
Computer Networks 50 (2006) 953–965

www.elsevier.com/locate/comnet
An optimization model for Web content adaptation q

Rong-Hong Jan a,*, Ching-Peng Lin a, Maw-Sheng Chern b

a Department of Computer and Information Science, National Chiao Tung University, 1001 Ta Hsueh Road,

Hsinchu 30050, Taiwan, ROC
b Department of Industrial Engineering and Engineering Management, National Tsing Hua University,

Hsinchu 30043, Taiwan, ROC

Received 18 December 2003; received in revised form 7 June 2005; accepted 16 June 2005
Available online 8 August 2005

Responsible Editor R. Boutaba
Abstract

This paper considers Web content adaptation with a bandwidth constraint for server-based adaptive Web systems.
The problem can be stated as follows: Given a Web page P consisting of n component items d1, d2, . . . ,dn and each of
the component items di having Ji versions di1 ; di2 ; . . . ; diJi

, for each component item di select one of its versions to com-
pose the Web page such that the fidelity function is maximized subject to the bandwidth constraint. We formulate this
problem as a linear multi-choice knapsack problem (LMCKP). This paper transforms the LMCKP into a knapsack
problem (KP) and then presents a dynamic programming method to solve the KP. A numerical example illustrates this
method and shows its effectiveness.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Content transcoding; Knapsack problem; Dynamic programming
1389-1286/$ - see front matter � 2005 Elsevier B.V. All rights reserv
doi:10.1016/j.comnet.2005.06.006

q This research was supported in part by the Communications
Software Technology Project of Institute for Information
Industry and in part by the National Science Council, Taiwan,
ROC, under grant NSC 93-2219-E-009-002 and NSC 93-2752-
E-009-005-PAE.

* Corresponding author. Tel.: +886 3 573 1637; fax: +886 3
572 1490.

E-mail address: rhjan@cis.nctu.edu.tw (R.-H. Jan).
1. Introduction

Over the past decade, Internet use has exploded
with people gaining rich information from the
World Wide Web (WWW). With traditional
wired-line Internet, users can only access the Inter-
net in fixed places. Recently, however, due to the
technology explosion in wireless communication
and portable communication devices, e.g., cellular
phones, personal digital assistants, and pagers, it
ed.

mailto:rhjan@cis.nctu.edu.tw

954 R.-H. Jan et al. / Computer Networks 50 (2006) 953–965
has become possible for people to connect to the
Internet and remain on-line while roaming.

However, these portable communication de-
vices are very different from the typical personal
computers (PC). They vary widely in their screen
size, resolution, color depth, computing power,
and memory. From notebook PCs to cellular
phones, the diversity of these devices makes it dif-
ficult and expensive to offer contents separately for
each type of device. Many generic WWW servers
lack the ability to adapt to the greatly varying
bandwidths or to the heterogeneity of client de-
vices. Therefore, the technologies that adapt the
Web content to diverse portable communication
devices will become very important in the future.

Many content adaptation technologies have
been proposed for the WWW [1–10]. These adapta-
tion methods can be divided into three categories:
client-based, proxy-based and server-based adapta-
tions. In client-based adaptations [7], the client
transforms the original Web pages to the proper
presentation according to its capability. However,
this method does not work well for mobile devices
because mobile devices have lower computing
power. In proxy-based adaptations [4,8,9], the
proxy intercepts the requested Web pages, per-
forms the adaptation, and then sends the trans-
formed content to the client. But this method
requires huge calculations when transforming
Fig. 1. An adaptive Web
multi-media data. In contract, server-based adap-
tations [1,5,10] offer key advantages. Specifically,
the server constructs Web pages in accordance to
the users� device capabilities and network band-
widths. Repositing multi-versions of Web pages
on Web servers in advance not only accelerates re-
sponse time but also reduces network traffic.

In this paper, we consider a server-based adap-
tive Web system as shown Fig. 1. Clients can access
the Internet via local area networks (LAN), wire-
less LAN, dial up, or GPRS networks. The Web
server contains a set of multi-media Web pages.
A multi-media Web page is composed of a number
of component items. The clients browse Web pages
by sending http requests with capability and prefer-
ence information [11–13] to the Web server. The
Web server parses the requests to learn the capabil-
ities of the clients and probes the network to deter-
mine the bandwidth of the connection. Based on
clients� capabilities and the bandwidth of the con-
nection, the Web server generate an optimal ver-
sion of the requested Web page and returns it to
the clients.

This paper studies how to generate an optimal
version of a Web page with a bandwidth constraint
for the server-based adaptive Web system. For-
mally, the problem, denoted as a Web content
selection problem, can be stated as follows: Given
a Web page P consisting of n component items
system architecture.

