
Wireless Networks 12, 301–319, 2006
C© 2006 Springer Science + Business Media, LLC. Manufactured in The Netherlands.

DOI: 10.1007/s11276-005-5276-9

On Striping Traffic over Multiple IEEE 802.11(b) Wireless Channels

S.Y. WANG, C.C. HWANG and C.L. CHOU
Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan

Published online: 30 December 2005

Abstract. Due to interference, path loss, multipath fading, background noise, and many other factors, wireless communication normally
cannot provide a wireless link with both a high data rate and a long transmission range. To address this problem, striping network traffic
in parallel over multiple lower-data-rate but longer-transmission-range wireless channels may be used. In this paper, we propose a new
striping method and evaluate its performances over multiple IEEE 802.11(b) channels under various conditions. Our extensive simulation
results show that this method is quite effective for such an application.

Keywords: striping network traffic, parallel transmission

1. Introduction

Providing a long-range wireless link with a high data rate
is difficult. Radio waves arrive at a wireless receiver from
different directions with different time delays. They combine
via vector addition at the receiver antenna to form a resultant
signal. The amplitude of the resultant signal may be large
or small depending on whether the incoming waves combine
to reinforce each other or cancel each other. The phase rela-
tionship between the various incoming waves also changes.
Substantial amplitude and phase fluctuations may thus occur
and the signal is subjected to fading. When relative motion
exists between the wireless transmitter and receiver, there is
a Doppler shift in the received signal. All of these factors can
cause inter-symbol interference and thus decoding errors at
the receiver.

Increasing the transmission time of each bit can reduce the
inter-symbol interference effect. However, this means that
the data rate of a wireless link must be lowered. As such,
given the same transmit power, a wireless link normally is
either high-rate-but-short-range or long-range-but-low-rate.
Achieving both a high data rate and a long transmission range
at the same time normally is impossible. As an example, in
[12], the Lucent Technology Inc’s IEEE 802.11(b) [4] ra-
dio characteristics table shows that the effective transmission
range for the 1, 2, 5.5, and 11 Mbps data rates are decreasing.
They are 540, 400, 195, and 120 meters in the open space
environment, respectively.

To overcome this dilemma, using multiple long-range-
but-low-rate wireless channels and sending network
traffic over them in parallel may be used. This operation
is called “striping” and the used channels are called
“stripes” in the literature [2]. Using striping, potentially a
long-range-and-high-rate wireless trunk can be created by ag-
gregating the bandwidth of multiple long-range-but-low-rate
channels.

In addition to providing higher aggregated bandwidth,
striping also provides fault tolerance for interfaces and chan-
nels. First, since multiple wireless interfaces are used at the
transmitter and receiver, if one of them fails, others can still
be used to continuously send and receive network traffic. Sec-
ond, since multiple wireless channels are used between the
transmitter and receiver, if the quality of one of these chan-
nels becomes very bad due to severe multipath fading, others
can still be used to continuously convey network traffic.

Using striping, the formed wireless trunk can be directly
used between two terminals (can be fixed or mobile) to ex-
change their packets. It can also be used between a mobile
terminal and a fixed base station. In addition, it can also be
used between two fixed wireless bridges to exchange packets
between two buildings. Wireless bridges (e.g., the CISCO
Aironet 350 series wireless bridge product [3]) are primarily
used to provide high-speed long-range outdoor links between
buildings. Striping is very suitable for such an application.

Although striping can provide multiple advantages, sev-
eral issues remain. First it should be implemented transpar-
ently at a layer so that all upper layers will not notice its
existence. Second, after packets are striped over multiple
channels, their order should be maintained before they are de-
livered to the upper layer at the receiver. However, on wireless
channels, packets can easily get corrupted, dropped, and/or
retransmitted. Without implementing a packet resequencing
mechanism at the receiver, excessive packet reorderings can
occur. Third, the extra delays introduced in striping for main-
taining packet delivery order need to be kept small. Fourth, a
dynamic fault tolerance mechanism should be implemented
so that the available bandwidth of all wireless channels can
be efficiently aggregated and utilized.

In this paper, we design and implement a new striping
method for striping traffic over multiple IEEE 802.11(b)
channels. The issues discussed above are addressed in this
method. We evaluated the performances of this method under

302 WANG ET AL.

various network conditions, including ideal channel, conges-
tion, bit errors, hidden-terminal, and mobility. The perfor-
mance metrics used are the achieved aggregated throughput
and the extra delays introduced for maintaining packet de-
livery order. Simulation results show that this method can
generate satisfactory performances under these conditions.

The rest of the paper is organized as follows. In Section 2,
we survey related work and present the design of Surplus
Round Robin (SRR) striping method in details because later
we will compare the performances of our striping method to
its performances. In Section 3, we present the design and im-
plementation of our striping method. In Section 4, we evaluate
and present the performances of our striping method under
various conditions. The performances of SRR and our strip-
ing method are also compared. In Section 7, we discuss our
future work. Finally, in Section 8, we conclude the paper.

2. Related work

Striping has been proposed and studied in the literature. How-
ever, most designs assumed physical transport links with con-
stant bit rates and stable link characteristics such as those
found in circuit-switched networks . However, this is not the
case with wireless channels. Due to congestion, interference,
bit errors, multipath fading, and many other factors, the avail-
able bandwidth of a wireless channel and the packet transfer
latency on a wireless channel can vary drastically over time.

Recently, the authors in [5,6,8] studied striping over wire-
less networks. However, their focuses are different from those
of this paper and they did not study the performance of strip-
ing under various conditions. In [8], the author applied strip-
ing to four wide-area Cellular Digital Packet Data (CDPD)
[13] channels and focused only on the achieved throughput
under the typical condition. In [5,6], the authors focused only
on the transmission delays caused by detecting and retrans-
mitting lost packets over striping channels. They assumed
that sequence numbers are not used in the packets sent over
striping channels and the link layer does not automatically re-
transmit lost packets. Under these assumptions, they proposed
a simple delay-time model and presented some analyses.

In contrast, this paper focuses on striping network traffic
over multiple IEEE 802.11(b) channels. The medium access
control (MAC) protocol of IEEE 802.11(b) is accurately sim-
ulated in our study. Using simulations, we extensively studied
the performances of our method under various conditions. In
addition, we also compared the performances of our method
to those of SRR [1].

The striping method proposed in [1] is a reliable and
scalable striping protocol. It is named Surplus Round Robin
(SRR) and most of the research papers refer to it. In [1], it is
shown that SRR can perform well on fixed networks. How-
ever, because its performances on IEEE 802.11(b) wireless
channels have not been studied, we will compare its perfor-
mances with those of our striping method on IEEE 802.11(b)
wireless channels.

For this reason, in the following we will present SRR in
more details. With this background, later we can explain why
SRR performs poorly on IEEE 802.11(b) wireless channels
when presenting simulation results.

2.1. Surplus round robin

The SRR method is designed for general purpose. Three key
ideas of SRR are load sharing, logic reception, and marker
packets. In the sender side, SRR uses a load sharing algo-
rithm to stripe packets over multiple links. Logic reception
means that the receiver buffers incoming packets and per-
forms the inverse algorithm to predict which stripe to receive
packets from. Marker packets are used in SRR to perform
synchronization recovery at the receiver.

The load sharing algorithm uses a basic round-robin
scheme to switch among stripes for transmission. Starting
from the first stripe, after sending some packets on a stripe,
the sender switches to the next stripe. This operation is re-
peated until the sender rolls back to the first stripe. At that
time, a round is completed.

The load sharing algorithm allows each stripe to share the
traffic load equally. In SRR, a counter is kept for each stripe.
The counter represents how many bytes can still be sent on
the stripe. Whenever a packet is sent on a stripe, the size
of the packet is subtracted from the stripe’s counter. When
the counter becomes negative, the sender cannot send more
packets on the current stripe. As such, it switches to the next
stripe. After a round, a stripe will again receive its turn to send
packets. At that time, a fresh quantum value will be added
to the stripe’s counter. This value represents how many bytes
can be sent on a stripe in a round. Figure 1 illustrates this
operation.

At the receiver, packets coming from each stripe are
buffered in a per-stripe queue. The receiver simulates the
inverse version of the striping algorithm used in the sender
to decide which stripe queue to receive packets from. Like
the mechanism used in the sender, a counter is kept for each
stripe. Whenever a packet is received from a stripe queue,
the size of the packet is subtracted from that stripe’s counter.
When the counter becomes negative, it is refilled with the

300 bytes

E D C

AB

A

BC

striping
point

Round 1Round 2
start end start

counter = 500 counter = 0

counter = 500 counter = 0

counter = 500

counter = 500

500 bytes

200 bytes

Figure 1. The operation of SRR at the sender.

