

[4.721] [4.695] [4.649] [4.607] [4.596]
(5,5,5) 4.268 4.241 4.234 4.232 4.231

[4.277] [4.246] [4.239] [4.237] [4.235]
3 (0,0,0) 8.881 8.854 8.849 8.843 8.839
(S) (1,1,1) 8.010 7.980 7.936 7.894 7.845

[8.024] [7.988] [7.940] [7.899] [7.850]
(5,5,5) 7.645 7.561 7.556 7.551 7.547

[7.659] [7.566] [7.560] [7.556] [7.551]
4 (0,0,0) 12.02 12.00 11.99 11.98 11.98
(A) (1,1,1) 10.25 10.18 10.09 10.02 10.00

[10.27] [10.19] [10.10] [10.03] [10.02]
(5,5,5) 7.653 7.609 7.596 7.592 7.589

[7.667] [7.616] [7.603] [7.599] [7.594]
5 (0,0,0) 12.12 12.12 12.12 12.11 12.11
(S) (1,1,1) 11.51 11.51 11.50 11.49 11.49

[11.52] [11.52] [11.51] [11.51] [11.51]
(5,5,5) 11.26 11.24 11.23 11.23 11.22

[11.27] [11.25] [11.24] [11.23] [11.23]

Note: (S) and (A) denote symmetric and antisymmetric modes, respectively. [] represents the results obtained
by using simplified corner functions.

In Tables 5 and 6, using one corner function in each �r c� �� c and Wc means that only
the functions leading to the correct singularity orders of moments and shear forces are added
into the admissible functions. When �k 	k � 1� is complex, the real part of the corresponding
complex corner function is used if only one corner function is used in the admissible func-
tions. In the case of completely free sectorial plates (Table 5), the simplified corner functions
give results very close (within 0.5%) to those produced by the original corner functions (Ta-
ble 1), although the latter give slightly better solutions. In the case of sectorial plates with
C-F-F boundary conditions (see Table 6), the simplified corner functions improve the con-
vergence of the numerical results when compared with the model using just the polynomials.
However, the improvement achieved by using the original corner functions is much better�
the difference can be more than 4%. The reason for the simplified corner functions having
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Table 6. Comparison of �a2��h�D for a C-F-F sectorial plate with � � 355� and h�a �
0�1 by using different corner functions.

Mode No. of corner (Ieven,Iodd) in Eqs.(5)
no. functions (16,15) (18,17) (20,19) (22,21) (24,23)

	�r c��� c�Wc�

1 (0,0,0) 2.504 2.448 2.375 2.319 2.263
(1,1,1) 2.388 2.237 2.187 1.932 1.895

[2.428] [2.302] [2.200] [1.993] [1.955]
(5,5,5) 2.216 2.186 1.884 1.851 1.811

[2.264] [2.201] [1.958] [1.929] [1.885]
2 (0,0,0) 3.029 2.918 2.839 2.765 2.744

(1,1,1) 2.857 2.571 2.473 2.416 2.380
[2.914] [2.689] [2.598] [2.518] [2.490]

(5,5,5) 2.513 2.422 2.409 2.377 2.294
[2.607] [2.455] [2.429] [2.416] [2.372]

3 (0,0,0) 3.717 3.654 3.624 3.597 3.474
(1,1,1) 3.625 3.526 3.485 3.463 3.352

[3.641] [3.604] [3.564] [3.518] [3.431]
(5,5,5) 3.510 3.489 3.464 3.345 3.319

[3.595] [3.537] [3.521] [3.412] [3.370]
4 (0,0,0) 5.452 5.335 5.281 5.237 5.196

(1,1,1) 5.298 5.223 5.149 5.112 5.048
[5.305] [5.278] [5.191] [5.166] [5.139]

(5,5,5) 5.185 5.139 5.116 4.988 4.961
[5.252] [5.207] [5.139] [5.078] [5.005]

5 (0,0,0) 8.041 7.979 7.927 7.880 7.822
(1,1,1) 7.918 7.839 7.810 7.761 7.717

[7.950] [7.926] [7.875] [7.839] [7.794]
(5,5,5) 7.762 7.633 7.536 7.498 7.463

[7.816] [7.701] [7.623] [7.568] [7.541]

Note: [] represents the results obtained by using simplified corner functions.