R.-H. Jan et al. / Computer Networks 50 (2006) 953–965 955
d1, d2, . . . ,dn and each of the component items di

having Ji versions di1 ; di2 ; . . . ; diJi
, for each compo-

nent item di select one of the versions to compose
the Web page such that the fidelity function is max-
imized subject to the bandwidth constraint. We for-
mulate the Web content selection problem as a
linear multi-choice knapsack problem (LMCKP)
[14]. This paper transforms the LMCKP into a 0/
1 knapsack problem (KP)[15,16]. The 0/1 KP prob-
lem is a well-known problem in combinatorial opti-
mization. The problem has a large range of
applications: capital budgeting, cargo loading, cut-
ting stock, and so on. It can be solved by dynamic
programming [17,18], branch and bound [19–21],
and greedy methods. This paper presents a dy-
namic programming method for solving the 0/1
KP because dynamic programming can be easily
extended to solve parametric LMCKP problem
with different resources. This avoids having to
solve the problem anew and slashes the computa-
tions needed.
CP

Conte

Content
Source

Cont

Content Analysis
(Text/Image/......)

Reque

Text

v1

v2

v3

.

V

Bandwidth
Estimator

Ob
F

CPI Filter

Content Selection

Content Analysis
and Transcoding

Fig. 2. Server-based content adap
The remainder of this paper is organized as fol-
lows. In Section 2, we formulate the Web content
selection problem as an optimization problem.
Section 3 discusses the solution method, and
experimental results are given in Section 4.
2. Statement of the problem

Consider an adaptive Web server having three
major modules: content analysis and transcoding,
capability and preference information (CPI) filter,
and content selection. The architecture of the
adaptive server is based on [1]. Fig. 2 illustrates
the content adapting process in the adaptive ser-
ver. In the content analysis and transcoding
module, the Web contents are analyzed and trans-
formed into different versions. They are then orga-
nized into a content pyramid. The content is
prepared in XML, which is converted to HTML
prior to delivery. If the server receives an http
I Parser

nt Selection

ent Pyramid

Rendering Module
(Rendering to
HTML/WML)

Image

Text

st with CPI Response

Image

.. ...

v1

v2

v3

n Vm

jective
unction

Transcoding
Modules

tation system architecture.

Fig. 3. An example of multi-media Web page.

1 This paper is not to suggest that there actually exists a
simple function for assigning values to vij. This is because
measuring perceived quality of an image is not easy. Our
optimization model allows one to assign arbitrary value to vij

for Web content adaptation problem, by assuming f(wij).

956 R.-H. Jan et al. / Computer Networks 50 (2006) 953–965
request from a client, the CPI filter module pro-
cesses the capabilities of the request and forwards
the results to the content selection module. The
content selection module selects a set of feasible
versions from the content pyramid and calls on
the bandwidth probing engine [22,23] to find the
bottleneck bandwidth between the client and ser-
ver. With the client�s capabilities and bandwidth
information, the content selection module deter-
mines an appropriate version for each component
item. Based on the appropriate versions, the ren-
dering module tailors a style sheet represented by
XML style-sheet language (SML), generates an
adaptive content and replies to the client.

Note that a multi-media Web page is composed
of a number of component items. For example, the
document shown in Fig. 3 consists of five compo-
nent items. These include four image component
items and one text component item. Usually, the
image component item can be described at multi-
ple resolutions, called versions. The versions can
be transformed from raw data at different resolu-
tions. The different version of the component item
has a different data size. Suppose a multi-media
Web page, P, consists of a number of component
items di where P = d1, d2, . . . ,dn. A component
item di can be computed by transcoding into ver-
sions, di1; di2; . . . ; diJi with different resolutions
and modalities. Let wij be the data size of version
dij.

For each version dij, we can assign a measure of
fidelity, called value vij. Value vij can be defined as
follows:

vij ¼
perceived value of transcoded version dij

perceived value of original di1
;

where 0 6 vij 6 1.
With value vij, we can then compare different

component items that are in different versions.
The perceived value may either be assigned by
the author for each version, or determined by a
function of data size. In this paper, we assume
vij = f(wij) that captures the general trend of fidel-
ity in value. f(wij) may be a concave, convex/non-
concave or discrete function of wij. In this paper,
we define1

f ðwijÞ ¼
ffiffiffiffiffiffi
wij

wi1

r
;

where wi1 is the data size of item di with the origi-
nal version (see Fig. 4). However, the Web content

Fig. 4. An example of versions for an image item.

R.-H. Jan et al. / Computer Networks 50 (2006) 953–965 957
creator can define his own f(wij), say f(wij) = wij/wi1

or f(wij) = lnwij/lnwi1.
Thus, the Web server can be designed to select

the best versions of content items from the Web
document sets to meet the client resources while
delivering the largest total value of fidelity. Usually,
clients do not have the patience to wait for a long
time for a Web page. One may expect to receive a
Client

Waiting
Time

Reques

Probe Bandwidth

Response

Transport We

T0

T1

T2

T3

T4

T5

T6

Fig. 5. Event timing for browsi
Web page in a reasonable waiting time Ttotal, say
15 s. The next problem for the Web server is to
determine the data size W (maximum) for transmis-
sion so as to fall within the expected waiting time.