ON STRIPING TRAFFIC OVER MULTIPLE IEEE 802.11(B) WIRELESS CHANNELS 303

counter = 0

E D C

B A

A

BC

D

E

striping
point

Round 1Round 2

startend
counter = 500counter = 0

start
counter = 500

200 bytes200 bytes 300 bytes

500 bytes

counter = 500counter = 500

Figure 2. The operation of SRR at the receiver.

(c) in the receiver side with marker packets

point

C

B

A

D

E

F

ABCDEF striping

striping

point

CBEDF

C

B

E

DF

striping

point

BCDEF

BD

CE

F

M(r=1)

Out of order!!

lost

marker packet with round number, causing the
receiver to skip this stripe in this round

(a) in the sender side

(b) in the receiver side

Figure 3. Marker packets are used in SRR for synchronizing the sender
and receiver.

same quantum value used in the sender, and the receiver
switches to the next stripe. By this design, the receiver can
receive packets in their original order without using sequence
numbers in these packets. Figure 2 illustrates this operation.

If packets are lost on the stripes, the reception of packets
will become out of order. Marker packets are thus introduced
to solve this problem. In SRR, the sender periodically sends
a special packet named “marker packet” on each stripe. A
marker packet is different from normal data packets. A marker
packet contains the information of the current round number.
When the receiver receives such a packet, the receiver can
synchronize its current round number with the sender. With
these marker packets, the receiver can recover from out-of-
order packets. Figure 3 shows this design. In figure 3(a), the
packet labeled ‘A’ is lost. In figure 3(b), we can see that the
reception in the receiver now becomes out of order. If the
marker packet is sent, as shown in figure 3(c), the lost packet
can be detected via the round number carried in the marker
packet and packet reordering can be avoided.

SRR can guarantee FIFO packet delivery order only when
no packet is lost. When a data packet is lost, all data packets
following it will be received and delivered in wrong order to

the upper layer until a marker packet arrives. When a data
packet and a marker packet are both lost, this out-of-order
problem will become worse because more data packets will be
received and delivered in wrong order. It is clear that marker
packets are more important than data packets. However, on
wireless channels, data and marker packets are subjected to
bit errors equally.

As mentioned earlier, striping should be transparent to
the upper layer. The guarantee of FIFO delivery order is an
important issue. Even though SRR can perform order recov-
ery via marker packets, the synchronization can only be re-
established after future marker packets are received. Before
that time, some out-of-order packets will have been handed
to the upper layer. The re-establishment of synchronization
will be too late for these packets.

Synchronization can be re-established very soon by send-
ing marker packets frequently. However, since marker packets
are bandwidth overhead, a large fraction of bandwidth will
be wasted by these marker packets.

In addition, SRR has another problem. Since the receiver
simulates the algorithm used at the sender, it expects to receive
some packets from the current stripe. Until the counter of the
current stripe becomes negative, it will not switch to the next
stripe. This design will cause blocking if no packet is expected
to arrive on the current stripe.

For example, if (1) the link of the current stripe is broken
and thus no new packet will arrive soon or (2) a packet is
lost on the current stripe but no new packet is expected to
arrive soon due to TCP’s windowing congestion control, the
receiving operation will block forever on the current stripe
until some new packets arrive. In the first case, the operation
resuming time is when the link becomes non-broken while
in the second case it is when the TCP sender timeouts and
resends the lost packet. In either case, during this period the
receiver cannot proceed to receive more packets from other
stripes. We can see that in such a situation, the fault tolerance
capability inherent in striping is lost. In addition, TCP will
perform poorly due to frequent timeouts. In Section 4, the
poor simulation results of SRR confirm this reasoning.

3. The proposed method

Because TCP traffic is the most dominant traffic in the current
Internet, the proposed method should work well with TCP.
In the first sub-section, we first discuss the FIFO delivery ef-
fect on TCP performance. After reading the first sub-section,
readers will understand that maintaining FIFO delivery order,
reducing packet losses, and reducing packet resequencing de-
lays are all very important to achieve good TCP performance
over a wireless trunk.

3.1. FIFO effect on TCP performance

TCP performs poorly when encountering many out-of-order
packets. In this sub-section, we briefly describe TCP conges-
tion control protocol. Readers can refer to [9] for more details.

304 WANG ET AL.

For providing a reliable service, the TCP receiver con-
stantly sends back acknowledgment packets to the TCP
sender to acknowledge the receipt of data packets. When re-
ceiving an out-of-order packet, the TCP receiver will immedi-
ately generate an acknowledgment packet (called “a duplicate
ACK”) and send it back to the TCP sender. The purpose of
this duplicate ACK is to let the TCP sender know that a packet
was received out of order.

When three or more duplicate ACKs are received, it is
a strong signal to the TCP sender that a packet was lost.
The TCP sender then immediately retransmits the lost packet
without waiting for its retransmission timer to expire. Since
the lower bound of this retransmission timer is 1 second,
this quick response is called the fast retransmit and recovery
algorithm.

In addition to retransmitting the lost packet, the TCP
sender reduces its current sending rate by a half to miti-
gate the current congestion level. This is done by cutting its
congestion window size by a half.

From the above description, we see that a packet loss will
cause all of its following packets to become out-of-order.
This will trigger TCP congestion control and lower the TCP
sender’s throughput by a half. Even if there is no packet
loss, if the order of received packets is so wrong that more
than three duplicate ACKs are generated, the TCP sender’s
throughput will also be reduced by a half.

These explanations show the importance of FIFO delivery
order to good TCP performance. When striping is used, main-
taining packet FIFO delivery order after they are sent over
multiple stripes thus is also important. However, we note that
strictly maintaining FIFO delivery order should not cause too
many packets to be dropped or be delayed by a long time.
Otherwise, TCP retransmit timer will be constantly triggered
causing severe sending rate reductions.

3.2. System architecture

We implement the striping method at the device driver
layer of the FreeBSD 4.8 operating system. The architecture
diagram is shown in figure 4. To use striping transparently,
we use the tunnel network interface provided in FreeBSD 4.8
to represent the wireless trunk interface. A tunnel interface
is a pseudo network interface without any physical network
equipment attached to it. However, from the kernel’s point of
view, this pseudo network interface’s functionality is exactly
the same as that of a normal network interface (e.g., an
Ethernet interface). That is, the kernel can send and receive
packets through a tunnel interface and can use it as the
outgoing interface for some routing entries.

In the sending direction, to stripe network traffic over the
wireless trunk, a routing entry that specifies the trunk interface
as the outgoing interface is set up at the sender. From now on,
the kernel will direct all trunking packets to the trunk interface
for transmission. When the device driver of the trunk interface
receives these packets, it will dispatch them to different IEEE
802.11(b) interfaces using a round-robin scheme. An IEEE

stripes

Device Driver

Reordering
Timer

Load
Balancing

Sequence Numbers

Striping Algorithm

Sequence Numbers

Reordering

Timer

Load

Balancing

TCP

IP IP

TCP

Device Driver

Striping Algorithm

Figure 4. The architecture diagram of the proposed striping method.

802.11(b) interface, when receiving such a packet from the
trunk driver, will then transmit the packet over its assigned
frequency channel.

In the receiving direction, when a packet arrives at the
receiver, it will be received by an IEEE 802.11(b) interface.
This interface will then deliver the packet to the trunk driver.
In the trunk driver, packets that are received in order will be
delivered to the upper layer immediately. Otherwise, out-of-
order packets will be temporarily stored in a resequencing
queue waiting to become in-order.

Figure 5 shows the protocol stacks used inside a wireless
trunk interface. This example assumes that three IEEE
802.11(b) interfaces are used to form the wireless trunk

Figure 5. The internal protocol stacks used inside a wireless trunk interface.

ON STRIPING TRAFFIC OVER MULTIPLE IEEE 802.11(B) WIRELESS CHANNELS 305

interface. In our implementation, each IEEE 802.11(b) inter-
face uses a protocol stack consisting of GOD, ARP, FIFO,
MNODE, MAC802.11, WTCPDUMP, and WPHY modules.
These modules are for routing, address resolution, FIFO
queue, mobility management, IEEE 802.11 MAC protocol,
tcpdump packet capture, and wireless physical channel
purposes, respectively. To avoid interference, these wireless
interfaces are configured to use different frequency channels.

