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[1] An analytical model for the constant flux pumping test is developed in a radial
confined aquifer system with a partially penetrating well. The Laplace domain solution is
derived by the application of the Laplace transforms with respect to time and the finite
Fourier cosine transforms with respect to the vertical coordinates. A time domain solution
is obtained using the inverse Laplace transforms, convolution theorem, and Bromwich
integral method. The effect of partial penetration is apparent if the test well is completed
with a short screen. An aquifer thickness 100 times larger than the screen length of the
well can be considered as infinite. This solution can be used to investigate the effects of
screen length and location on the drawdown distribution in a radial confined aquifer
system and to produce type curves for the estimation of aquifer parameters with field
pumping drawdown data.
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1. Introduction

[2] A partially penetrating well is commonly situated in
an aquifer that is relatively thick. Hantush [1962] pre-
sented a point source solution for the drawdown distri-
bution around a partially penetrating well under constant
flux pumping in an infinite confined aquifer. Sternberg
[1973] provided a graphical solution for evaluating the
total drawdown. Strelsova-Adams [1979] reported an
analysis of the transient pressure response for a well with
limited flow entry produced from an oil reservoir with a
gas cap in a zone of low permeability and that with
impermeable top and bottom boundaries. Ruud and
Kabala [1997] developed a two-dimensional integrated
well face flux (IWFF) model for computing the drawdown
at the well face and around a fully or partially penetrating
well with the wellbore storage situated in multilayer con-
fined aquifers. For a partially penetrating well situated in a
homogeneous isotropic aquifer, they found that the differ-
ences between the IWFF model and Hantush’s model
[Hantush, 1964] were insignificant for wellbore drawdowns
but pronounced for the well face flux. Such differences may
arise for a partially penetrating well situated in multilayer
aquifers, especially if the screen is not located in the most
conductive layer. Cassiani and Kabala [1998] developed a
semianalytical solution to the mixed-type boundary value
problem via the dual integral equations. The pumping and
slug tests are performed on a partially penetrating well with
wellbore storage, infinitesimal skin, and aquifer anisotropy.
They stated that their solution is computationally more

efficient than the corresponding finite difference solution.
In addition, their solutions described accurately the
point flux distribution along the well screen of a partially
penetrating well.
[3] The objective of this study is to develop a closed form

solution for a mathematical model describing the constant
flux pumping test performed in a partially penetrating well
with finite radius in a homogeneous (single zone) confined
aquifer system. This closed form solution can be used to
investigate the effects of screen length and location on the
drawdown distribution and to produce type curves for the
estimation of aquifer parameters with field drawdown data.
On the basis of the mathematical model, the Laplace
domain solution is derived using the Laplace transforms
with respect to time and the finite Fourier cosine transforms
with respect to the vertical coordinates. The modified
Crump algorithm [de Hoog et al., 1982; Visual Numerics,
1997] is adopted to invert the Laplace domain solution. The
closed form solution is then obtained using the Bromwich
integral method. A numerical approach, including a root
search scheme, a numerical integration method, and the
Shanks method [Shanks, 1955], is proposed to evaluate this
solution.

2. Mathematical Derivations

2.1. Analytical Model

[4] In order to account for the effect of partial penetra-
tion, a term representing the vertical flow is included in the
governing equation of a radial confined aquifer system. The
well and aquifer configurations for a radial confined aquifer
system are depicted in Figure 1. The assumptions are made
for the solution in terms of drawdown; they are: (1) The
aquifer is homogeneous, anisotropic, infinite extent, and
with a constant thickness; (2) The well is partially penetrat-
ed with a finite thickness radius; (3) The pumping rate is
maintained constant throughout the whole test period.
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According to these assumptions, the governing equation of
drawdown, s(r, z, t), can be written as

