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Predictor Design of a Novel Grey Model PGM21

Using Pseudo Second-Order Information∗

Keh-Tsong LI∗∗ and Yon-Ping CHEN∗∗

A novel grey model, called pseudo-GM(2,1) or PGM21 for simplicity, is developed to
improve the prediction accuracy for a non-monotone sequence by modifying the GM(1,1)
model with a remedial term. Since the remedial term consists of two development coeffi-
cients, it can be treated as a kind of second-order information, called the pseudo second-order
information in this paper. With the remedial term, the PGM21 only costs a little higher com-
putation time than the original GM(1,1) model; however, its prediction accuracy is highly
increased. The important features of the PGM21 are demonstrated by numeric simulation
results.
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1. Introduction

In 1982, Professor Deng first proposed the grey sys-
tem theory to deal with systems possessing poor and in-
complete information(1), (2). The grey system theory is pri-
marily classified into two categories: grey relational anal-
ysis and grey prediction. Up to now, the grey prediction
had been successfully applied to diverse fields, such as
earthquakes, industry, economics, and control(3) – (11).

The first-order single-variable grey model, denoted
as GM(1,1), is the most popular approach for predic-
tion. In many literatures(8) – (11), the GM(1,1) was ap-
plied to the controller design as a predictor. Although
the GM(1,1) model takes the advantages of simplicity
and quickness, the limitation of its prediction accuracy
is still arguable. To further improve the prediction accu-
racy, some investigators have proposed their modified ver-
sions of the GM(1,1), such as Yeh and Lu(12) and Lin and
Hsu(13). In addition, some investigators have paid their
attentions to the optimization of the background value of
the GM(1,1) in order to improve the its prediction accu-
racy(14), (15). Actually, these modified versions only im-
prove the prediction accuracy on a small scale, especially
for a non-monotone sequence of data. It is because they
are still based on the GM(1,1) model.

Intuitively, in order to increase the prediction accu-
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racy, a higher order grey model, like the GM(2,1), is re-
quired. Unfortunately, the use of a higher order grey
model implies a much more complicated algorithm and an
increase of the computation time. In this paper, a novel
grey model, called the pseudo-GM(2,1) or PGM21 for
simplicity, is developed by adding a remedial term, which
is related to the difference between the development co-
efficients of two latest consecutive subsequences modeled
by the original GM(1,1). Since the remedial term consists
of two development coefficients, it is second-order-like,
called the pseudo second-order information in this paper.
Significantly, the PGM21 model not only highly reduces
the prediction error but also costs only a little higher com-
putation time than the GM(1,1) model.

Next, the conventional GM(1,1) model will be briefly
introduced in section 2 and the design concept and proce-
dure of the modified version PGM21 model will be pre-
sented in section 3. By using the numeric simulation, the
features of the PGM21 model are shown in section 4. Fi-
nally, section 5 gives the concluding remarks.

2. First-Order Single-Variable Grey Model GM(1,1)

This section will briefly introduce the first-order
single-variable grey model, denoted as GM(1,1), which
is adopted to obtain the predictive data following a given
positive data sequence. It is known that three fundamental
operations are required to establish the GM(1,1) model,
which are the accumulated generating operation (AGO),
the mean operation (MEAN), and the inverse accumulated
operation (IAGO). Let the positive data sequence be given
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as

x(0)(1), x(0)(2), . . . , x(0)(n) (1)

where x(0)(k) > 0, k = 1,2, . . . ,n and n ≥ 4(2). The three
fundamental operations are then defined as

AGO - x(1)(k)=
k∑

l=1
x(0)(l), k=1,2, . . . ,n (2)

MEAN - z(1)(k)=
1
2

[x(1)(k)+ x(1)(k−1)],

k=2,3, . . . ,n (3)

IAGO -
x(0)(1)= x(1)(1),

x(0)(k)= x(1)(k)− x(1)(k−1),
k=2,3, . . . ,n

(4)

Clearly, two new positive data sequences x(1)(k) and z(1)(k)
are generated from the original sequence (1). Since x(1)(k)
accumulates the data from x(0)(1) to x(0)(k), it is easy to
verify that x(1)(k) > x(1)(k−1) and z(1)(k) > z(1)(k−1). As
to the IAGO operation, it recovers the data x(0)(k) from
x(1)(k) via the inverse operation (4).