3.3. Sequence numbers

Because packets are striped over multiple channels and may
arrive at the receiver out of order, our striping method uses
network-layer sequence numbers to enable the receiver to
know their original order. With this information, the receiver
can re-sequence out-of-order packets before delivering them
to the upper layer.

At the sender, there is a network-layer counter maintained
in the wireless trunk driver. When a packet is to be sent
over the wireless trunk, the value of this counter is put into
the header of this packet serving as the packet’s sequence
number. The value of this counter is then incremented by one
for the next outgoing packet.

3.4. Round-robin scheme

At the sender, the wireless trunk driver uses a simple round-
robin scheme to dispatch outgoing packets over multiple
wireless channels. We configure each participating IEEE
802.11(b) wireless interface driver to let its output queue
can hold at most one packet. When the trunk driver wants
to dispatch a packet to a wireless interface and finds that the
interface’s output queue is empty (i.e., idle), the packet will
be dispatched to that interface for immediate transmission.
However, if the trunk driver finds that the output queue of
that interface is full (i.e., busy transmitting), it will skip the
current wireless interface and try the next one. This procedure
repeats until one idle wireless interface is found. At that time,
the packet is dispatched to that interface for transmission.

In case all wireless interfaces are busy and their output
queues are all full, the trunk driver will store the outgoing
packet in its own output queue and simply return. (The max-
imum length of this output queue is the default 50 packets.)
It will be invoked again to send out more packets when a
wireless interface becomes idle. This automatic invocation is
achieved by the assistance of interrupt service routine (ISR).
When a wireless interface finishes transmitting a packet, its
ISR will be invoked by the interface to notify the kernel of
this event. In our striping design, we let the ISR call the trunk
driver’s packet output function and tell it where to begin the
round-robin search (i.e., starting from the interface that just
became idle).

With this design, the wireless trunk driver can fully utilize
the available bandwidth of all wireless channels and provide
fault tolerance. For example, suppose that a wireless chan-
nel is experiencing congestion and its available bandwidth

suddenly reduces, most packets will be directed and sent
over other wireless channels. Setting the maximum length
of the output queue of every wireless interface to only one
packet also reduces the end-to-end packet delivery delay on
the trunk. If the maximum queue length is set to a large num-
ber, say the default 50 packets used in FreeBSD, a packet may
experience long queuing delay in the queue of an interface
that is experiencing bad channel conditions.

3.5. Packet reordering mechanism

At the receiver, when an IEEE 802.11(b) interface receives a
packet, it will hand the packet to the trunk driver immediately.
The trunk driver will check whether the packet is received
in order. If yes, it will hand the packet to the upper layer
immediately. In case the packet is received out of order, the
trunk driver will not hand it to the upper layer immediately.
Instead, it will set up a reordering timer and store the packet in
a resequencing queue. The packet will then wait there for the
first “hole” in the sequence number space to be filled. Here,
a “hole” means a gap in the received sequence numbers. A
packet loss always causes a hole. However, a hole can also
be caused when there is no packet loss but packet reorderings
occur.

If all packets belonging to the first hole have arrived (i.e.,
the first hole has been filled) before the timer expires, the timer
will be reset and the packets in the queue will be delivered
to the upper layer one by one until the queue becomes empty
or the next hole is encountered. On the other hand, if the
timer expires before the first hole is fully filled, all packets
in the queue will be flushed and delivered to the upper layer
regardless whether there may be some other holes in the
queue. In both cases, the variable N will be updated to the
sequence number of the last packet delivered to the upper
layer. Figure 6 shows an example diagram demonstrating the
above packet holes processing.

When a packet arrives at the receiver, its sequence number
S is compared with N + 1. If S = N + 1, the trunk driver im-
mediately delivers the packet to the upper layer because it is
in-order. If S > N+1, the packet is placed into the resequenc-
ing queue because it is out-of-order. If S = N, the trunk driver
drops this redundant packet because it has been successfully
delivered to the upper layer. If S < N, the trunk driver still
delivers this packet to the upper layer. Figure 7 shows an ex-
ample diagram demonstrating the delivery/queuing/dropping
processing of a packet that has just arrived.

The above design regarding the S < N situation is to im-
prove TCP throughput. In the following, we call a packet
received in such a condition a “late” packet because it is too
late to be delivered in order at the trunk layer. When S < N,
the packet may be a redundant packet that has been deliv-
ered to the upper layer. In such a case, it should be dropped.
However, because all packets in the resequencing queue are
flushed to the upper layer when the reordering timer expires
and at that time they may contain holes, a late packet actually

306 WANG ET AL.

(c) if the packet with S = 6 is received before the reordering timer expires

N = 5

S = 7 S = 8 S = 9Queue

Striping Point

N = 5
S = 8 S = 7S = 9

Striping Point

N = 5
S = 8 S = 7S = 9 S = 6

(a) S > N + 1 (placed into queue and start the reordering timer)

(b) if the reordering timer expires before the packet with S = 6 is received

Striping Point

Figure 6. An example diagram demonstrating the packet holes processing.

 (d) S > N + 1 (placed into the resequencing queue)

S = 6
N = 5

Striping Point

S = 6
N = 6

Striping Point

Before After

 (a) S = N + 1 (delivered)

N = 5

Striping Point

S = 3
N = 5

Striping Point

S = 3

 (b) S < N (delivered)

Before After

N = 5

Striping Point

S = 5
N = 5

Striping Point

S = 5

 (c) S = N (dropped)

Before After

N = 5

Striping Point

S = 7Queue

N = 5

Striping Point

S = 7

Before After

Figure 7. An example diagram demonstrating the delivery/queuing/
dropping processing of a packet that has just arrived.

may be a new packet and able to fill a hole in the packets
already flushed to the upper layer.

For TCP traffic, since the TCP receiver implements a re-
assembly queue at the TCP layer, a late packet may be un-late
for the TCP reassembly queue. For example, if a late packet
can fill the second hole in the TCP reassembly queue, even
though it is late for the trunk layer it is still un-late for the
TCP layer. Because (1) a TCP connection’s throughput will
be halved due to any packet loss, (2) redundant packets occur
infrequently, and (3) the upper layer can discard redundant
packets without any performance loss, we let the trunk driver
still deliver late packets to the upper layer.

Note that the above design decision may result in non-
FIFO delivery order to the upper layer. As explained before,
this is due to the goal to improve TCP’s achieved throughput.
Maintaining a strict FIFO delivery order actually can be easily
done by dropping all late packets. However, this may result in
many holes in the packets delivered to the TCP layer. Since
TCP can resequence out-of-order packets before delivering
their data to the application program, maintaining a strict
FIFO delivery order at the trunk layer at the cost of many
packet losses is not worth it. It would only significantly lower
TCP throughput without other advantages.

On the other hand, because UDP does not resequence out-
of-order packets by itself and packet losses do not cause UDP
to lower a UDP connection’s throughput, a UDP-based ap-
plication program may want to request a strict FIFO delivery
order from the trunk layer. This property may be important
for some real-time multimedia UDP-based application pro-
grams. In such a case, the trunk driver can be configured to
drop all late packets.

3.6. Reordering timer

From the above discussion, we see that when using striping
to provide a transport service to the upper layer there is trade-
off between (1) maintaining a strict FIFO delivery order, (2)
reducing unnecessary late packet dropping, and (3) reduc-
ing unnecessary packet resequencing delay. It is clear that if
the trunk driver insists on providing a strict FIFO delivery
order, the unnecessary packet dropping number and packet
resequencing delay will be high. On the other hand, if the
trunk driver allows some degree of packet reordering, these
problems can be mitigated.

Given this dilemma, the trunk driver tries to reach a bal-
ancing point where good TCP and UDP throughput can be
achieved while packet resequencing delay can still be kept
low. A solution is to allow a small degree of packet reorder-
ing to occur in the packet stream delivered to the upper layer.
As long as no more than three duplicate ACKs are generated
by the TCP receiver, the TCP sender’s congestion control will
not be triggered.

To achieve this goal, the reordering timer’s timeout value
should be carefully designed. If this value is set too high,
although less packet reorderings will occur in the packets
delivered to the upper layer, higher packet resequencing delay

ON STRIPING TRAFFIC OVER MULTIPLE IEEE 802.11(B) WIRELESS CHANNELS 307

will result in the trunk driver. On the other hand, if this value
is set too low, the situation will become reversed.