Kr

@2s r; z; tð Þ
@r2

þ Kr

r

@s r; z; tð Þ
@r

þ Kz

@2s r; z; tð Þ
@z2

¼ Ss
@s r; z; tð Þ

@t
ð1Þ

where Kr and Kz are the hydraulic conductivities in the
radial and vertical directions, respectively; Ss is the specific
storage; r is the radial distance from the centerline of well; z
is the vertical distance from the lower impermeable layer; rw
is the well radius; and t is the time from the start of test.
[5] The drawdown is initially assumed to be zero within

the formation zone, this is

s r; z; 0ð Þ ¼ 0 ð2Þ

[6] As r approaches infinity, the drawdown tends to be
zero. Therefore the outer boundary condition is

s 1; z; tð Þ ¼ 0 ð3Þ

The lower and upper boundary conditions in the vertical
direction are, respectively,

@s r; 0; tð Þ
@z

¼ 0 ð4Þ

and

@s r; L; tð Þ
@z

¼ 0 ð5Þ

where L is the thickness of the confined aquifer.

[7] On the basis of Darcy’s law, the boundary condition
for the flux across the screen is assumed uniform and
expressed as

@s rw; z; tð Þ
@r

¼ � Q

2prwKr b2 � b1ð Þ U z� b1ð Þ � U z� b2ð Þ½ �;

0 	 z 	 L ð6Þ

where Q is the pumping rate, b1 and b2 are respectively the
lower and upper vertical coordinates of the well screen, and
U(
) is a unit step function defining that U(z � bi) equals
one when bi Q z but equals 0 otherwise for i = 1 or 2. Notice
that Neuman [1974, p. 304, equations (15) and (16)] also
made the same assumption as (6) but in different form for a
constant pumping at a partially penetrating well in an
unconfined aquifer.

2.2. Laplace Domain Solution

[8] To solve the boundary value problem, the Laplace and
finite Fourier cosine transforms are applied to the governing
equation and the boundary conditions. The detailed deriva-
tion of the solution is given in Appendix A and the final
result is

s r; z; pð Þ ¼ Q

4pT
2

rw

K0 q2rð Þ
pq2K1 q2rwð Þ þ

Q

4pT
4

b2 � b1ð Þrw



X1
n¼1

K0 q1rð Þ
pq1K1 q1rwð Þ

� �
W b1; b2ð Þ cos wnzð Þ ð7Þ

where p is the Laplace variable, T = LKr is the
transmissivity of the aquifer, q1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aw2

n þ bp
p

, q2 =
ffiffiffiffiffi
bp

p
,

a = Kz/Kr, b = SS/Kr, wn = np/L, n = 1, 2, . . ., W(b1, b2) =
[sin (wnb2) � sin (wnb1)]/wn, and K0(
) and K1(
) are the
modified Bessel functions of the second kind of order zero
and one. Notice that the right-hand side (RHS) of (7) has

Figure 1. Schematic diagram of the well and aquifer configurations.
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two terms; the first term represents the solution for a radial
confined flow, and the second term contains a summation
term accounting for the effect of partial penetration.
[9] The water level in an observation well represents

the average drawdown in the aquifer profile that is in
contact with the well screen (or perforated section). The
average drawdown in an observation well that is screened
between the depths of b1

0 and b2
0 can be obtained by

integrating the drawdown equation with respect to z
between the limits of b1

0 and b2
0, and then dividing the

result by the screen length (b2
0 � b1

0). Thus the average
drawdown can be expressed as

s r; pð Þ ¼ Q

4pT
2

rw

K0 q2rð Þ
pq2K1 q2rwð Þ þ

Q

4pT
4

b2 � b1ð Þ b02 � b01
� �

rw



X1
n¼1

K0 q1rð Þ
pq1K1 q1rwð Þ

� �
W b1; b2ð ÞW b01; b

0
2

� �
ð8Þ

2.3. Closed Form Solution

[10] The solution of (7) in the time domain is obtained via
the inverse Laplace transforms, convolution theorem, and
the Bromwich integral [Hildebrand, 1976]. Detailed deri-
vation is given in Appendix B and the time domain solution
is