With these fundamental operations, the GM(1,1)
model is commonly constructed as the following grey dif-
ferential equation(1):

x(0)(k)+az(1)(k)=b, k=2, . . . ,n (5)

where a is called the development coefficient, b is treated
as the grey input and z(1)(k) is defined in (3). Both a and
b are constant and unknown, which needs to be further
determined. Rewriting (5) into a matrix form yields

y=B ·
[

a
b

]
(6)

where

y=


x(0)(2)
...

x(0)(n)

 , B=


−z(1)(2) 1
...

...

−z(1)(n) 1


The truth of z(1)(k) > z(1)(k− 1) implies that B is of full
rank. Based on the least square method, a and b can be
solved from (6) as[

a
b

]
= (BT B)−1BTy (7)

which completes the establishment of the grey differential
equation (5). Theoretically, the GM(1,1) model employs
(5) to imitate the first-order ordinary differential equation

dx(1)(t)
dt

+ax(1)(t)=b (8)

which is treated as its whitening equation. By directly
modifying the solution of (8), the term x(1)(k) is estimated
as(1)

x̂(1)(k)=

(
x(0)(1)− b

a

)
e−a(k−1)+

b
a
, k=1,2, . . . (9)

Further using the IAGO in (4) yields

x̂(0)(k)= (1−ea) ·
(
x(0)(1)− b

a

)
·e−a(k−1), k=2,3, . . .

(10)

Clearly, x̂(0)(k) for k > n are the so-called predictive data
of the sequence (1), which can be expressed as

x̂(0)(n+ p)= (1−ea) ·
(
x(0)(1)− b

a

)
·e−a(n+p−1),

p=1,2, . . . (11)

For p = 1, the one-step-ahead predictive value could be
obtained by

x̂(0)(n+1)= (1−ea) ·
(
x(0)(1)− b

a

)
·e−an (12)

which is the first predictive value coming after the se-
quence (1). Obviously, the resulted predictive values (11)
are composed of the term e−a(n+p−1), which means the
GM(1,1) model is suitable for predicting a sequence with
a single exponential rate. For a sequence not in such
case, such as a non-monotone sequence, a higher order
grey model is needed to reduce the prediction error. Next,
a novel grey model, called the PGM21, is introduced to
fulfill a higher order prediction by simply modifying the
GM(1,1) model.

3. Design of Pseudo Second-Order Grey Model
PGM21

In this section, the restriction of the GM(1,1) model
will be indicated and then a novel modified pseudo
second-order grey model, called pseudo-GM(2,1) or
PGM21, will be proposed to improve the drawback.

First, for the resulted sequence x̂(0)(k) in (10), let’s
check the following ratio between two consecutive data

x̂(0)(k+1)
x̂(0)(k)

= e−a, k≥2 (13)

Clearly, the ratios for k ≥ 2 are all the same and equal
to e−a. It shows that the sequence x̂(0)(k) in (10) de-
creases or increases monotonously with an exponential
rate a. In other words, the GM(1,1) model is mainly suit-
able for monotone sequences approximately possessing a
single exponential rate. Unfortunately, most of the physi-
cal sequences are changeable and not of single exponential
rate. This implies the GM(1,1) model may not well pre-
dict most of the physical sequences. Figure 1 depicts two
sequences not possessing a single exponential rate, where

(a) (b)

Fig. 1 Two sequences not of a single exponential rate
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Sequence-(a) is non-monotone with one turning point and
Sequence-(b) is monotone but with more than one expo-
nential rates. To reduce their prediction errors, some in-
vestigators employ a higher order grey model and some
others try to modify the original GM(1,1) model. Here,
we will focus on the development of a modified GM(1,1)
model, the PGM21 model, which is not only as simple
as the GM(1,1) model but also allows the predictive data
to possess two exponential rates similar to the GM(2,1)
model.