Fig. 5 illustrates the browsing procedure. The
total waiting time for the user is

T total ¼ T prop þ T probe þ T proc þ T trans þ T prop;
Probe
Bandwidth

Processing
Time

Transporting
Time

t

 of Probe Bandwidth

b Content

Web Server

ng an adaptive Web page.

958 R.-H. Jan et al. / Computer Networks 50 (2006) 953–965
where Ttotal = total time to wait for each Web
page; Tprop = propagation time = T1 � T0 = T5 �
T4; Tprobe = time to probe bandwidth = T3 � T1;
Tproc = time to process Web content selection =
T4 � T3; Ttrans = time to transmit Web content =
T6 � T5.

Here we assume for simplicity that Tprop, Tprobe,
and Tproc are constants. Then data size W = b ·
t = b · (Ttotal�2Tprop � Tprobe � Tproc) where b is
the bottleneck bandwidth and t = Ttrans. For
example, if Ttotal = 15, 2Tprop + Tprobe + Tproc =
4, and b = 10 Kbps, then the Web server will send
a Web page with size not greater than W =
(15 � 4) · 10 = 110 KB.

Therefore, the Web content adaptation can be
mathematically stated as follows.

Problem LMCKP:

Maximize
Xn

i¼1

XJi

j¼1

vijxij ð1Þ

Subject to
Xn

i¼1

XJi

j¼1

wijxij 6 W ; ð2Þ

XJi

j¼1

xij ¼ 1; 1 6 i 6 n; ð3Þ

xij ¼ 0 or 1; for all i; j;

where vij and wij are the measures of fidelity and
data size of version dij, respectively. W is the max-
imum payload. xij is the decision variable where
xij = 1 indicates version j is selected for item i;
otherwise, xij = 0. Constraint (2) ensures that the
size of the Web page is not greater than Web page
W = b · t. Constraint (3) limits our choice for each
item to be one of its versions.

Note that this problem is known as the linear
multiple choice knapsack problem (LMCKP).
We can apply the dynamic programming method
to find the optimal solution for problem LMCKP.
An appropriate content can be determined by solv-
ing the LMCKP problem.
3. The solution method

The LMCKP is a well-known problem. Many
solution methods that have been presented for
solving it. This section transforms the LMCKP
into a 0/1 KP and apply the dynamic program-
ming method to solve the 0/1 KP.

3.1. Transformation of the problem

At first, we define a knapsack problem, which is
equivalent to LMCKP, as follows.

For each i, let

yi1 ¼ xi1;

yi2 ¼ xi1 þ xi2;

� � �
yiJ i�1 ¼ xi1 þ xi2 þ � � � þ xiJ i�1;

yiJ i
¼ xi1 þ xi2 þ � � � þ xiJ i ¼ 1.

Then, we can rewrite the objective function (1) as
in the following:Xn

i¼1

XJi

j¼1

vijxij ¼
Xn

i¼1

vi1yi1þ vi2ðyi2� yi1Þþ � � �

þ viJ i�1ðyiJ i�1�yiJ i�2Þþ viJ iðyiJ i
�yiJ i�1Þ

¼
Xn

i¼1

ðvi1� vi2Þyi1þðvi2� vi3Þyi2þ �� �

þ ðviJ i�1� viJ iÞyiJ i�1þ viJ i yiJ i

¼
Xn

i¼1

XJ i�1

j¼1

ðvij� vijþ1Þyijþ viJ i yiJ i

" #

¼
Xn

i¼1

XJ i�1

j¼1

ðvij� vijþ1Þyijþ
Xn

i¼1

viJ i .

Similarly, the constraint (2) can be rewritten as

Xn

i¼1

XJ i�1

j¼1

ðwij � wijþ1Þyij þ
Xn

i¼1

wiJi 6 W .

Note that
Pn

i¼1viJ i and
Pn

i¼1wiJi are constants. Let
eij = vij � vij+1, dij = wij � wij+1 and W 0 ¼ W �Pn

i¼1wiJi . Then, the problem LMCKP (Eqs. (1)–
(3)) is equivalent to the following KP:

Maximize
Xn

i¼1

XJ i�1

j¼1

eijyij ð4Þ

Subject to
Xn

i¼1

XJ i�1

j¼1

dijyij 6 W 0; ð5Þ

yij ¼ 0 or 1; yi1 6 � � � 6 yiJ i
; 1 6 i 6 n;

1 6 j 6 J i � 1. ð6Þ

R.-H. Jan et al. / Computer Networks 50 (2006) 953–965 959
Note that the above problem can be rewritten
as a precedence constraint 0/1 KP [24,25] as
follows.