s r; z; tð Þ ¼ Q

4pT
f1 r; uð Þ þ

X1
n¼1

f2 r; uð ÞW b1; b2ð Þ cos wnzð Þ
" #

ð9Þ

with

f1 r; uð Þ ¼ 4

rwp

Z 1

0

1� e�
u2

b

� �
t

� �
Y0 ruð ÞJ1 rwuð Þ � J0 ruð ÞY1 rwuð Þ

Y 2
1 rwuð Þ þ J 21 rwuð Þ


 du
u2

ð10Þ

and

f2 r; uð Þ ¼ 8

rwp b2 � b1ð Þ

Z 1

0

1

u2 þ aw2
n


 1� e�
u2

b þa
bw

2
n

� �
t

� �
Y0 ruð ÞJ1 rwuð Þ � J0 ruð ÞY1 rwuð Þ

Y 2
1 rwuð Þ þ J 21 rwuð Þ du

ð11Þ

where u is a dummy variable. J0(
) and Y0(
) are respectively
the Bessel functions of the first and second kind of order
zero, and J1(
) and Y1(
) are respectively the Bessel
functions of the first and second kind of order one.
[11] The average drawdown in an observation well is

s r; tð Þ ¼ Q

4pT
f1 r; uð Þ þ

X1
n¼1

f2 r; uð ÞW b1; b2ð ÞW b01; b
0
2

� �" #
ð12Þ

2.4. Dimensionless Solutions

[12] The dimensionless variables are defined as t = Krt/
Ssrw

2 , r = r/rw, LD = L/rw, B1 = b1/rw, B2 = b2/rw, B1
0 = b1

0 /rw,
B2
0 = b2

0 /rw, q1D = q1rw, q2D = q2rw, wnD = np/LD, s =

s(4pT)/Q, and s = s(4pT)/Q. The Laplace domain solution
for dimensionless drawdown of (8) is

s r; pð Þ ¼ 2K0 q2Drð Þ
pq2DK1 q2Dð Þ þ

4

B2 � B1ð Þ B0
2 � B0

1

� �


X1
n¼1

K0 q1Drð Þ
pq1DK1 q1Dð Þ

� �
W B1;B2ð ÞW B0

1;B
0
2

� �
ð13Þ

Similarly, the time domain solution for dimensionless
drawdown of (12) can be expressed as

s r; tð Þ ¼ 4

p
f1D r;wð Þ þ

X1
n¼1

f2D r;wð ÞW B1;B2ð ÞW B0
1;B

0
2

� �"
ð14Þ

where

f1D r;wð Þ ¼
Z 1

0

1� e�tw2
� � Y0 rwð ÞJ1 wð Þ � J0 rwð ÞY1 wð Þ

Y 2
1 wð Þ þ J 21 wð Þ

dw

w2

ð15Þ

and

f2D r;wð Þ ¼ 2

B2 � B1ð Þ

Z 1

0

1

w2 þ aw2
nD

1� e� w2þaw2
nDð Þt

h i

 Y0 rwð ÞJ1 wð Þ � J0 rwð ÞY1 wð Þ

Y 2
1 wð Þ þ J 21 wð Þ dw ð16Þ

3. Numerical Evaluations

3.1. Numerical Inversion for the Laplace Domain
Solution

[13] The Laplace transforms are commonly used to solve
the differential and integral equations. In many engineering
problems, the Laplace domain solutions for mathematical
models are tractable, yet the corresponding solutions in the
time domain may not be easily solved. Under such circum-
stances, the methods of numerical Laplace inversion such as
Stehfest method [Stehfest, 1970], the Crump method
[Crump, 1976], or the Talbot method [Talbot, 1979] may
be used. The Laplace inversion transform of (13) is per-
formed with five significant digits using the routine INLAP
of IMSL [Visual Numerics, 1997] developed according to
the work of de Hoog et al. [1982].