Clearly, the reordering timer’s timeout value should be
set to an appropriate value to achieve good performances. In
addition, it should be set to different values under different
network conditions. In IEEE 802.11(b), the MAC protocol
uses acknowledgment frames to detect whether a transmitted
frame has successfully reached the receiver. A frame may
be retransmitted up to 4 or 7 times depending on whether
it is a long or short frame [4]. With this MAC protocol, if
the wireless channels are not busy and in good condition, the
reordering timer can be set to a smaller value as retransmis-
sion of lost packets can be finished quickly. In contrast, if
the channels are busy or in bad conditions, the timer should
be set to a larger value to give retransmissions more time to
finish.

Because wireless channel conditions change dynamically,
there is no single timeout value that is suitable for all con-
ditions. Clearly, it should be adjusted dynamically according
to the current condition. That is, it should be adaptive. In our
design, if the trunk driver receives a late packet (i.e., the S <

N condition), it increases the timeout value of the reordering
timer by one millisecond. Figure 8 shows the achieved TCP
throughput on a 3-channel wireless trunk under different val-
ues of this increment parameter. We can see that the system
throughput is not sensitive to this parameter. Using 1, 2, or 3
milliseconds for this parameter yields very close results.

The reason for the above design is that the current timeout
value is too small for the current network condition. Without
increasing the current timeout value, many packets will not
be retransmitted and arrive at the receiver in time. To let the
design responsive, when the timeout value is increased, its
new value is used by the current reordering timer immediately.

We need another policy to decrease the timeout value of
the reordering timer. Otherwise, this value may go up to a
high value without any chance to go down. In our design,

0

5

10

15

20

0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time Increment (ms)

Greedy TCP throughput on a 3-channel Wireless Trunk

Figure 8. The achieved TCP throughput on a 3-channel wireless trunk
under different values of the increment parameter.

we adopt the typical TCP saw-tooth window size adjusting
pattern to dynamically adjust the timeout value. If the trunk
driver does not receive any out-of-order packet for a period
of time, it will reduce the current timeout value by a half. An
adjusting timer is used to perform this work and its timeout
value is set to one second. When the adjusting timer expires,
the reordering timer’s timeout value is halved.

How often to expire the adjusting timer should also be
carefully designed. If it expires too frequently without good
reasons, the reordering timer’s timeout value will vary fre-
quently when the network conditions are stable. This will
result in sub-optimal performances. The ideal design should
be that when the network conditions are stable, the timeout
value can be maintained at a stable level matching the current
network condition. In contrast, when the network conditions
vary quickly, the timeout value can also vary quickly to match
the current network conditions.

In our design, if a late packet is received, the adjusting
timer is set up. If another late packet is received before the
adjusting timer expires, the adjusting timer is reset. In this
way if the trunk driver receives many late packets in a short
period of time, the expiration time of the adjusting timer will
continuously be postponed and its final value be set to the
arrival time of the last late packet plus one second. Using
this design, when the timeout value of the reordering timer
is still growing and less than what it should be, the timeout
value will not be unnecessarily halved by the expiration of
the adjusting timer.

Figure 9 shows an example of the reordering timer’s time-
out value diagram. We can divide the diagram into several
rounds each ending with a reduction in the timeout value. In
each round we see that when late packets arrive, the timeout
value of the reordering timer keeps increasing and the adjust-
ing timer is rescheduled again and again. When the last setup
of the adjusting timer in a round expires, which is one second
after the arrival time of the last late packet in a round, the
timeout value of the reordering timer is halved.

adjusting timer

the reordering
timer

adjusting timer adjusting timer

time

expires expires

Last start up of the
adjusting timer adjusting timer

Last start up of the

One Second One Second

The timeout value of

Late packet arrivals Late packet arrivalsLate packet arrivals

Last start up of the

Figure 9. The diagram showing the changes of the timeout value of the
reordering timer.

308 WANG ET AL.

4. Performance evaluations

In this section, we present the performances of our striping
method under various conditions. Because most research pa-
pers refer to SRR, we also compare the performances of SRR
to those of our method in some cases.

4.1. Simulation environment

We developed our striping code in the FreeBSD 4.8 operating
system. With this code, we can perform real experiments
using notebook computers equipped with IEEE 802.11(b)
network interface cards (NIC). However, for several reasons,
we decided to use the NCTUns 1.0 network simulator [11] to
evaluate the performances of our striping method.

First, the NCTUns 1.0 is high-fidelity, extensible, and
open-source. This makes it suitable for conducting network-
ing research. More specifically, it can accurately simulate
the 802.11(b) MAC-layer acknowledgment and automatic re-
transmission mechanism. Second, because it directly uses the
network subsystem of the kernel of FreeBSD to generate ac-
curate simulation results, it can directly use our in-kernel
striping code to generate striping simulation results. Third,
conducting real experiments using notebook computers each
equipped with several IEEE 802.11(b) NICs is infeasible.
Right now every notebook computer has only two PCMCIA
slots. This limits the maximum number of IEEE 802.11(b)
NICs that can simultaneously be installed and used by a note-
book computer to only two. Furthermore, because the two
PCMCIA slots are placed immediately next to each other
and the antenna of an IEEE 802.11(b) NIC is much thicker
than the body of the NIC, it is infeasible to insert two IEEE
802.11(b) NICs into the two slots at the same time.

For these reasons, we used the NCTUns 1.0 to conduct
simulation study. Using the simulation approach, we can eas-
ily scale the number of IEEE 802.11(b) NICs used by the
trunk sender and receiver without any problem. In addition,
we can easily specify the BER of the wireless channels, the
moving speed of the trunk sender and receiver, and other
parameters. Using the simulation approach also avoids us to
synchronize the clocks of the trunk sender and receiver ma-
chines, which is required to measure the end-to-end packet
delivery delay over the wireless trunk.

4.2. Simulation results

The metrics used to evaluate the performances of our strip-
ing method include (1) achieved throughput and (2) packet
delivery latency. When evaluating achieved throughput, we
used both TCP and UDP protocols. However, because UDP
is insensitive to packet reordering and losses, generally its
achieved throughput is quite good regardless of the used strip-
ing method. Thus, in most cases, we report only achieved TCP
throughput on a wireless trunk.

Figure 10 shows the basic simulation environment. Each
node is equipped with three IEEE 802.11(b) NICs. The three

Figure 10. The basic simulation environment. Three wireless channels are
set up between node 1 and node 2.

NICs on node 1 use three different frequency channels (e.g.,
f1, f2, and f3). The three NICs on node 2 also use the same
frequency channels (i.e., f1, f2, and f3) to form three sepa-
rate wireless channels between node 1 and node 2. Node 2
is the sending node and node 1 is the receiving node. The
distance between the sending node and the receiving node is
100 meters. During a simulation, unless stated otherwise, the
sending node will greedily send its data to the receiving node.
Every simulation lasts 250 seconds of simulated time.

At first, we assume that the wireless channels are error-free
(i.e., BER = 0) and there are no other active nodes around
(i.e., no congestion). In this clean environment, we evaluate
the performances of our striping method to show its capabil-
ity in good channel conditions. We then gradually introduce
bad conditions such as BER, congestion, mobility, hidden-
terminal to show how it will perform under such conditions.

4.2.1. Good channel condition
To show the benefit provided by striping, we first run a non-
striping case in which each node is equipped with only one
wireless NIC. It is assumed that in this case BER = 0 and
there is no congestion. To establish a TCP connection and
greedily send TCP packets, we used the stcp/rtcp traffic gen-
erator programs, which are freely available on the Internet.
The stcp program is run on node 2 and the rtcp program is run
on node 1. During the simulation, the stcp program greedily
sends its data to the rtcp program and the rtcp program period-
ically measures and reports its received throughput. Figure 11
shows the achieved application-layer throughput reported by
the rtcp program. (The average throughput is reported every 1
second.) We see that in good channel conditions the achieved
TCP throughput on a single wireless channel is about 5 Mbps.

Next we use the environment depicted in figure 15 to
evaluate our striping method. Again, we assume that BER =
0 and there is no congestion in this case. The stcp program is
still run on node 2 and the rtcp program is still run on node 1
to generate greedy TCP traffic. Figure 12 shows the achieved
application-layer throughput over a three-channel wireless
trunk. As can be seen in this figure, the achieved throughput
is about 15 Mbps. This result shows that the throughput gain
provided by a three-channel wireless trunk using our striping
method is almost three (15/5).

ON STRIPING TRAFFIC OVER MULTIPLE IEEE 802.11(B) WIRELESS CHANNELS 309

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

non-striping (no BER, no congestion)

Greedy TCP throughput

Figure 11. The achieved TCP throughput on a single IEEE 802.11(b)
channel.