Problem KP:

Maximize
Xm

i¼1

pizi ð7Þ

Subject to
Xm

i¼1

dizi 6 M ; ð8Þ

zi ¼ 0 or 1; zh 6 zk; ðh; kÞ 2 Ai;

1 6 i 6 m;

where m ¼
Pn

i¼1

PJ i�1
j¼1 1; M ¼ W 0 and Ai is the pre-

cedence constraint as described in (6).
3.2. Dynamic programming method

The precedence constraint 0/1 knapsack prob-
lem can be solved by dynamic programming
method as that for the ordinary 0/1 knapsack
problem with slight modification. We may make
a decision on z1 first, then on z2, then on z3, etc.
The solution to the 0/1 KP problem can be viewed
as the result of a sequence of decisions. An optimal
sequence of z1, z2, . . . ,zk will maximize the objec-
tive function and satisfy the constraint. Moreover,
we can apply dynamic programming to solve the
parametric precedence constraint 0/1 KP problem
with right-hand side M 2 [a, b].

Let KP(j, S) denote the problem

Maximize
Xj

i¼1

pizi

Subject to
Xj

i¼1

dizi 6 S;

zi ¼ 0 or 1; zh 6 zk; ðh; kÞ 2 Ai;

1 6 i 6 j;

where 1 6 j 6 n and 0 6 S 6M. Note that
KP(j, S) is a sub-problem of Problem KP with
variables z1, z2, . . . ,zj and right-hand side S. Prob-
lem KP is KP(n, M). Let fk(s) be the value of an
optimal solution to KP(k, s). From the principle
of optimality it follows that:
fkðsÞ ¼ maxffk�1ðsÞ; fk�1ðs� dkÞ
þ pk; subject to precedence constraintsg.

ð9Þ
Clearly, fn(M) is the value of an optimal solu-

tion to KP(n, M). fn(M) can be solved by begin-
ning with f0(s) = 0 for all s > 0 and f0(s) = �1,
s < 0. Then f1, f2, . . . , fn can be successively com-
puted using Eq. (9). Notice that fk(s) is an ascend-
ing step function; i.e., there are a finite number of
s, s1 < s2 < � � � < st, such that fk(s1) 6 fk(s2) 6
� � � 6 fk(st). For the parametric precedence con-
straint 0/1 KP problem, we solved the problem
KP(n, M) for each M 2 [a, b] at the last stage.

3.3. A numerical example

Consider an example of a Web page with three
image items (i.e., P = d1, d2, d3). Each item has
three versions. The right-hand side W 2 [6.7,
30.8]. The data sizes wij and the values vij, i, j =
1,2,3, are

½wij� ¼
9:0 4:4 1:3

10:8 4:6 1:0

11:0 5:4 1:3

2
64

3
75;

½vij� ¼
ffiffiffiffiffiffi
wij

wi1

r� �
¼

1:0 0:7 0:4

1:0 0:7 0:3

1:0 0:7 0:3

2
64

3
75.

The content selection problem can be formulated
as follows:

Maximize v0 ¼
X3

i¼1

X3

j¼1

vijxij

Subject to
X3

i¼1

X3

j¼1

wijxij 6 W ; W 2 ½6:7; 30:8�;

X3

j¼1

xij ¼ 1; 1 6 i 6 3;

xij ¼ 0 or 1; 1 6 i 6 3; 1 6 j 6 3.
3.3.1. Transformation of the problem

For i = 1,2,3, let yi1 = xi1, yi2 = xi1 + xi2, and
yi3 = xi1 + xi2 + xi3 = 1. Then, the problem can
be transformed as follows:

960 R.-H. Jan et al. / Computer Networks 50 (2006) 953–965
Maximize 0:3y11 þ 0:3y12 þ 0:3y21 þ 0:4y22

þ 0:3y31 þ 0:4y32 þ 1

Subject to 4:6y11 þ 3:1y12 þ 6:2y21 þ 3:6y22

þ 5:6y31 þ 4:1y32 þ 3:6 6 W ;

W 2 ½6:7; 30:8�;
y11 6 y12; y21 6 y22; y31 6 y32;

y11; y12; y21; y22; y31; y32 ¼ 0 or 1.

Let z1 = y11, z2 = y12, z3 = y21, z4 = y22, z5 = y31,
z6 = y32. Clearly, the above problem is equivalent
to the following problem, KP(6, M), M 2 [3.1,27.2]:

Maximize 0:3z1 þ 0:3z2 þ 0:3z3 þ 0:4z4

þ 0:3z5 þ 0:4z6

Subject to 4:6z1 þ 3:1z2 þ 6:2z3 þ 3:6z4 þ 5:6z5

þ 4:1z6 6 M ; M 2 ½3:1; 27:2�;
z1 6 z2; z3 6 z4; z5 6 z6;

zi ¼ 0 or 1; i ¼ 1; . . . ; 6.
0 27.2
0

0.3

2

(a)