3.2. Evaluation of the Closed Form Solution

[14] The derived dimensionless solution of (14) is an
integral that covers a range from zero to infinity and has an
integrand comprising many product terms of the Bessel
functions. The proposed numerical approach, including a
root search scheme, a numerical integration method, and the
Shanks method, is used to evaluate this solution. The root
search scheme employs the Newton method to find the root
of the integrand, which is oscillatory along the horizontal
axis. Both the six-point and 10-point formulas of the
Gaussian quadrature are employed at the same time to
perform the numerical integration within the chosen interval
between two consecutive roots. Notice that the integrands in
(14) exhibit oscillatory behavior because of the nature of the
Bessel functions. The resultant infinite series may have the
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problem of slow convergence. The Shanks method [Shanks,
1955] is employed to accelerate the convergence in sum-
ming the alternating series. Detailed numerical evaluation
processes can be found in Yeh et al. [2003].

4. Results and Discussion

4.1. Comparison Between the Closed Form Solution
and Other Solutions

[15] The comparison of results obtained from the closed
form solution of (14) with the inversion results from the
Laplace domain solution of (13) may provide a cross check
for the validity and accuracy of both solutions and numer-
ical evaluations. The curves of dimensionless drawdown
versus dimensionless time evaluated by the proposed nu-
merical approach for (14), the modified Crump algorithm
for (13), and the Hantush solution [Hantush, 1964] are
shown in Figure 2. Figure 2 gives the values of dimension-
less drawdowns for, a = 0.1, B1 = 40, B2 = 160, B1

0 = 40,
B2
0 = 160, and LD = 200 when r = 1 or 5. The dimensionless

drawdowns of the closed form solution agree well with the
results estimated by the numerical inversion from the Lap-
lace domain solution. It indicates that the closed form
solution was correctly evaluated by the proposed numerical
approach. However, the drawdowns of the Hantush solution
differ from these of the closed form solution because the
well radius is neglected when the dimensionless time (t) is
very small. In other words, neglecting the effect of well
radius causes errors in dimensionless drawdown estimation
for small r, especially when t is small.

4.2. Effects of Partial Penetration

[16] The drawdown in a partially penetrating well reflects
the sum of the formation losses associated with a horizontal
flow to a well and the loss associated with the converging
and vertical flow near a well screen due to well partial
penetration [Charbeneau, 2000]. Define the penetration
ratio F = (B2 � B1)/LD. Figure 3 shows the dimensionless
drawdown versus dimensionless distance for a = 0.1, t =
105, LD = 200, and F ranging from 0.1 to 1 when the half
length of well screen is situated at the center or 1/4
thickness of confined aquifer. Note that F = 1 represents
the case of a well under full penetration. As can be seen, the
differences between these three curves are very small when
r  300. This implies that the effects of partial penetration
are uniform along the z direction when r/L  1.5. This
result coincides with Hantush’s assertion that the second
term on the RHS of (14) is negligible when r/L  1.5
[Hantush, 1964].
[17] Figure 4 shows the effect of screen length, i.e.,

penetration portion, on dimensionless drawdown. When f
approaches one, the effect of partial penetration is incon-
spicuous and the dimensionless drawdown curve
approaches the Theis line [Theis, 1935] where the dimen-
sionless drawdown is linearly proportional to the logarithm
of dimensionless time. When f 	 0.01, the curve
approaches an asymptotic value at large dimensionless time
(i.e., t  103). In other words, the pumping well can
maintain the discharge rate at a constant drawdown. There-
fore the thickness of the aquifer can be considered as

Figure 2. Dimensionless drawdown versus dimensionless time (t) estimated by the closed form
solution, the numerical inversion from the Laplace domain solution, and the Hantush solution [Hantush,
1964] for a = 0.1, B1 = 40, B2 = 160, B1

0 = 40, B2
0 = 160, and LD = 200 when r = 1 or 5.
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Figure 3. Dimensionless drawdown versus dimensionless distance (r) for a = 0.1, t = 105, and LD =
200 and the penetration ratio (f) ranging from 0.1 to 1 when the middle of well screen is situated at the
center (solid line) or 1/4 thickness (dashed line) of confined aquifer.

