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Abstract

This article investigates the existence/nonexistence of smooth solutions of nonlinear vibration
equations which arise from the one-dimensional motion of polytropic gas without external forces
contained in a finite interval. For any fixed arbitrarily long time, we show that there are smooth
small amplitude solutions of the nonlinear equations for which the periodic solutions of the
linearized equation are the first-order approximations. On the other hand, when the nonlinearity is
strictly convex or concave, there exists no time-periodic solutions which are twice continuously
differentiable. An example of possible singularities which occur at the second derivatives is
illustrated. We also give another kind of exact solutions with singularity such that shocks occur
after a finite time. Furthermore, we get an estimate of the life span of smooth solutions to the
initial-boundary value problem.
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1. Introduction

The purpose of this work is to investigate the existence/nonexistence of smooth
solutions of nonlinear vibration equations. During the study on periodic solutions to
the one-dimensional compressible Euler equation under constant gravity (cf. [5]), we
were confronted with some difficulties in analyzing the following equation:
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PG(yx)

)
x

= 0 for 0 < x < 1

with

G(v) = 1 − (1 + v)−�, � = (1 − x)
1

�−1 and P = (1 − x)
�

�−1 .

Here � is density, P is pressure and � is a constant such that 1 < ��2. In order to
clarify the difficulties, we have studied the simplified equation

ytt − (G(yx))x = 0 for 0 < x < 1 (1.1)

with the following boundary conditions:

y(t, 0) = y(t, 1) = 0. (1.2)

Unfortunately, it is very difficult to study the original equation
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x

= 0,

with which we are confronted during the study of gas dynamics under the gravitational
force, because of the singularity at x = 1. However, the equations of the form (1.1)
are worth studying as equations of vibrating string or other physical models. Section
2 is devoted to derivation of (1.1) and (1.2) from the compressible Euler equations
which governs the one-dimensional motion of polytropic gas without external forces
contained in a finite interval.

In this article, keeping in mind the case in which G(v) = 1 − (1 + v)−�, we assume

(A)

{
G(v) is real analytic in |v| < � with
G(0) = 0, G′(0) = � > 0 and G′(v) > 0 for |v| < �.

The most interesting problem is the existence/nonexistence of time periodic solutions
of (1.1) and (1.2), since the corresponding linearized problem

y1,t t − �y1,xx = 0, y1(t, 0) = y1(t, 1) = 0
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admits the following smooth time-periodic solution:

y1 =
N∑

n=0

an sin(n�
√

�(t + �n)) sin n�x, (1.3)

where an and �n are real constants, which is a linear combination of a finite number
of simple oscillations. However, as claimed in Keller–Ting [7], there are no hope to
have nontrivial small amplitude time-periodic solutions of (1.1) and (1.2) which are
twice continuously differentiable when G is strictly convex or concave. For the sake
of self-containedness, we will give a proof of this fact in Section 4.

But as a striking fact we should note that Greenberg [2] constructed smooth global
solutions of (1.1) under the boundary conditions:

y(t, 0) = yx(t, 1) = 0,

provided that G(v) = 1 − (1 + v)−1/3. Moreover, Greenberg constructed time-periodic
solutions of (1.1) for G of the form

G(v) = v3

⎛⎝1 +
∑
k �1

akv
2k

⎞⎠ .

After this work, there appeared other works: Greenberg and Rascle [3], Greenberg and
Peszek [4] and Peszek [9], which constructed time periodic solutions for particular
cases of G. However, in this paper we cannot give similar arguments for G(v) =
1 − (1 + v)−�. Instead of constructing time-periodic or time-global solutions of (1.1)
and (1.2), we would like to show that the time-periodic solutions of the linearized
equation give a good approximation of solutions to the nonlinear equations (1.1) and
(1.2). Roughly speaking, during arbitrarily long time there are small amplitude solutions
of the nonlinear equations for which the periodic solutions y1 of the linearized equation
are the first-order approximations. This result is stated and proved in Section 3.

There are no nontrivial uniformly bounded C2-solutions of (1.1) and (1.2). Hence,
we guess that the singularities of the second derivatives of y will develop even if we
start from smooth and small initial data. In Section 5, we construct a concrete example
of solutions with such singularities. We also give another kind of exact solutions with
singularity such that shocks occur after a finite time. The estimate of life span of
smooth solutions to the initial-boundary value problem is investigated in Section 6.