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

striping (no BER, no congestion)

Greedy TCP throughput

Figure 12. The achieved TCP throughput on a three-channel wireless trunk
using our striping method.

To make performance comparisons with SRR, we imple-
mented SRR and evaluated its performance in the same en-
vironment. In our SRR implementation, a new quantum of
3,000 bytes is added to each striping channel when a round
is over. When a channel’s quantum is exhausted, a marker
packet is sent on the channel.

Figure 13 shows the achieved throughput of SRR. We see
that SRR does not perform as well as our striping method.
First, the maximum achieved throughput is only 14 Mbps.
Second, its throughput fluctuates greatly and sometimes drops
to 0 Mbps.

For the lower throughput, it is due to the use of marker
packets. As explained in Section 2.1, SRR needs to spend
some bandwidth for its marker packets, which are bandwidth
overhead solely used to synchronize the trunk sender and
receiver. This explains why its maximum throughput cannot
be as high as that provided by our striping method.

For the frequent throughput droppings, it is due to TCP
sender’s frequent timeouts. As explained in Section 2.1, the

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

SRR (no BER, no congestion)

Greedy TCP throughput

Figure 13. The achieved TCP throughput on a three-channel wireless trunk
using SRR.

trunk receiver in SRR may get blocked when a TCP packet
is lost on a striping channel but no new packet is expected
to arrive soon due to TCP’s windowing congestion control.
This is exactly the case here. Note that although in this case
the wireless channels are in good condition, TCP packets can
still be dropped on these channels due to collisions between
the trunk sender and receiver. This is because TCP traffic
is two-way traffic. A TCP connection’s data packets need
to compete with its ACK packets on wireless channels, and
some of them may thus be dropped due to collisions.

Using our striping method, we performed a simulation to
evaluate the performance of UDP traffic. The environment
is the same as that for testing TCP performance. The only
exception is that the ttcp program to used to generate greedy
UDP traffic. In figure 14, we see that the UDP throughput
gain achieved on a three-channel wireless trunk using our
striping method is also three. For SRR, because the greedy
UDP traffic is not controlled by TCP windowing congestion

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

striping (no BER, no congestion)

Greedy UDP throughput

Figure 14. The achieved UDP throughput on a three-channel wireless trunk
using our striping method.

310 WANG ET AL.

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

SRR (no BER, no congestion)

Greedy UDP throughput

Figure 15. The achieved UDP throughput on a three-channel wireless trunk
using SRR.

control, the UDP sender does not timeout or reduce its sending
rate even though some of its packets are dropped on the
wireless channels. As such, its achieved throughput is also
stable around 14 Mbps. Figure 15 shows the UDP throughput
on a three-channel wireless trunk using SRR.

4.2.2. Congestion condition
Here we introduce congestion condition to the simulation
environment. In figure 16, we introduce two new nodes, node
3 and node 4. They are placed in the transmission range of
node 1 and node 2. The wireless NICs of node 3 and node 4 are
configured to use the first channel of the wireless trunk, which
is channel 1. Since these four nodes share the bandwidth of
channel 1, in the ideal case, we can expect that node 3 and
node 4 will receive one half of the achievable throughput
on channel 1, which is about 2.5 Mbps (5/2). For the same
reason, we can expect that node 1 and node 2 will receive
about 2.5 Mbps throughput on channel 1.

Figure 17 shows the achieved TCP throughput of the wire-
less trunk and the achieved TCP throughput between node
3 and node 4. The achieved throughput between node 3 and
node 4 is 2.5 Mbps, which is expected. The achieved through-

Figure 16. The simulation environment where one channel used by a
three-channel wireless trunk is experiencing congestion.

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

striping (4 nodes)

Greedy TCP throughput between node 1 2
Greedy TCP throughput between node 3 4

Figure 17. The achieved TCP throughput on a three-channel wireless trunk
using our striping method, one channel is experiencing congestion.

Figure 18. The simulation environment where two channels used by a
three-channel wireless trunk are experiencing congestion.

put of the wireless trunk is about 12.5 Mbps, which is the ideal
maximum achievable throughput and can be explained. Be-
cause of bandwidth sharing on channel 1, node 1 and node
2 are expected to receive 2.5 Mbps throughput on channel
1. On each of the other two channels, because there is no
bandwidth sharing, these two nodes can receive the full avail-
able throughput of a single channel. For this reason, a total
throughput of 12.5 Mbps (2.5 + 5 + 5) is the ideal maxi-
mum achievable throughput for the wireless trunk under this
congestion condition.

In figure 18 we add two more nodes (node 5 and node
6) to increase the congestion level. The wireless NICs of
these two nodes are configured to use channel 5, which is the
second channel used by the wireless trunk. Figure 19 shows
the results. As expected, node 3 and node 4 receive about
2.5 Mbps on channel 1, node 5 and node 6 receive about 2.5
Mbps on channel 5, and the wireless trunk receives a total of
about 10 Mbps (2.5 + 2.5 + 5) over these three channels.

ON STRIPING TRAFFIC OVER MULTIPLE IEEE 802.11(B) WIRELESS CHANNELS 311

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

striping (6 nodes)

Greedy TCP throughput between node 1 2
Greedy TCP throughput between node 3 4
Greedy TCP throughput between node 5 6

Figure 19. The achieved TCP throughput on a three-channel wireless trunk
using our striping method, two channels are experiencing congestion.

Figure 20. The simulation environment where three channels used by a
three-channel wireless trunk are experiencing congestion.

To further increase congestion, in figure 20 we add node
7 and node 8. Their wireless NICs are configured to use
channel 9, which is the third channel used by the wireless
trunk. Figure 21 shows the results. As expected, the wireless
trunk receives the ideal maximum achievable throughput of
7.5 Mbps (2.5 + 2.5 + 2.5) under the created congestion
condition.

The results of these congestion cases show that our striping
method can enable a wireless trunk to receive its ideal maxi-
mum throughput. To compare the performances of SRR and
our striping method under congestion condition, we used the
environment depicted in figure 16 to run the simulation. Fig-
ure 22 shows the results. We see that the achieved throughput
of SRR is only 6 Mbps, which is far less than the 12.5 Mbps
achieved by our striping method. The poor SRR throughput
is caused by frequent triggerings of TCP congestion control,

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

striping (8 nodes)

Greedy TCP throughput between node 1 2
Greedy TCP throughput between node 3 4
Greedy TCP throughput between node 5 6
Greedy TCP throughput between node 7 8

Figure 21. The achieved TCP throughput on a three-channel wireless trunk
using our striping method, three channels are experiencing congestion.

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

SRR (4 nodes)

Greedy TCP throughput between node 1 2

Figure 22. The achieved TCP throughput on a three-channel wireless trunk
using SRR, one channel is experiencing congestion.

which in turn are caused by excessive out-of-order packets
caused by congestion.

4.2.3. Bit-error condition
In all above cases, we assumed that there is no bit error
on wireless channels. As such, no packet will be dropped
due to corruption. In the real world, however, bit errors can
occur due to multipath fading, noise, Doppler shift, and many
other factors. Here we introduce bit-error condition to the
simulation environment to see how our striping method will
perform.

For comparison, we first ran non-striping cases in which
only one channel is used and its BER is set to different non-
zero values. For a specified BER and a received packet, we
compute the corresponding PER (packet error rate) for this
packet. We then draw a random number between 0 and 1 to
determine whether this packet should contain error bits. If so,
this packet is dropped.

312 WANG ET AL.

Figure 23 shows the results. We see that as BER in-
creases the achieved TCP throughput decreases. The achieved
throughput is about 4.9 Mbps, 4.5 Mbps, and 4.1 Mbps when
BER is 0.000001, 0.000005, and 0.00001, respectively.

Then we evaluated our striping method under bit-error
condition. The used environment is the same as that depicted
in figure 10 except that at this time the BER is set to a non-zero
value and applied to all channels. Figure 24 shows the results.
We see that the achieved throughput of the three-channel
wireless trunk is about 14.7 Mbps, 13.5 Mbps, and 12 Mbps
when BER is 0.000001, 0.000005, and 0.00001, respectively.
Compared with figure 23, clearly our striping method enables
a wireless trunk to achieve the ideal maximum throughput (3
times of the achievable throughput on a single channel) under
bit-error condition.

To see how SRR will perform under bit-error condition,
we used SRR to perform the same simulation test. Figure 25
shows the results. Here we see that SRR performs very badly
due to many packet droppings.