0 13.9 27.2
0

0.3

0.6

0.9

2

(c)

6.70 16.9 23.127.2
0

0.7

1

1.3

1.6

2

(e)

s

s

s

4.6
5.6

f1(s)

f3(s)

f5(s)

f

f

f

(

3.1
8.7

7.7
(

(
(

11.3
12.3

0.4
0.3

3.1
3.6

(
(

(
(

(
(

Fig. 6. Functions of f1(s), f2(s),
3.3.2. Dynamic programming method

Let fk(s) be the value of an optimal solution to
KP(k, s) where s 2 [0, 27.2] and i = 1, . . . , 6.
Clearly, f6(M) is the value of an optimal solution
to KP(6, M). Applying Eq. (9), f6(M), M 2 [a, b]
can be solved by starting with f0(s) = 0 for all
s > 0. Then f1(s), f2(s), . . . , f6(s), s 2 [0,27.2] can be
successively found. For example

f4ðsÞ ¼ max
z4¼0;1

0:4þ f3ðs� 3:6Þ; z4 ¼ 1; s P 3:6;

f2ðs� 3:6Þ; z4 ¼ 0.

�

Fig. 6 graphically shows f1(s), f2(s), . . . , f5(s), s 2
[0, 27.2], and f6(s), s 2 [3.1,27.2]. Thus, the optimal
values and the optimal solutions for M 2 [3.1,27.2]
is summarized in Table 1.

For example, the optimal solution to
KP(6, 27.2) is f6(27.2) = 2.0. The optimal solution
of KP(6, 27.2) is: (z1, z2, z3, z4, z5, z6) = (y11,
y12, y21, y22, y31, y32) = (1,1,1,1,1,1). Thus, the
0 27.2
0

0.3

0.6

2

(b)

0 6.7 17.5 27.2
0

0.7

1

1.3

2

(d)

0 10.8 21 27.2
0

1.1

1.4

1.7

2

(f)

s

s

s

2(s)

4(s)

6(s)

8.7
7.7

(
3.1

(

12.3
3.1

3.6

0.4
0.3

11.3

(
(

(

(
(

0.8
0.7

0.4
0.3

3.1
3.6

15.4
16.47.7

6.7

(

(
(

(

(

(

(

(

•

f3(s), f4(s), f5(s), and f6(s).

Table 1
Summary of the optimal solutions

Right-hand side f6(M) (y11, y12, y21, y22, y31, y32) v0 (x11, x12, x13, x21, x22, x23, x31, x32, x33)

M 2 [3.1,3.6) 0.3 (0,1,0,0,0,0) 1.3 (0,1,0,0,0,1,0,0,1)
M 2 [3.6,6.7) 0.4 (0,0,0,1,0,0) 1.4 (0,0,1,0,1,0,0,0,1)
M 2 [6.7,7.7) 0.7 (0,1,0,1,0,0) 1.7 (0,1,0,0,1,0,0,0,1)
M 2 [7.7,10.8) 0.8 (0,0,0,1,0,1) 1.8 (0,0,1,0,1,0,0,0,1)
M 2 [10.8,15.4) 1.1 (0,1,0,1,0,1) 2.1 (0,1,0,0,1,0,0,1,0)
M 2 [15.4,21.0) 1.4 (1,1,0,1,0,1) 2.4 (1,0,0,0,1,0,0,1,0)
M 2 [21.0,27.2) 1.7 (1,1,0,1,1,1) 2.7 (1,0,0,0,1,0,1,0,0)
M = 27.2 2 (1,1,1,1,1,1) 3 (1,0,0,1,0,0,1,0,0)

R.-H. Jan et al. / Computer Networks 50 (2006) 953–965 961
optimal solution for the content selection problem
is

ðx11; x12; x13; x21; x22; x23; x31; x32; x33Þ
¼ ð1; 0; 0; 1; 0; 0; 1; 0; 0Þ

and the optimal value is 3.0. That is, version 1 is
selected for each item.

If another request for this page arrives, the
adaptive server finds b = 16 Kbps and t = 5 s for
this connection. Then, the total data size W that
the adaptive server may return to the client is

W ¼ 16� 10

8
¼ 20 Kbps.

Note that the adaptive server does not need to
solve the problem KP(6,20 � 3.6) anew. The opti-
mal solution for KP(6,16.4) can be found in Table
1. Since M = 16.4, we look in Table 1 down the
M 2 [15.4, 21.0) row. We find that the optimal
solution for KP(6,16.4) is (y11, y12, y21, y22, y31,
y32) = (1, 1,0,1,0,1), and the optimal solution for
the content selection problem is

ðx11; x12; x13; x21; x22; x23; x31; x32; x33Þ
¼ ð1; 0; 0; 0; 1; 0; 0; 1; 0Þ.