2. Derivation of the equation

We consider the one-dimensional motions of a polytropic gas without external forces
governed by the compressible Euler equations

�t + (�u)x = 0 and (�u)t + (�u2 + P)x = 0 (2.1)
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on a fixed finite interval 0 < x < L with the following boundary conditions

�u|x=0 = �u|x=L = 0. (2.2)

We assume P = A��, where A and � are positive constants such that 1 < ��2.
Equilibria are constant density: � = �̄ = constant > 0 and u = 0.

Let us introduce the Lagrangean coordinate

m =
∫ x

0
� dx.

We change the independent variables from (t, x) to (�, m), where � = t . Then

�
�t

= �
��

− �u
�

�m
,

�
�x

= �
�

�m
.

The equation

�t + (�u)x = 0

is transformed to

�� + �2um = 0,

and the equation

(�u)t + (�u2 + P)x = 0

is transformed to

u� + Pm = 0,

divided by �. On the other hand, we have

(
t� tm

x� xm

)
=
(

�t �x

mt mx

)−1

=
(

1 0

−�u �

)−1

=
(

1 0

u 1
�

)
,

that is,

u = �x

��
,

1

�
= �x

�m
.
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Thus we get the single equation

x�� + (A(xm)−�)m = 0, (2.3)

where x = x(�, m) now is the unknown function. The equilibrium is

x = x̄(m) = L

M
m with M =

∫ L

0
�̄ dx = �̄L.

We note that

M =
∫ L

0
�(t, x) dx

remains to be constant along solutions by virtue of the boundary conditions.
Now consider the perturbation

x(�, m) = x̄(m) + y = L

M
m + y.

Of course x(�, 0) = 0, x(�, M) = L imply the boundary conditions

y|m=0 = y|m=M = 0.

The equation for y = y(�, m) is

y�� − A

((
L

M

)−�

−
(

L

M
+ ym

)−�
)

m

= 0.

Taking x̄ as the independent variable and keeping in mind that �
�m

= L
M

�
�x̄

, we can
write

y�� − A

(
L

M

)1−� (
1 − (1 + yx̄)

−�)
x̄

= 0

for 0 < x̄ < L. Rewriting � by t and x̄ by x, Eq. (2.3) turns out to be

ytt − A

(
L

M

)1−� (
1 − (1 + yx)

−�)
x
= 0, 0 < x < L, (2.4)
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and the boundary conditions are

y|x=0 = y|x=L = 0. (2.5)

For the normalization we take the following change of variables:

x = Lx̃, y = Lỹ and t = T t̃.

Then Eq. (2.4) can be written as

L

T 2 ỹt̃ t̃ − A

L

(
L

M

)1−� (
1 − (1 + ỹx̃ )

−�)
x̃

= 0, 0 < x̃ < 1, (2.6)

since �
�x

= 1
L

�
�x̃

and yx = ỹx̃ . Take

T 2 = L2A−1
( L

M

)�−1

and rewrite t̃ , x̃, ỹ as t, x, y, then (2.5) and (2.6) can be written as the form of (1.1)
and (1.2) with G(v) = 1 − (1 + v)−�.

3. Long-time existence of smooth solutions

In this section, we consider the existence of C2-solutions of Eqs. (1.1) and (1.2).
Let y1(t, x) be a fixed smooth periodic solution of the linearized equation of the form
(1.3). Applying the iteration method, we have the following result.

Theorem 1. Assume G satisfy (A). For any positive real number T , there exists ε∗ > 0
and a positive constant C depending upon G, the supremum norms of the derivatives
of y1 up to the 4th orders and T such that for any 0 < ε�ε∗ there is a C2-solution
y(t, x) of (1.1) and (1.2) for 0� t �T such that

|y(t, x) − εy1(t, x)|�Cε2 for 0� t �T and 0�x�1.