In the fields of the series forecasting and the system
control, the GM(1,1) model usually adopts the privileging
fresh information rationale(1). To put it more simply, the
GM(1,1) model adopts the latest n data which have been
observed. Let’s consider the following data sequence

x(0)(1), x(0)(2), . . . , x(0)(m) m>n≥4 (14)

where all the data are observed in order. When the first n
data x(0)(1), . . . , x(0)(n) are obtained, the GM(1,1) model
starts to predict the data x(0)(n+ p), p = 1, 2, . . . , coming
after x(0)(n). For convenience, the first n data are set to be
x(0)

1 = {x(0)(1), . . . , x(0)(n)} and the predictive data of x(0)(n+
p) are represented by x̂(0)

1 (n+ p), p= 1, 2, . . . . Next, after
the datum x(0)(n+1) is observed, the GM(1,1) model im-
mediately applies to the latest n data x(0)(2), . . . , x(0)(n+1),
which are grouped as x(0)

2 = {x(0)(2), . . . , x(0)(n+1)}. Simi-
larly, the predictive data of x(0)(n+1+p) are represented by
x̂(0)

2 (n+ p), p= 1, 2, . . . . Step by step, the GM(1,1) model
is processed to the i-th set of latest n data, denoted as

x(0)
i = (x(0)

i (1), x(0)
i (2), . . . , x(0)

i (n)),

i=1,2, . . . ,m−n+1 (15)

where x(0)
i (k)= x(0)(k+i−1), k=1, 2, . . . , n. The predictive

data of x(0)(n+ i+ p) are represented by x̂(0)
i (n+ p) p=1, 2,

. . . . The above step-by-step process is the so-called rolling
procedure.

According to the GM(1,1) model, the predictive data
of the i-th subsequence x(0)

i in (15), given as x(0)
i =

(x(0)(i), x(0)(i+1), . . . , x(0)(n+i−1)), can be achieved from
(11) and expressed as

x̂(0)
i (n+ p)= (1−eai) ·

(
x(0)

i (1)− bi

ai

)
·e−ai(n+p−1),

p=1,2, . . . (16)

where the development coefficient ai and grey input bi

could be solved from (7) using the least-square method.
Trace back to the (i−1)-th sequence, i.e.,

x(0)
i−1 = (x(0)(i−1), x(0)(i), . . . , x(0)(n+ i−2)) (17)

whose predictive data are

x̂(0)
i−1(n+ p)= (1−eai−1 ) ·

(
x(0)

i−1(1)− bi−1

ai−1

)
·e−ai−1(n+p−1),

p=1,2, . . . (18)

Clearly, these two sequences have different development
coefficients ai and ai−1, even though there are n−1 data,

x(0)(i), x(0)(i+1), . . . , x(0)(i+n−2), overlapped in these two
sequences. In case that ai and ai−1 are not quite distinct,
i.e., the difference between ai and ai−1 is small, (16) and
(18) will be good results for predicting x(0)

i and x(0)
i−1. How-

ever, if the difference between ai and ai−1 is increased to a
certain level, then it reveals that x(0)

i and x(0)
i−1 are at least

related to two exponential rates. Intuitively, the GM(2,1)
model should be a better choice for such situation. How-
ever, the GM(2,1) model is much more complicated than
the GM(1,1) model. In order to keep the simplicity of the
GM(1,1) model, here a modification is proposed on (16)
as below:

x̂(0)
i (n+p)= (1−eai ) ·

(
x(0)

i (1)−bie−(ai−ai−1)p

ai

)
·e−ai(n+p−1),

p=1,2, . . . (19)

which changes bi in (16) into bie−(ai−ai−1)p. Obviously, a
remedial term e−(ai−ai−1)p is added to the grey input bi. As
a result, the predictive data of x(0)

i could have two expo-
nential rates ai and ai−1 as expected. It is also true for x(0)

i−1
since its predictive data are possessed of two exponential
rates ai−1 and ai−2.