That is, the returned Web page is compose of ver-
sion 1 for item 1 and version 2 for items 2 and 3.
4. Experimental results

In order to test our optimization model for Web
content adaptation, we built three Web servers:
two adaptive and one non-adaptive servers. Both
adaptive Web servers consisted of three major
modules (content analysis and transcoding, CPI
filter, and content selection) as shown in Fig. 2.
The difference between them is in the content selec-
tion module. One, denoted as Sever 1, found opti-
mal solutions of parametric LMCKP by dynamic
programming method in advance after the Web
page was created. When the request arrives, it just
looks up the optimal solutions table. The other,
denoted as Sever 2, selects contents by using gree-
dy algorithm [14] to solve LMCKP whenever the
request arrives. The non-adaptive server is denoted
as Sever 3. A Linux operating system and an
Apache server were selected as developing plat-
form for three servers. Apache is a well-known,
open source Web server that performs well. The
machines for the three servers are the desktop
computers with AMD K7-850 and 256 MB mem-
ory. The test Web page, a sub-page of the Univer-
sity�s Web pages, consists of seven component
items with 140 KB data size. These include six
image component items and one text item. Each
image item has six versions.

The Servers 1, 2 and 3 were tested by two
clients. The clients� browser was modified from
Internet Explorer (IE) so that the users can specify
the expected time, CPI data, and where the CPI
profiles are by URLs (see Fig. 7). Client 1 was a
notebook PC with Intel P3-650 and 256MB mem-
ory, using PPP-dialup 56 Kbps (campus dialup
service) connecting to the campus Internet. The
expected waiting time was set to 15 s when brows-
ing the Servers 1 and 2. For the measurement, the
system clock of the three servers and two clients
was synchronized using the Network Time Proto-
col (NTP). Client 1 browsed the Web page 10
times. We use the t distribution with 9 degrees of

Fig. 7. An example of CC/PP browser.

962 R.-H. Jan et al. / Computer Networks 50 (2006) 953–965
freedom and a 95% confidence interval to estimate
the delays. The average delays for Client 1 are
shown in Table 2a. Table 2b shows the percentage
of measured delays out of the total delay. The
other client, Client 2 was a Compaq pocket PC
using IEEE 802.11b wireless LAN connecting to
campus Internet. The results are summarized in
Tables 3a and 3b. Our experiments use campus
Table 2a
Results for notebook PC with 56K dialup

2 · Tprop (ms) Tprobe (ms) Tproc (ms)

Server 1 179.5 ± 2.0 6000.1 ± 2.0 <0.001
Server 2 173.5 ± 2.8 6123.3 ± 1.8 4.8 ± 0.3
Server 3 180.2 ± 2.0 – –

Table 2b
Percentage of the measured time out of Ttotal for Table 2a

2 · Tprop/Ttotal (%) Tprobe/Ttotal (%

Server 1 1.14 37.99
Server 2 1.05 37.24
Server 3 0.39 0.00
Internet as network testbed. There are many fac-
tors, such as irrelevant traffic in the network, buf-
fer sizes, etc., that may influence (or pollute) the
results. Tables 2 and 3 are only intended to offer
the reader some realistic feeling about the respond
time and how the system works. From the theoret-
ical point of view, the time complexity for Server 1
to pick up an optimal solution from the optimal
Ttrans (ms) Ttotal (ms) W (KB)

9614.3 ± 20.2 15794 ± 20 28.9
10141.5 ± 23.4 16443 ± 22 30.0
46205.4 ± 116.9 46386 ± 117 140

) Tproc/Ttotal (%) Ttrans/Ttotal (%)

0.00 60.87
0.03 61.68
0.00 99.61

Table 3a
Results for pocket PC with 802.11b

2 · Tprop (ms) Tprobe (ms) Tproc (ms) Ttrans (ms) Ttotal (ms) W (KB)

Server 1 5.8 ± 0.5 2028.3 ± 23.6 <0.001 118.8 ± 1.9 2153 ± 24 28.9
Server 2 6.5 ± 0.4 2212.6 ± 16.7 4.4 ± 0.4 109.7 ± 1.8 2333 ± 17 28.9
Server 3 6.4 ± 0.4 – – 641.9 ± 6.8 648 ± 7 140

Table 3b
Percentage of the measured time out of Ttotal for Table 3a

2 · Tprop/Ttotal (%) Tprobe/Ttotal (%) Tproc/Ttotal (%) Ttrans/Ttotal (%)

Server 1 0.27 94.21 0.00 5.52
Server 2 0.28 94.83 0.19 4.70
Server 3 0.99 0.00 0.00 99.06

R.-H. Jan et al. / Computer Networks 50 (2006) 953–965 963
solutions table is O(1) while the time complexity of
the greedy method for Server 2 is O(n logn) where
n is the number of variables.