different effects on improving the accuracy of the results given in Tables 5 and 6 is that
the first few values of �k for clamped-free radial edges are complex numbers, so that the
simplified corner functions do not correctly portray the singular behaviors of moments in the
vicinity of the vertex. Complex �k 	k � 1� yields bending moments approaching infinity
in an oscillatory manner as r approaches zero, while the simplified corner functions yield
the moments approaching infinity monotonically. The results in Tables 5 and 6 imply that
the ability of the corner functions to accurately describe the singular behaviors of moments
and shear forces can considerably accelerate the convergence of numerical results. This
observation also suggests a need for caution in the use of r�-type singular elements in a
finite element approach, in which � is assigned to be real. Notably, the corner functions can
cooperate with a finite element approaches as Gifford and Hilton (1978) developed enriched
finite elements for determining stress intensity factor in plane crack problems.
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Table 7. Frequency parameters �a2��h�D for completely clamped sectorial plates.

h/a � Mode Number
(degrees) 1 2 3 4 5

0.1 90 42.78 72.01 83.94 105.2 122.4
[42.75] [71.96] [83.86] [105.1] [122.2]

180 25.94 37.46 51.20 61.10 66.32
[25.91] [37.43] [51.16] [61.06] [66.26]

270 21.64 27.63 35.71 44.70 53.90
[21.62] [27.60] [35.68] [44.66] [53.87]

330 20.37 24.43 30.53 37.45 44.88
[20.35] [24.40] [30.51] [37.43] [44.85]

0.2 90 33.31 52.06 59.20 72.17 81.72
[33.28] [52.04] [59.16] [72.14] [81.71]

180 21.66 30.08 39.63 45.57 49.60
[21.63] [30.06] [39.61] [45.53] [49.55]

270 18.18 23.09 29.10 35.46 40.91
[18.14] [23.07] [29.07] [35.43] [40.88]

330 16.97 20.75 25.38 30.46 35.69
[16.95] [20.71] [25.36] [30.42] [35.66]

Note: [ ] represents results of Liu and Liew (1999).

4. FREQUENCIES AND MODE SHAPES

Extensive convergence studies were performed to give the accurate nondimensional fre-
quency parameters �a2

�
�h�D listed in Tables 7–9. All frequency results are guaranteed

upper bounds to the exact values and exact (i.e., converged) to at least three significant
figures. Tables 7–9 list the nondimensional frequencies of the first five modes for sectorial
plates with different boundary conditions (C-C-C, F-F-F, C-F-F, S-F-F, C-C-F, and S-C-F),
vertex angles (� � 90�, 180�, 270� 300�, 330� and 355�) and ratios of thickness to radius
(h�a � 0�1 and 0.2). Since there are no published results for thick sectorial plates with
� 
 180� and boundary conditions other than simply supported along the radial edges, the
results given in Tables 7–9 emphasize cases where � 
 180� to fill the gap in existing fre-
quency data in the published literature. Tables 8 and 9, together with the results given in
Huang et al. (1994) represent all the possible cases when the circular edge is free.

As mentioned in the introduction, some researchers have investigated the vibrations of
annular sector plates and used the free boundary conditions along the inner circular edge and
a very small inner to outer radius ratio (0.00001) to approximate the solutions of sectorial
plates. The accuracy of these approximate solutions depends on the chosen inner to outer
radius ratio and the boundary conditions used along the inner circular edge. It is interest-
ing to compare those published results with the present results, as Leissa et al. (1993) did
with their results. Table 7 compares the present results with those of Liu and Liew (1999)
for completely clamped sectorial plates. The agreement between the results is excellent, al-
though the results produced by Liu and Liew are always smaller than the present results, as
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Table 8. Frequency parameters �a2��h�D for sectorial plates with h�a � 0�1 and having
various boundary conditions.