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

non-striping

Greedy TCP throughput(BER = 0.00001)
Greedy TCP throughput(BER = 0.000005)
Greedy TCP throughput(BER = 0.000001)

Figure 23. The achieved TCP throughput on a single channel with different
BERs.

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

striping

Greedy TCP throughput(BER = 0.00001)
Greedy TCP throughput(BER = 0.000005)
Greedy TCP throughput(BER = 0.000001)

Figure 24. The achieved TCP throughput on a three-channel wireless trunk
using our striping method, with different BERs.

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

SRR

Greedy TCP throughput(BER = 0.00001)
Greedy TCP throughput(BER = 0.000005)
Greedy TCP throughput(BER = 0.000001)

Figure 25. The achieved TCP throughput on a three-channel wireless trunk
using SRR, with different BERs.

Figure 26. The simulation environment where the channels used by a
three-channel wireless trunk are experiencing different BERs.

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

striping

Greedy TCP throughput

Figure 27. The achieved TCP throughput on a three-channel wireless trunk
using our striping method, each channel experiencing a different BER.

In each of the above cases, the same specified BER is ap-
plied to all channels. Here we tested another case in which
different BERs are applied to different channels. The simula-
tion environment for this case is shown in figure 26. Figure 27
shows the results. As can be seen, the achieved throughput
is about 13.5 Mbps, which is the ideal maximum achievable
throughput (4.1 + 4.5 + 4.9).

ON STRIPING TRAFFIC OVER MULTIPLE IEEE 802.11(B) WIRELESS CHANNELS 313

Figure 28. A simulation environment that has the hidden-terminal problem.

4.2.4. Hidden-terminal condition
In wireless communication, the hidden-terminal problem is
a common and serious issue. Here we use the simulation
environment depicted in figure 28 to briefly explain it. Our
simulation cases are also performed using this environment.

In this environment, all nodes use the same frequency
channel. Node 1 is in the transmission range of node 3 but
node 2 is not. That is, node 1 can receive the signal of node 3
but node 2 cannot. Also, node 3 is in the transmission range
of node 1 but node 4 is not. During a simulation, node 2
and node 3 greedily send their data to node 1 and node 4,
respectively.

Although IEEE 802.11(b) MAC protocol implements a
CSMA/CA (carrier sense multiple access with collision
avoidance) mechanism to avoid packet collisions, in a hidden-
terminal environment packets can still collide with each other
and get dropped. For example, suppose that node 3 is sending
a packet to node 4 when node 2 wants to send a packet to node
1. Even though node 2 performs carrier-sense trying to detect
an ongoing packet transmission, it cannot detect the signal of
the packet that is being sent from node 3 to node 4. As such,
node 2 decides to send out its packet to node 1. However, this
packet cannot be successfully received by node 1 because its
signal will get collided with the signal being sent out by node
3.

Due to these collisions, the packets sent from node 2 to
node 1 will constantly get corrupted at node 1. However, the
packets sent from node 3 to node 4 will not be affected at node
4. As such, when these packets are greedy TCP packets, our
simulation results show that the TCP connection from node
3 to node 4 can achieve 5 Mbps throughput. However, the
TCP connection from node 2 to node 1 cannot achieve any
throughput. (Its throughput is almost 0 Mbps due to excessive
TCP timeouts.) Since the maximum throughput that can be
achieved by a wireless trunk is the sum of the achievable
throughput on each channel, we can expect that the achievable
TCP throughput on a wireless trunk that suffers from the same
hidden-terminal condition would also be close to 0 Mbps.
Indeed, our simulation results confirm this reasoning.

Since TCP results are not interesting, we do not present
them in this paper. Instead, in the following we present the
achievable UDP throughput on a wireless trunk. First, we
ran a basic case in which there is a greedy UDP flow from
node 2 to node 1 and from node 3 to node 4, respectively.
Figure 29 shows the result. We see that because UDP is not
sensitive to packet losses, unlike a TCP flow, the UDP flow
from node 2 to node 1 can still receive some bandwidth (0.3
Mbps). The UDP flow from node 3 to node 4 receives about

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

non-striping(Hidden Terminal)

Greedy UDP throughput between node 1 2
Greedy UDP throughput between 3 4

Figure 29. The achieved throughput of two greedy UDP flows in the
hidden-terminal condition.

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

striping(Hidden Terminal)

Greedy UDP throughput between node 1 2
Greedy UDP throughput between 3 4

Figure 30. The achieved UDP throughput of a three-channel wireless trunk
using our striping method, one channel is in the hidden-terminal condition.

4 Mbps, which is not as high as that (5 Mbps) in the previous
TCP case. The reason is that when node 1 sends back IEEE
802.11(b) ACK frames to node 2 for received UDP packets,
its signal will reach node 3. Because node 3 performs carrier-
sense, it will refrain itself from sending out its packets for
sometime. Since the UDP traffic volume is not zero, node
3 cannot receive the full 5 Mbps channel throughput in this
UDP case.

Then we set up a three-channel wireless trunk between
node 1 and node 2 and let one of these channels use the
same frequency channel as that used between node 3 and
node 4. Figure 30 shows the UDP throughput of the wireless
trunk using our striping method. We see that the trunk can
stably receive a maximum aggregated throughput of about
10.3 Mbps, which is the sum of 0.3, 5, and 5. This result
shows that the wireless trunk using our striping method can
achieve the highest throughput that it is possibly to achieve.
On the other hand, Figure 31 shows the results of using SRR.
We see that the achieved UDP throughput of SRR is less

314 WANG ET AL.

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

SRR(Hidden Terminal)

Greedy UDP throughput between node 1 2
Greedy UDP throughput between 3 4

Figure 31. The achieved UDP throughput of a three-channel wireless trunk
using SRR, one channel is in the hidden-terminal condition.

than that of our striping method and its achieved throughput
fluctuates greatly.

4.2.5. Mobility condition
When either the trunk sender or the receiver moves, the power
of the signal received at the trunk receiver will vary. Because
the BER of the received packets depends on the signal-to-
noise ratio, it will vary as well. Here we use the free space
equation (i.e., Friis equation [7]) to model the power of a
received signal as a function of distance and use the modu-
lation scheme used by IEEE 802.11(b) (i.e., CCK) to derive
the BER v.s. power curves.

The simulation environment used in this case is depicted
in figure 32. Three wireless channels are used between node
1 and node 2 and a greedy TCP connection is set up from
node 2 to node 1. During the simulation, we let node 1 and
node 2 move away from each other at a speed of 0.7 m/s.

First we ran a non-striping case. Figure 33 shows the re-
sult. We see that as the distance between the trunk sender and
receiver increases, the achieved TCP throughput decreases
due to increased BER. When the distance exceeds the ef-
fective transmission range, the achieved throughput almost
drops to 0 Mbps due to huge BERs.

Then we evaluated the throughput of the wireless trunk
using our striping method. Figure 34 shows the result. We see
that although the throughput is also getting down when the
distance increases, it is almost three times of the throughput
achievable on a single channel. This shows that our striping

Figure 32. The simulation environment used to test the mobility case.

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

non-striping (mobility)

Greedy TCP throughput

Figure 33 The achieved TCP throughput on a wireless channel, with the
sender and receiver moving away from each other at a speed of 0.7 m/s.

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

striping (mobility)

Greedy TCP throughput

Figure 34. The achieved TCP throughput on a wireless trunk using our
striping method, with the sender and receiver moving away from each other
at a speed of 0.7 m/s.

method can perform well in mobility condition. Figure 35
shows the result of SRR. We see that when the BER goes
up to a certain level, the achieved TCP throughput quickly
drops to 0 Mbps without any further progress. This is due
to excessive packet losses, which causes the TCP retransmit
timer to back off exponentially.

4.2.6. Low traffic load condition
When the traffic load offered to a multi-channel wireless
trunk is less than the available bandwidth of a single channel,
it is interesting to see whether spreading such a low traffic
among the multiple channels of a trunk would result in poorer
performance than transmitting the traffic on a single channel.

Figure 36 shows the achieved TCP throughput on a 3-
channel wireless trunk and on a single channel, respectively.
We vary the TCP traffic load by varying the data payload
generation time interval. The maximum TCP traffic load gen-
erated in this test (650 KB/sec) is still less than the available

ON STRIPING TRAFFIC OVER MULTIPLE IEEE 802.11(B) WIRELESS CHANNELS 315

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

SRR (mobility)

Greedy TCP throughput

Figure 35. The achieved TCP throughput on a wireless trunk using SRR,
with the sender and receiver moving away from each other at a speed of 0.7
m/s.