In addition to stressing the use of two exponential
rates, the remedial term e−(ai−ai−1)p also emphasizes that
the variation between x(0)

i and x(0)
i−1 is compensated by the

difference (ai−ai−1). Furthermore, it is noticed that the re-
medial term e−(ai−ai−1)p is only attached to bi in (16) since
bi is the so-called grey input and could potentially con-
sist of the information from the previous sequence x(0)

i−1.
Clearly, a sub-term eai−1 p related to the former sequence
x(0)

i−1 is included in the modified grey input bie−(ai−ai−1)p.
The correctness of employing the term eai−1 p, not e−ai−1 p,
can be explained from the ratio in (13), rearranged as
x̂(0)(k) = ea · x̂(0)(k+1). Apparently, the datum x̂(0)(k) be-
fore x̂(0)(k+1) should be multiplied by ea. In other words,
if a term achieves information from the previous sequence,
then it may contain a term multiplied by ea. Hence, it is
reasonable to add a remedial term multiplied by eai−1 p to
the grey input bi, which is assumed to have information
from the former sequence x(0)

i−1.
Because the remedial term e−(ai−ai−1)p is composed

of information concerning two exponential rates, it can
be treated as consisting a kind of second-order infor-
mation, or simply called the pseudo second-order infor-
mation. With this pseudo second-order information, the
GM(1,1) rolling model can be easily extended to the so-
called pseudo-GM(2,1) or PGM21 for simplicity. The
procedure of implementing PGM21 is now summarized
as follows:

Step 1: Rearrange the sequence (14) into a rolling
sequence as

x(0)
i = (x(0)

i (1), x(0)
i (2), . . . , x(0)

i (n)),

i=1,2, . . . ,m−n+1

where x(0)
i (k)= x(0)(k+ i−1), k=1, 2, . . . , n, and n≥4.
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Step 2: Determine the predictive step p, p≥1.
Step 3: Apply the GM(1,1) model to x(0)

1 and obtain
the predictive data as

x̂(0)
1 (n+ p)= (1−ea1 ) ·

(
x(0)

1 (1)− b1

a1

)
·e−a1(n+p−1)

where a1 and b1 are calculated form (7).
Step 4: Let i=2.
Step 5: Apply the GM(1,1) model to x(0)

i and obtain
the predictive data as

x̂(0)
i (n+ p)= (1−eai) ·

(
x(0)

i (1)− bi

ai

)
·e−ai(n+p−1)

where ai and bi are calculated form (7).
Step 6: Modify the predictive data of x(0)

i into

x̂(0)
i (n+ p)= (1−eai ) ·

(
x(0)

i (1)− bie−(ai−ai−1)p

ai

)
·e−ai(n+p−1)

Step 7: If i =m−n+1, then stop, otherwise i = i+1
and go to Step 5.

By adding the remedial term e−(ai−ai−1 p to the grey
input, the PGM21 indeed contains two exponential rates
and highly improves the prediction accuracy. Most signif-
icantly, when comparing to the original GM(1,1) model,
the computation time of PGM21 is only increased a little
in calculating the remedial term e−(ai−ai−1)p. Some numeric
examples will be used to demonstrate the advantages of
the PGM21 in the next section.

4. Simulation Results

In this section, three cases are used as examples to
illustrate the excellence of the PGM21 proposed in sec-
tion 3. For comparison, the original GM(1,1) model de-
scribed in section 2 also applies to these cases. The func-
tions and predictive steps adopted for the three cases are
listed as below:

Case 1 - x(t) = 2+3e−0.5t sin(2t) for 0 ≤ t ≤ 10 with
p=1.

Case 2 - x(t)=4+sin(2t)+cos(3t) for 0≤ t≤10 with
p=1.