From Table 2a, note that the total delays for
browsing the Servers 1 and 2 were 15794 ±
20 ms and 16443 ± 22 ms, while for browsing the
Server 3 it was 46386 ± 117 ms. The adaptive serv-
ers show their benefits. The total delays of Servers
1 and 2 are controlled and close to the expected
waiting time 15 s. For processing time Tproc, Server
1 performs better than Server 2 because Server 1
finds optimal solutions by dynamic programming
method in advance and looks up the optimal solu-
tions table when the request arrives. The advan-
tage of dynamic programming method is that it
can be easily applied to solve the parametric
LMCKP with a set of right-hand sides.

In Tables 2a and 3a, the values of probing delay
Tprobe are very large. This is because the probing
method (‘‘pathchar’’ algorithm [23]) sends a few
dozen packets with varying sizes, measures their
round trip times (RTTs), and then finds the avail-
able bandwidth by correlating the RTTs with
packet sizes. The RTT depends on traffic load.
Thus, the probing delay Tprobe varies as traffic load
varies. The traffic load in our campus Internet var-
ies dynamically from one instant to another. Con-
sequently, the mean probing time may be different
for the same mobile device in the case of Server 1
and Server 2.

Note that if the access network has a higher
data rate, the value of Tprobe dominates the value
of Ttrans (see Table 3b). That is, the overhead of
bandwidth estimation is too large, thus negating
the advantage of shorter transmission times. In
fact, instead of measuring bandwidth, we can just
use predefined classes of data rate r, (say dialup
54 Kbps, T1 1.544 Mbps, or WiFi 11 Mbps) and
set available bandwidth b = a · r, 0 < a < 1. Note
that data rate r can be obtained from the CPI pro-
file. By this way, the overhead of bandwidth esti-
mation is eliminated and thus the adaptive Web
server can give a smaller latency.
5. Conclusion

This paper formulates a Web content adapta-
tion problem as a linear multi-choice knapsack
problem and presents a dynamic programming
method to solve it. We think that the dynamic pro-
gramming is very suitable for solving this kind of
problems because dynamic programming can be
easily extended to solve parametric LMCKP prob-
lem with different resources. This avoids having to
solve the problem anew and slashes the computa-
tions needed.

In practical implementation, we can analyze
and transform the component items of Web page
into different versions when the Web page is cre-
ated. Then, dynamic programming is applied to
solve a parametric LMCKP problem and a bind-
ing table which binds the optimal solutions to dif-
ferent resources can be created. If a request for this

964 R.-H. Jan et al. / Computer Networks 50 (2006) 953–965
page arrives, we just look up the binding table to
find the optimal versions of the component items
for the request.

In this paper, we assumed that the content items
are independent of each other. However, this
assumption may not hold in some cases. Consider
a news story page. If the story has to be discarded
due to space limitations, then the pictures for the
story has also to be discarded. For such cases,
the content creator has to define the dependencies
among the items of the Web page. Then, our opti-
mization model can be extended by adding the
constraint

PJi
j¼1xij 6

PJk
j¼1xkj to Problem LMCKP

if item di is dependent on item dk.
There also exists coarse-grained approaches

for content adaptation. The coarse-grained ap-
proaches format the Web content for several
well-known kinds of clients to suit everyone. How-
ever, we think delivering a customized content is
worth for content providers. This paper presents
a fine-grained adaptation that selects the best con-
tent representation to match the resources and
capabilities of individual clients.

Looking ahead, integrating both adaptive
Web server and transcoding proxy server for wire-
less Internet access might be interesting future
work.
References

[1] R. Mohan, J.R. Smith, C.S. Li, Adapting multimedia
Internet content for universal access, IEEE Transactions
on Multimedia (March) (1999) 104–114.

[2] V. Cardellini, P.S. Yu, Y.W. Huang, Collaborative proxy
system for distributed Web content transcoding, in: Pro-
ceedings of the 9th International ACM Conference on
Information and Knowledge Management, November
2000, pp. 520–527.

[3] R. Han, V. Perret, M. Naghshineh, WebSplitter: a unified
XML framework for multi-device collaborative Web
browsing, in: ACM Conference on Computer Supported
Cooperative Work (CSCW), December 2000.

[4] P.A. Singh, A. Trivedi, K. Ramamritham, PTC: proxies
that transcode and cache in heterogeneous Web client
environments, Web Information Systems Engineering
(2002) 11–20.

[5] B. Knutsson, H. Lu, J. Mogul, Architecture and pragmat-
ics of server-directed transcoding, in: Proceedings of the
7th International Web Content Caching and Distribution
Workshop, August 2002, pp. 229–242.
[6] A. Fox, S.D. Grebble, Y. Chwathe, E.A. Brewer, Adapting
to network and client variation using infrastructural
proxies: lessons and perspectives, IEEE Personal Commu-
nications (August) (1998) 10–19.

[7] B. Noble, System support for mobile adaptive applications,
IEEE Personal Communications (February) (2000) 44–49.