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

T
hr

ou
gh

pu
t (

K
B

/s
ec

)

Data Payload Generation Time Interval (ms)

Data Rate -- TCP

TCP throughput with striping
TCP throughput without striping

Figure 36. The achieved TCP throughput on a 3-channel wireless trunk
and on a single channel, respectively. The maximum TCP traffic load is still
less than the available bandwidth of a single channel.

bandwidth of a single channel. From this figure, we can see
that the achieved TCP throughput on a 3-channel wireless
trunk is very close to that on a single channel. This shows
that even when the offered load is less than the available
bandwidth of a single channel, using a multi-channel wire-
less trunk will not generate worse performances than using a
single channel.

4.2.7. Channel number scalability
Here we study the scalability of our striping method with
respect to the number of channels. In all above simulations,
we used only three channels for striping. Although results
show that our striping method performs well when applied
to a three-channel trunk, we would like to see whether it can
still perform well with a large number of channels.

We used the basic environment depicted in figure 10 and
varied the number of channels from three to ten. These chan-
nels are configured to use different frequency channels. In

0

20

40

60

80

100

0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

striping (greedy TCP throughput)

3 stripes
4 stripes
5 stripes
6 stripes
7 stripes
8 stripes
9 stripes

10 stripes

Figure 37. The achieved throughput scales linearly with the number of
used channels, using our striping method.

the real world, using successive IEEE 802.11(b) frequency
channels may cause some interference. However, since this
issue is not the focus of this paper, we assumed that no such
interference exists in simulations. Figure 37 shows the result.
We see that the achieved throughput scales linearly with the
number of used channels. That is, when N channels are used,
the achieved throughput is about N ∗ 5 Mbps. This result
shows the scalability of our striping method.

4.2.8. Multi-hop condition
Here we study how our striping method would perform when
applied to a multi-hop multi-channel wireless chain network.
The packet forwarding throughput of a multi-hop single-
channel wireless chain network has been studied in [10]. In
that paper, the author shows that due to wireless signal inter-
ference among neighboring stations, the maximum achiev-
able forwarding throughput on a N-hop wireless chain net-
work is about 1/N and stabilizes at around 1/7 of the through-
put achieved on a single-hop network. Figure 38 shows the
TCP throughput achieved on a single-channel wireless chain
network with different number of hops.

We tested our striping method on a three-channel multi-
hop wireless chain network. Figure 39 shows the TCP
throughput achieved on such a network using our striping
method. Comparing figure 39 to figure 38, we see that our
striping method also performs well on a multi-hop wireless
network. This is because the achieved throughput improve-
ment is almost 3, which is the number of striping channels
used per hop.

4.2.9. Packet delivery latency
Packet delivery latency is an important metric used to evaluate
a striping method. In our evaluation, such latency is defined
to be the elapsed time between two events. The first event is
when the upper layer at the sending node asks the trunk sender
to send out a packet. The second event is when the trunk
receiver delivers the packet to the upper layer at the receiving

316 WANG ET AL.

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

Multi-hop TCP Throughput (Single Channel)

1 hop
2 hops
3 hops
4 hops
5 hops

Figure 38. The achieved TCP throughput on a N-hop single-channel wire-
less chain network.

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

Multi-hop TCP Throughput (Striping over 3 Channels)

1 hop
2 hops
3 hops
4 hops
5 hops

Figure 39. The achieved TCP throughput on a N-hop three-channel wireless
chain network, using our striping method.

node. For real-time multimedia application programs such as
video conferencing, small packet delivery latency is needed.

When a trunk is used, the main component of packet de-
livery latency is the time spent waiting in the resequencing
queue in the trunk receiver. As the number of channels in-
creases, it can be expected that packet delivery latency will
increase as well due to a higher chance of packet reordering
among these channels. It is interesting to see how packet de-
livery latency would change with respect to the number of
channels.

We again used the basic simulation environment depicted
in figure 10 and varied the number of channels from three
to ten. The minimum, maximum, average, and standard de-
viation of the measured packet delivery latency are reported
in Table 1. From the average latency results, we see that the
latency roughly scales linearly with the number of channels.
On average, an extra 30 ms is added to the latency when one
more channel is added to the wireless trunk.

Table 1
The measured packet delivery latency under ideal channel condition

Latency (sec)

Number of
channels min max avg stdev

3 channels 0.001025 0.096252 0.083308 0.002576
4 channels 0.001025 0.203725 0.088244 0.011838
5 channels 0.001025 0.442918 0.144322 0.075733
6 channels 0.001025 0.784718 0.244777 0.162877
7 channels 0.001025 0.635399 0.234509 0.16618
8 channels 0.001025 0.482005 0.214224 0.108651
9 channels 0.001025 1.075736 0.322252 0.194462
10 channels 0.001025 0.947715 0.347297 0.207922

Table 2
The measured packet delivery latency under bit-error condition, three

channels are used.

Latency (sec)

BER min max avg stdev

0.0 0.001025 0.096252 0.083308 0.002549
0.000001 0.001025 0.133014 0.086926 0.004745
0.000005 0.001025 0.256145 0.110644 0.026783
0.00001 0.001025 0.669147 0.177871 0.102995

Table 2 shows the effect of BER on packet delivery latency.
The simulation environment used is the same as that depicted
in figure 10. Three channels are used for the wireless trunk
and the specified BER is applied to all of them. From this
table, we see that higher BERs do increase the measured
packet delivery latency due to more packet reorderings.

From these results, we see that maintaining FIFO packet
delivery order comes at a cost. Although, maintaining FIFO
packet delivery order is critical to achieving good TCP
throughput, it will also unavoidably increase packet deliv-
ery latency for application programs.

4.2.10. Reordering Timer’s behavior
The reordering timer plays an important role in our striping
method. To see how its timeout value adapts to the current net-
work condition, we ran the following simulation. The tested
environment is depicted in figure 40. Node 2 and node 1 form
a pair of nodes where a three-channel wireless trunk is set up
between them. This trunk uses frequency channels 1, 5, and
9. Node 6 and node 5 form a pair of nodes that use channel 1
to exchange their data. Node 4 and node 3 form another pair
of nodes that also use channel 1 to exchange their data. On
each pair of nodes, a greedy TCP connection is set up.

At the beginning, the three greedy TCP connections are set
active. That is, the TCP connection from node 6 to node 5 and
the TCP connection from node 4 to node 3 are competing the
bandwidth of channel 1 with the TCP connection on the wire-
less trunk. At 50’th second, the TCP connection from node
6 to node 5 is killed, resulting in only two active TCP con-
nections. At 100’th second, the TCP connection from node

ON STRIPING TRAFFIC OVER MULTIPLE IEEE 802.11(B) WIRELESS CHANNELS 317

Figure 40. The environment used to observe the dynamic behavior of the
reordering timer used in node 1.

0

5000

10000

15000

20000

0 50 100 150 200 250

R
eo

rd
er

in
g

tim
er

 v
al

ue
 (

m
ic

ro
-s

ec
on

d)

Time (sec)

Reordering timer’s timeout value

Figure 41. The dynamic behavior of the timeout value of the reordering
timer used in node 1.

4 to node 3 is also killed, leaving no other TCP connection
to compete with the TCP connection on the wireless trunk.
With this arrangement, the level of congestion on channel 1
decreases as time proceeds. This allows us to observe how
the timeout value adapts to the current congestion level.

Figure 41 shows the behavior of the timeout value of the
reordering timer used in node 1. At 50’th and 100’th second,
we see that it can adapt to the new congestion level quickly.
In the first 50-second period where the congestion level is
the highest, it ramps up to a high value (about 13 ms) and
stays there. During the second period, it switches to a medium
value (about 9 ms) and stays there. Finally, when there is no
congestion, it switches to a low value (about 4 ms) and stays
there. Although the timeout value fluctuates during the first
and second periods, it is an unavoidable cost for letting the
reordering timer quickly adapt to a new network condition.

5. Comparison with another scheme

SRR is proposed for wired networks with large bandwidth
and infrequent bit errors. Here we compare the performances
of our scheme with those of the scheme proposed in, which is
proposed for wireless networks. For brevity, in the following
discussion, we will call this scheme the JKM scheme.

The main differences between our scheme and the JKM
scheme are as follows. First, the JKM scheme implements a
selective reject ACK scheme with positive and negative ACK
packets at the trunk level. However, our scheme does not
implement an ACK scheme at the trunk level. Second, the
JKM scheme will continuously issue retransmission requests
to the trunk sender to ask it to resend a lost packet until it is
eventually received. If there is a hole in received packets and
the hole has not been filled, the trunk receiver will not deliver
those received packets after the hole to the upper layer. In
contrast, our scheme does not issue retransmission requests
at the trunk level. It sometimes allows holes to be passed up
to the upper layer to avoid delaying these arrived packets by
too much time.