Case 3 - x(t)=4+sin(2t)+cos(3t) for 0≤ t≤10 with
p=2.
These three functions are all positive and sampled ev-
ery 0.1 sec. The sampled data are denoted as x(kT ),
where T = 0.1 sec and k = 1, 2, . . . , 100. Clearly, each
function results in a data sequence just like (14), where
x(0)(k)= x(kT ) with k= 1, 2, . . . , m, and m= 100. Follow-
ing the procedure shown in section 3, the numeric simu-
lation results of PGM21 for Case 1, Case 2, and Case 3
are obtained and demonstrated in Fig. 2 to Fig. 7. For
all these three cases, the rolling sequence is set to be
x(0)

i = (x(0)
i (1), x(0)

i (2), x(0)
i (3), x(0)

i (4)), i.e., n = 4. Be-
sides, each case consists of two kinds of simulation re-
sults, which are the predictive data and prediction error.
The prediction error is defined as

e(k)=

∣∣∣x(kT )− x̂(0)(k)
∣∣∣

x(kT )
=

∣∣∣x(0)(k)− x̂(0)(k)
∣∣∣

x(0)(k)

which is the ratio of the difference
∣∣∣x(kT )− x̂(0)(k)

∣∣∣ to the
real data x(0)(k).

In Figs. 2, 4 and 6, the predictive data show that the
PGM21 is better than the original GM(1,1) model in all
the three cases. Note that all the curves in these fig-
ures start from the moment that the first predictive data
are obtained. Figures 3, 5 and 7 show the prediction er-
rors. It could be found that both the original GM(1,1)
model and the PGM21 have small prediction errors around
the data ranges of monotonously increasing or decreas-
ing. However, when the data sequence is in a trend of
non-monotone, especially with a turning point, the predic-
tion error of the original GM(1,1) becomes much larger
than the PGM21. It demonstrates that the remedial term
e−(ai−ai−1)p indeed aids the PGM21 to reduce the prediction
errors of non-monotone data sequences.

In order to further show the effect caused by the
predictive step, an average prediction error is defined as

Fig. 2 Predictive data for Case 1

Fig. 3 Prediction errors for Case 1
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Fig. 4 Predictive data for Case 2

Fig. 5 Prediction errors for Case 2

Fig. 6 Predictive data for Case 3

Emodel
Case i =

1
m

∑
k
|e(k)| for Case i and different models. By

direct calculation, we obtain

Fig. 7 Prediction errors for Case 3

EGM(1,1)
Case 1 =0.011 0, EGM(1,1)

Case 2 =0.023 9,

EGM(1,1)
Case 3 =0.058 4, EPGM21

Case 1 =0.004 4,

EPGM21
Case 2 =0.011 6, EPGM21

Case 3 =0.035 7.

From the above results, it could be found that

Emodel
Case 1 <Emodel

Case 2, Emodel
Case 2<Emodel

Case 3,

EPGM21
Case i <EGM(1,1)

Case i .

The truth of Emodel
Case 1 <Emodel

Case 2 for different models is related
to the frequency of the functions in Case 1 and Case 2.
Since the function in Case 2 changes faster, its average
prediction error becomes larger than that of Case 1. The
truth of Emodel

Case 2 < Emodel
Case 3 for different models is related to

the predictive step p. Clearly, a larger predictive step re-
sults in a larger average prediction error. As to the truth
of EPGM21

Case i < EGM(1,1)
Case i , it means the PGM21 is better than

the original GM(1,1) model, which has been explained by
Figs. 2, 4 and 6.

5. Conclusion

In this paper, a novel grey model PGM21 is devel-
oped by using a remedial term containing pseudo second-
order information. With this remedial term, the computa-
tion time of the PGM21 only increases a little higher than
the original GM(1,1) model. However, its prediction error
is reduced on a large scale. The excellent predictive abil-
ity of the PGM21 has been demonstrated by the numeric
simulation results.
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