Figure 4. Dimensionless drawdown s(t)/s(1) versus dimensionless time (t) for a = 0.1, r = 1, and
LD = 200 when f ranges from 0.005 to 1.
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infinite at large dimensionless time when F Q 0.01, and the
dimensionless drawdown remains a constant.

5. Conclusions

[18] A closed form solution has been developed for
constant flux pumping tests in a radial confined aquifer
system with a partially penetrating well. This solution
considers the effects of well radius and partial penetration
and provides appropriate mathematical models for the
pumping test data analyses. The Laplace domain solution
can reduce to that presented by Hantush [1964] if the well
radius is neglected. This article demonstrates that the
Hantush solution has minor errors in drawdown estimation
when the observation well is close to the pumping well and/
or when the pumping time is small. The effect of partial
penetration is apparent if the test well is completed with a
short screen. An aquifer thickness 100 times greater than the
screen length of the well can be considered as infinite. The
effect of partial penetration on the drawdown decreases with
increasing distance. For r/L  1.5, such an effect is
negligible as suggested by Hantush [1964].

Appendix A: Derivation of Laplace Domain
Solution (7)

[19] The solution of drawdown is derived via the Laplace
transform with respect to time variable t and the finite
Fourier transform with respect to spatial variable z. The
appropriate finite Fourier transform is given by [Kreyszig,
1993]

F s zð Þf g ¼ es wnð Þ ¼
Z L

0

s zð Þ cos wnzð Þdz; 0 	 z 	 L ðA1Þ

The Laplace transform has following operational property

F
d2s zð Þ
dz2

� �
¼ �1ð Þnds zð Þ

dz

����
z¼L

�ds zð Þ
dz

����
z¼0

� w2
nes wnð Þ ðA2Þ

[20] With the boundary conditions of (4) and (5) and
applying the Laplace and finite Fourier cosine transforms,
(1) gives the following subsidiary formulas of the trans-
formed drawdown ês

d2ês r;wn; pð Þ
dr2

þ 1

r

dês r;wn; pð Þ
dr

¼ q21ês r;wn; pð Þ ðA3Þ

The transformed boundary conditions are

ês 1;wn; pð Þ ¼ 0 ðA4Þ

and

dês rw;wn; pð Þ
dr

¼ �Q

2prwKr b2 � b1ð Þp

Z b2

b1

cos wnzð Þdz ðA5Þ

[21] The general solution of (A3) is

ês r;wn; pð Þ ¼ C1I0 q1rð Þ þ C2K0 q1rð Þ ðA6Þ

where C1 and C2 are the undetermined constants.
Substituting (A6) into (A4) and (A5), one obtains

C1 ¼ 0 ðA7Þ

and

C2 ¼
Q

2prwKr b2 � b1ð Þ

� �
1

pq1K1 q1rwð Þ

Z b2

b1

cos wnzð Þdz ðA8Þ

Consequently, the solution of drawdown can be obtained by
substituting the constants of (A7) and (A8) into (A6) as

ês r;wn; pð Þ ¼ Q

2prwKr b2 � b1ð Þ

� �
K0 q1rð Þ

pq1K1 q1rwð Þ

Z b2

b1

cos wnzð Þdz

ðA9Þ

[22] The inverse finite Fourier transform is given by
[Kreyszig, 1993]

F�1 ês r;wn; pð Þ
n o

¼ 1

L
ês r;w0; pð Þ þ 2

L

X1
n¼1

ês r;wn; pð Þ cos wnzð Þ

ðA10Þ

Applying the above formula, the Laplace domain solution
(7) for drawdown can then be obtained.