Boundary � Mode Number
conditions (degrees) 1 2 3 4 5
F-F-F 90 15.37 22.00 28.66 35.25 51.66

180 6.813 9.146 17.30 17.37 27.35
270 4.454 5.859 9.063 12.29 16.40
300 3.675 5.378 8.155 10.29 15.01
330 3.101 4.757 7.737 8.679 12.73
355 2.730 4.228 7.548 7.577 11.23

C-F-F 90 4.400 12.71 23.06 32.20 47.77
180 2.388 3.817 8.971 15.53 18.50
270 1.962 2.198 4.366 7.787 12.15
300 1.937 2.198 3.839 6.411 10.05
330 1.802 2.180 3.317 5.373 8.432
355 1.712 2.177 3.266 4.722 7.336

S-F-F 90 9.055 17.13 27.09 42.39 48.79
180 2.726 7.342 14.02 16.59 22.63
270 2.161 3.350 6.681 11.01 15.99
300 2.156 2.744 5.423 9.059 13.34
330 1.891 2.868 4.268 7.589 11.33
355 1.613 2.987 3.742 6.605 10.93

C-C-F 90 13.36 29.81 41.53 56.75 72.98
180 4.462 8.789 16.81 24.64 24.93
270 3.066 4.074 7.851 11.12 17.63
300 2.920 3.461 6.109 10.08 14.13
330 2.839 3.062 5.113 8.306 11.76
355 2.688 2.858 3.947 7.240 10.83

S-C-F 90 8.881 25.45 37.66 48.54 69.31
180 2.899 7.155 14.14 22.99 23.40
270 2.403 3.281 6.591 10.90 16.17
300 2.238 3.156 5.415 8.909 13.30
330 2.027 3.055 4.116 7.497 11.23
355 1.815 2.847 3.794 7.232 10.81

they used a free boundary condition along the inner circular edge, which makes the plate less
constrained than a completely clamped sectorial plate.

Notably, Tables 8 and 9 do not list the zero frequencies of the three rigid body modes
and one rigid body mode for plates with F-F-F and S-F-F boundary conditions, respectively.
If these rigid body modes are taken into account, as the boundary conditions change from F-
F-F to S-F-F, C-F-F, S-C-F, and to C-C-F, the plates become stiffer, so that their frequencies
increase for each mode. As the vertex angle (�) increases, the nondimensional frequency
parameters generally decrease (except for the second modes of S-F-F plates). This trend was
also observed in the solutions based on thin plate theory (McGee et al., 2003).
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Table 9. Frequency parameters �a2��h�D for sectorial plates with h�a � 0�2 and having
various boundary conditions.

Boundary � Mode Number
conditions (degrees) 1 2 3 4 5
F-F-F 90 14.82 21.31 27.45 33.10 47.30

180 6.724 8.997 16.39 16.51 25.81
270 4.376 5.765 8.927 11.99 15.65
300 3.590 5.286 8.021 10.05 14.47
330 3.057 4.637 7.645 8.481 11.98
355 2.632 4.152 7.430 7.458 10.98

C-F-F 90 4.326 12.38 22.14 30.06 44.59
180 2.296 3.713 8.801 15.19 18.10
270 1.905 2.134 4.258 7.556 11.85
300 1.868 2.130 3.822 6.202 9.700
330 1.758 2.127 3.230 5.261 8.246
355 1.659 2.121 3.184 4.497 6.725

S-F-F 90 8.573 15.79 24.11 36.75 40.74
180 2.624 6.835 13.01 15.58 20.60
270 1.993 3.147 6.475 10.00 14.97
300 1.954 2.541 5.218 8.691 12.32
330 1.710 2.656 4.064 7.312 10.81
355 1.431 2.774 3.538 6.298 10.42

C-C-F 90 11.35 24.77 32.49 40.70 52.90
180 4.198 8.479 14.80 20.62 21.90
270 2.823 3.779 7.144 10.11 15.66
300 2.717 3.187 5.530 9.469 13.11
330 2.657 2.750 4.601 7.898 10.74
355 2.474 2.566 3.454 6.930 10.09

S-C-F 90 8.289 23.32 31.60 40.04 52.72
180 2.649 6.685 12.99 20.57 20.96
270 2.271 3.078 6.284 9.887 13.16
300 2.056 2.953 5.210 8.671 12.28
330 1.829 2.747 3.821 7.247 10.70
355 1.613 2.561 3.374 6.929 9.738

The effect of thickness on the vibration frequencies can be seen from the results in Ta-
bles 8 and 9 and those for thin plates given by McGee et al. (1995b, 2003). The nondi-
mensional frequency parameters decrease as the thickness increases if the radius (a) remains
fixed. This is expected, because the effects of shear deformation and rotary inertia are in-
cluded here. However, if h increases, with all other parameters (�� E , 
) remaining the same,
the frequencies (�) also increase.