[8] H. Bharadvaj, A. Joshi, S. Auephanwiriyakul, An active
transcoding proxy to support mobile Web access, in:
Proceedings of IEEE Symposium on Reliable Distributed
System, October 1998, pp. 118–123.

[9] S. Acharya, H.F. Korth, V. Poosala, Systematic multires-
olution and its application to the World Wide Web, IEEE
Data Engineering (1999) 40–49.

[10] F. Kitayama, S. Hirose, G. Kondoh, Design of a frame-
work for dynamic content adaptation to Web-enabled
terminals and enterprise applications, in: IEEE Software
Engineering Conference, 1999, pp. 72–79.

[11] F. Reynolds, J. Hjelm, S. Dawkins, S. Singhal, Composite
Capability/Preference Profiles (CC/PP): A User Side
Framework for Content Negotiation, W3C note, 27 July
1999.

[12] H. Ohto, J. Hjelm, CC/PP Exchange Protocol Based on
HTTP Extension Framework, W3C note, 24 June 1999.

[13] W3C, The Resource Description Framework. Available
from: <http://www.w3.org/RDF/>.

[14] E. Zemel, The linear multiple choice knapsack problem,
Operations Research 28 (November) (1980) 1412–1423.

[15] E. Balas, E. Zemel, An algorithm for large zero–one
knapsack problems, Operation Research 28 (1980) 1130–
1154.

[16] S. Martello, P. Toth, Knapsack Problems: Algorithms
and Computer Implementations, Wiley, Chichester, UK,
1990.

[17] R.E. Bellman, Dynamic Programming, Princeton Univer-
sity Press, Princeton, NJ, 1957.

[18] P. Toth, Dynamic programming algorithms for the zero–
one knapsack problems, Computing 25 (1980) 29–45.

[19] P.J. Kolesar, A branch and bound algorithm for the
knapsack problem, Management Science 13 (1967) 723–
735.

[20] E. Horowitz, S. Sahni, Computing partitions with appli-
cations to the knapsack problem, Journal of ACM 21
(1974) 277–292.

[21] S. Martello, P. Toth, An upper bound for zero–one
knapsack problem and a branch and bound algorithm,
European Journal of Operation Research 1 (1977) 169–
175.

[22] K. Lai, M. Baker, Measuring bandwidth, in: Proceedings
of INFOCOM�99, vol. 1, IEEE Computer and Communi-
cations Societies, 1999, pp. 235–245.

[23] V. Jacobson, Pathchar, 1997. Available from: <ftp://
ftp.ee.lbl.gov/pathchar/>.

[24] D.S. Johnson, K.A. Niemi, On knapsacks, partitions, and
a new dynamic programming technique for tree, Mathe-
matics of Operations Research 8 (1983) 1–14.

[25] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems,
Springer-Verlag, Berlin, 2004.

http://www.w3.org/RDF/

r Networks 50 (2006) 953–965 965
Rong-Hong Jan received the B.S. and
M.S. degrees in Industrial Engineering,

and the Ph.D. degree in Computer
Science from National Tsing Hua
University, Taiwan, in 1979, 1983, and
1987, respectively. He joined the
Department of Computer and Infor-
mation Science, National Chiao Tung
University, in 1987, where he is cur-
rently a Professor. During 1991–1992,
he was a Visiting Associate Professor

in the Department of Computer Science, University of Mary-

R.-H. Jan et al. / Compute
land, College Park, MD. His research interests include wireless
networks, mobile computing, distributed systems, network
reliability, and operations research.

Ching-Peng Lin received the B.S.
degree in Computer Science from Fu
Jen Catholic University in 2000 and
M.S. degree in Computer and Infor-
mation Science from National Chiao
Tung University, Taiwan, in 2002. His
research interests include wireless net-
works, mobile computing and wireless
Internet.
Maw-Sheng Chern received a B.S.
degree and an M.S. degree in Mathe-
matics from National Taiwan Normal
University and National Tsing Hua
University respectively, an M. Math. in
Combinatorics and Optimization and a
Ph.D. in Management Sciences from
the University of Waterloo. He joined
the Department of Industrial Engi-
neering and Engineering Management,
National Tsing Hua University in 1980

and was the department chair from 1991 to 1994. Dr. Chern

served as the program director for Industrial Engineering and
Management Division, National Science Council, ROC from
1995 to 1998. He also served on the editorial board of IIE
Transactions on Logistics and Scheduling (1997–200), Inter-
national Journal of Industrial Engineering—Theory, Applica-
tions and Practice (1994–1996), Chiao-Ta Management Review,
and Journal of Management & Systems. His current research
interests include combinatorial optimization, production
scheduling, and network programming.

	An optimization model for Web content adaptation
	Introduction
	Statement of the problem
	The solution method
	Transformation of the problem
	Dynamic programming method
	A numerical example
	Transformation of the problem
	Dynamic programming method

	Experimental results
	Conclusion
	References