Appendix B: Derivation of Time Domain
Solution (9)

[23] The convolution theorem [Hildebrand, 1976, p.63]
states that

L�1 f pð Þg pð Þf g ¼
Z t

0

F t � hð ÞG hð Þdh ðB1Þ

Let the Laplace domain solution of (7) be

s r; z; pð Þ ¼ Q

4pT
2

rw
SA þ

Q

4pT
4

b2 � b1ð Þrw



X1
n¼1

SBW b1; b2ð Þ cos wnzð Þ ðB2Þ

where SA = K0(q2r)/[pq2K1(q2rw)] and SB =
K0(q1r)/[pq1K1(q1rw)].
[24] The Laplace inversion of SA can be expressed as

SA ¼ L�1 SA
� �

¼ L�1 f1 pð Þ 
 g1 pð Þf g ðB3Þ

6 of 8

W05502 YANG ET AL.: TECHNICAL NOTE W05502



Let f1(p) = 1/p and g1(p) represents the term on SA except
1/p. Applying the Bromwich integral with L�1{f1(p)} =
F(t) = 1 yields [Hildebrand, 1976, p. 624]

L�1 g1 pð Þf g ¼ 1

2pi

Z z�i1

z�i1
eptg1 pð Þdp ¼ 0 ðB4Þ

where p is a complex variable, i is an imaginary unit, and
z is a large, real, and positive constant so that all the poles
lie to the left of line (z � i1, z + i1).
[25] A single branch point with no singularity (pole) at

p = 0 exists in the integrand of SA. Thus this integration
may require using a contour integral for the Laplace
inversion. The contour of integrand is shown in Figure B1
with a cut of p plane along a negative real axis, where e is
taken sufficiently small to exclude all poles from the circle
about the origin. Along the small circle EF, the integration
around the origin when e approaches zero is carried out by
using the Cauchy integral and the value of integration is
equal to zero. The integrals taken along BCD and GHA tend
to zero when R approaches infinity. Therefore SA can be
superseded by the sum of integrals along DE and FG. In
other words, (B4) can be written as

G1 tð Þ ¼ lim
e!0
R!1

�1

2pi

Z
DE

eptg1 pð Þdpþ
Z
FG

eptg1 pð Þdp
� �

ðB5Þ

The result of contour integral can then be obtained by
following the method of Yeh et al. [2003] as

G1 tð Þ ¼ 2

pb

Z 1

0

e�
u2

b t
Y0 ruð ÞJ1 rwuð Þ � J0 ruð ÞY1 rwuð Þ

Y 2
1 rwuð Þ þ J 21 rwuð Þ du ðB6Þ

Therefore the complete solution for a constant flux pumping
obtained by the convolution is

SA r; tð Þ ¼
Z t

0

1 
 G1 hð Þdh ðB7Þ

The result of (B7) after the integration is

SA ¼ 2

p

Z 1

0

1� e�
u2

b

� �
t

� �
Y0 ruð ÞJ1 rwuð Þ � J0 ruð ÞY1 rwuð Þ

Y 2
1 rwuð Þ þ J 21 rwuð Þ

du

u2

ðB8Þ

[26] The first shifting theorem of the Laplace transforms
states that

L�1 p� af g ¼ eatL�1 pf g ðB9Þ

On the basis of SB(p) = f1(p)g1 (p + a
bwn

2), the Laplace
inversion of SB (p) is

SB r; tð Þ ¼
Z t

0

1 
 e�a
bw

2
nhG1 hð Þdh ðB10Þ

Thus the result of (B10) after the integration is

SB ¼ 2

p

Z 1

0

1� e�
u2

b þa
bw

2
n

� �
t

� �
1

u2 þ aw2
n

� �

 Y0 ruð ÞJ1 rwuð Þ � J0 ruð ÞY1 rwuð Þ

Y 2
1 rwuð Þ þ J12 rwuð Þ du ðB11Þ

Combining (B8) and (B11), the result of time domain
solution (9) can then be obtained.
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