We have compared the performances of our scheme with
those of the JKM scheme on a 3-channel wireless trunk. Our
simulation results show that in all of the cases tested in this
paper, our scheme performs better than the JKM scheme.
However, to save space, here we only report the comparison
results for three difference cases.

Figure 42 shows the achieved TCP throughput under the
JKM scheme when there is no BER and congestion in the
wireless channels. Comparing this figure with figure 12,
which shows the achieved TCP throughput under our striping
scheme, we see that the achieved TCP throughput in the JKM
scheme is lower than that in our scheme. The throughput dif-
ference is due to the use of many ACK packets in the JKM
scheme.

Figure 43 shows the achieved TCP throughput under the
JKM scheme under varying BER conditions. Comparing this

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

JKM striping scheme (no BER, no congestion)

Greedy TCP throughput

Figure 42. The achieved TCP throughput under the JKM scheme. No BER
and no congestion.

318 WANG ET AL.

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

JKM striping scheme (BER)

Greedy TCP throughput(BER = 0.00001)
Greedy TCP throughput(BER = 0.000005)
Greedy TCP throughput(BER = 0.000001)

Figure 43. The achieved TCP throughput under the JKM scheme under
varying BER conditions. No congestion.

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

JKM striping scheme (mobility)

Greedy TCP throughput

Figure 44. The achieved TCP throughput under the JKM scheme in mobility
conditions. No BER and no congestion.

figure with figure 24, which shows the achieved TCP through-
put under our striping scheme, we see that the achieved TCP
throughput in the JKM scheme is lower than that in our
scheme. Again, the throughput difference is due to the use of
many ACK packets in the JKM scheme.

Figure 44 shows the achieved TCP throughput under the
JKM scheme in the same mobility condition as described in
figure 32. Comparing this figure with figure 34, which shows
the achieved TCP throughput under our striping scheme in
the same mobility condition, we see that the achieved TCP
throughput in the JKM scheme is much lower than that in
our scheme. We found that this significant throughput differ-
ence is primarily due to excessive TCP timeouts in the JKM
scheme, which are caused because the JKM scheme delays
arrived packets indefinitely for filling up holes at the trunk
level.

6. Deployment discussion

Inter-cell interference (or called co-channel interference)
means the signal interference that a mobile node may re-
ceive when it is in the overlapping area between two adjacent
cells. To avoid this problem, generally one can assign dif-
ferent frequency channels to adjacent cells. Because in IEEE
802.11(b) there are three non-overlapping channels, normally
one can use these channels to avoid inter-cell interference. In
the proposed wireless trunk scheme, however, because a wire-
less trunk may use multiple channels, inter-cell interference
now may exist because the channels used by a cell may be
partially overlapped with those used by an adjacent cell.

In IEEE 802.11(b) there are eleven channels, among which
three channels are totally non-overlapping while the other
eight channels are partially overlapped. This means that these
eight channels can still be used for site planning, although
some minor co-channel interference may result among them.
The impact of the resulting co-channel interference can be
analyzed by treating the signal power of an adjacent chan-
nel as noise and use the SNR v.s. BER curves to derive
the corresponding BER for a specific modulation scheme.
Since the wireless trunk scheme proposed in this paper can
be applied to IEEE 802.11(a) equally well, which has eight
non-overlapping channels, we expect that this co-channel in-
terference problem will be mitigated in IEEE 802.11(a) and
future technologies that have more non-overlapping channels.

7. Future work

In the future, we plan to test the performances of our proposed
striping method in the real-world environment. Currently, the
form factor of notebook computers does not allow us to easily
use multiple 802.11(b) wireless interface cards on a single
notebook computer to conduct real experiments. We hope
that future technology advancements can help remove this
limitation.

8. Conclusions

Due to interference, path loss, multipath fading, background
noise, and many other factors, wireless communication nor-
mally cannot provide a wireless link with a high data rate
and a long transmission range at the same time. To address
this problem, striping network traffic in parallel over mul-
tiple lower-data-rate but longer-transmission-range wireless
channels can be a solution.

In this paper, we propose a new method for striping traffic
over multiple IEEE 802.11(b) channels, and use the NCTUns
1.0 network simulator to evaluate its performances under
various conditions. Tested conditions include ideal channel,
congestion, bit errors, hidden-terminal, mobility, and chan-
nel number scalability. Extensive simulation results show
that, under all of these conditions, the aggregated through-
put achieved via striping traffic over N wireless channels is

ON STRIPING TRAFFIC OVER MULTIPLE IEEE 802.11(B) WIRELESS CHANNELS 319

almost N times of the throughput achievable on a single chan-
nel. In addition, the extra resequencing delay introduced by
this method is small. On average, only an extra 30 ms delay
is introduced for each added wireless channel.

From these simulation results, we see that the proposed
striping method can create a wireless trunk with both a high
data rate and a long transmission range. It effectively over-
comes the high-rate-but-short-range or long-range-but-low-
rate problem in single-channel wireless communication.

Acknowledgments

We would like to thank the anonymous reviewers for their
valuable comments. This research was supported in part by
MOE Program for promoting Academic Excellence of Uni-
versities under the grant number 91-E-FA06-4-4, NSC under
the grant number NSC-92-2213-E-009-063, and the Chung-
Shan Institute of Science and Technology under the grant
number BC93B13P.

References

[1] Hari Adiseshu, Guru Parulkar and George Varghese, A reliable and
scalable striping protocol, ACM SIGCOMM’96 (8) (1996) 131–141.

[2] C. Brendan, S. Traw and J.M. Smith, Striping within the network
subsystem, IEEE Network (July/August 1995) pp. 22–29.

[3] CISCO Aironet 350 Series Wireless Bridge Data Sheet, available at
http://www.cisco.com

[4] IEEE Computer Society LAN MAN Standards Committee, Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications, IEEE Std 802.11-1999. The Institute of Electrical and Elec-
tronics Engineering, New York, 1999.

[5] F. Jacquet, Philippe Kauffmann, Michel Misson, Striping schemes
for wireless communication system, The Fifth IEEE Symposium on
Computer and Communications, Antibes, France, 4-6 July 2000

[6] F. Jacquet and Michel Misson, Striping over Wireless Links: Effects
on Transmission Delays, The 11th IEEE International Symposium on
Personal Indoor and Mobile Radio Communications (PIMRC’00), 18-
21 Sep. 2000.

[7] J.D. Parsons, The Mobile Radio Propagation Channel (John Wiley &
Sons, LTD., 2000).

[8] Alex C. Snoeren Adaptive Inverse Multiplexing for Wide-Area Wire-
less Networks, IEEE GLOBECOM’99, December 1999.

[9] W. Richard Stevens, TCP/IP Illustrated, Volume 1 (Addison Wesley,
1995).

[10] S.Y. Wang, Optimizing the packet forwarding performance of wireless
chain networks, Computer Communications 26(14) (2003) pp. 1515–
1432.

[11] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang,
C.C. Chiou and C.C. Lin, The Design and Implementation
of the NCTUns 1.0 Network Simulator, Computer Network
42 (2) (June 2003) pp. 175–197. (Available for download at
http://NSL.csie.nctu.edu.tw/nctuns.html)

[12] WaveLAN IEEE User’s Guide, Lucent Technology, 1998.
[13] Wireless Data Forum. Cellular digital packet data system specification,

Release 1.1 January 1995.

S.Y. Wang is an Associate Professor of the Depart-
ment of Computer Science and Information Engi-
neering at National Chiao Tung University, Taiwan.
He received his Master and Ph.D. degree in com-
puter science from Harvard University in 1997 and
1999, respectively. His research interests include
wireless networks, Internet technologies, network
simulations, and operating systems. He is the author
of the NCTUns 2.0 network simulator and emula-
tor, which is being widely used by network and

communication researchers. More information about the tool is available at
http://NSL.csie.nctu.edu.tw/nctuns.html.
E-mail: shieyuan@csie.nctu.edu.tw

C.H. Hwang received his master degree in comp-
uter science from NCTU in 2002 and currently
is working for a network company.

C.L. Chou currently is a third-year Ph.D. stude-
nt at the Department of Computer Science and
Information Engineering, National Chiao Tung
University (NCTU), Taiwan. He received his
master degree in computer science from NCTU in
2002.