Figures 2 to 4 show the nodal patterns of the first five modes for sectorial plates having
h�a � 0�1 and the same vertex angles (� � 90�, 180�, 270� 300�, 330�, and 355�) as in
Tables 8 and 9 and various boundary conditions (F-F-F, C-F-F, and C-C-F). The parenthe-
sized numbers are the nondimensional frequencies for the corresponding modes. The nodal
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Figure 2. Nodal patterns for F-F-F sectorial plates with h�a � 0�1 and various vertex angles.
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Figure 2. Nodal patterns for F-F-F sectorial plates with h�a � 0�1 and various vertex angles. (Continued)

patterns of the F-F-F and C-F-F sectorial plates with � � 355� shown in Figures 2 and 3 are
very similar to those for thin plates given by Leissa et al. (1993) and McGee et al. (1995),
respectively. The existence of the sharp V-notch (� � 355�) severely distorts the nodal
patterns of a completely free circular plate. When � changes from 330� to 355�, the nodal
patterns for F-F-F plates remain very similar, and the nodal patterns for C-F-F plates are also
similar except for the third mode, but the nodal patterns of the first three modes for C-C-F
plates change dramatically.

 at NATIONAL CHIAO TUNG UNIV LIB on April 26, 2014jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/


652 C. S. HUANG ET AL.

Figure 3. Nodal patterns for C-F-F sectorial plates with h�a � 0�1 and various vertex angles.
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Figure 3. Nodal patterns for C-F-F sectorial plates with h�a � 0�1 and various vertex angles. (Continued)

 at NATIONAL CHIAO TUNG UNIV LIB on April 26, 2014jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/


654 C. S. HUANG ET AL.

Figure 4. Nodal patterns for C-C-F sectorial plates with h�a � 0�1 and various vertex angles.
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Figure 4. Nodal patterns for C-C-F sectorial plates with h�a � 0�1 and various vertex angles.
(Continued)

The increase of vertex angle changes the sequence of the mode shapes for the symmetric
and antisymmetric modes of F-F-F and C-C-F plates. For example, for F-F-F boundary
conditions, the first modes of the plates with � � 90� and 180� are symmetric modes while
the first modes for � � 270�, 300�, 330� and 355� are antisymmetric modes. The opposite
sequence of symmetric and antisymmetric modes with changing � is observed for the second
modes. For C-C-F boundary conditions, the first modes of the plates with � � 90�, 180�,
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270�, 300�, and 330� are symmetric modes with no nodal line, while the mode without a
nodal line disappears for the case of � � 355�, the first mode of which is an antisymmetric
mode. These changes do not alter the trend of frequencies decreasing with the increase of
the vertex angle.

5. CONCLUSION

This paper has demonstrated that adding corner functions to the algebraic-trigonometric
polynomials as admissible functions of the Ritz method can significantly accelerate the con-
vergence of the numerical results for sectorial plates. The main effect of the corner functions
is to accurately present the singular behaviors of moments and shear forces in the vicinity of
the vertex. When the moments or shear forces approach infinity in an oscillatory manner in
the neighborhood of the vertex (i.e., when �k is complex), the admissible functions must not
only have the correct singularity order for the moments or shear forces, but also show the
correct oscillation behavior.

Detailed numerical tables have been presented for frequencies of moderately thick sec-
torial plates (h�a � 0�1 and 0.2) with various boundary conditions and vertex angles. The
presented frequencies are all exact to at least three significant figures and are, in most cases,
the first such results to be shown in the published literature, as are the nodal patterns also
given here. Generally speaking, the vibration frequencies decrease as the vertex angle in-
creases. The nondimensional frequencies �a2��h�D decrease as the thickness of the plate
increases. This reliable information serves not only to improve the understanding of how
sectorial plates can vibrate, but also as benchmark data against which other computational
methods (such as finite element, boundary element or differential quadrature methods) may
be checked.

Although this paper only considers the vibrations of sectorial plates, the method used
here can be easily extended to study the vibration behaviors of a circular plate with V-notches
(or cracks), where the notch vertex is not at the circle center.
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