Before proving the above theorem, we first consider the problem by extending the
solutions as

y(t, x) = −y(t, −x) for − 1 < x < 0,

y(t, 2n + x) = y(t, x) for n ∈ Z. (3.1)
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Put

u1 = y1,t , v1 = y1,x, yt = εu1 + U and yx = εv1 + V. (3.2)

then Eq. (1.1) turns out to be the following system:

{
Vt − Ux = 0,

Ut − G′(εv1 + V )Vx = (G′(εv1 + V ) − �)εv1,x .
(3.3)

To diagonalize the above system, we introduce

W = U + Ĝ(εv1 + V ) − Ĝ(εv1) and Z = U − Ĝ(εv1 + V ) + Ĝ(εv1),

where Ĝ(v) = ∫ v

0

√
G′(�) d�. Then (3.3) can be represented as

{
Wt − �(εv1 + V )Wx = L−(V ),

Zt + �(εv1 + V )Zx = L+(V )
(3.4)

with �(v) = √
G′(v) and

L±(V ) = (−� + �(εv1 + V )�(εv1)
)
εv1,x ± (

�(εv1) − �(εv1 + V )
)
εu1,x . (3.5)

We note that �(v) is positive and analytic in |v| < � with �(0) = √
�. Furthermore, it

is obvious that

W(t, x) = −Z(t, −x) and Z(t, x) = −W(t, −x) for − 1 < x < 0,

and they should be periodic in x. Our purpose is to solve system (3.4) under the
following initial conditions:

W(0, x) = Z(0, x) = 0. (3.6)

Here we take these initial conditions for the sake of simplicity. This means that
we want to construct solutions y such that y(0, x) = εy1(0, x). Generally we can
take arbitrary initial data W(0, x) = W 0(x), Z(0, x) = Z0(x) such that W 0, Z0 are
sufficiently smooth and small in order ε2 with the derivatives and W 0(x) = −Z0(−x)

are 2n-periodic, and
∫ 1

0 V 0(x) dx = 0. We do not perform such a generalization, since
there are no essentially new difficulties.
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To solve Eqs. (3.4) and (3.6) by using the iteration method, we consider the following
systems: {

W̃t − �(εv1 + V )W̃x = L−(V ),

Z̃t + �(εv1 + V )Z̃x = L+(V ),
(3.7)

{
W̃ = Ũ + Ĝ(εv1 + Ṽ ) − Ĝ(εv1),

Z̃ = Ũ − Ĝ(εv1 + Ṽ ) + Ĝ(εv1).
(3.8)

For each given V, the procedure of iteration method is to solve W̃ and Z̃ of (3.7) first
and then solve Ũ and Ṽ of (3.8) and continue the same process. Some properties for
the solutions Ũ and Ṽ of (3.8) are illustrated in the following lemmas.

Lemma 3.1. There exists M0 > 0 and ε0 > 0 such that if 0 < ε�ε0 and ‖V ‖∞ �ε2M0
then

‖Ũ‖∞ �ε2M0, ‖Ṽ ‖∞ �ε2M0 and ε‖v1‖∞ + ε2M0 ��/2.

Here ‖f ‖∞ = sup{|f (t, x)| | 0� t �T , x ∈ R}.

Proof. Since

W̃ + Z̃ = 2Ũ , (3.9)

W̃ − Z̃ = 2(Ĝ(εv1 + Ṽ ) − Ĝ(εv1)), (3.10)

we have

‖Ũ‖∞ = 1
2‖W̃ + Z̃‖∞ and ‖Ṽ ‖∞ �C‖W̃ − Z̃‖∞. (3.11)

Here and hereafter C denotes various constants depending upon G, y1 and T . From
(3.11), it is sufficient to estimate W̃ and Z̃.

Fixed (x, t), let �(�) = �(�; t, x) be the solution of the following equations:

d�

d�
= �(εv1 + V )(�, �(�)), �(t) = x. (3.12)

Then

Z̃(t, x) =
∫ t

0
L+(V )(�, �(�; t, x)) d�. (3.13)

By the assumptions, (3.5) and (3.13), it is easy to see that

|L+(V )|�Cε2(1 + εM0) and ‖Z̃‖∞ �Cε2(1 + εM0). (3.14)
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Applying the same arguments, we have

|L−(V )|�Cε2(1 + εM0) and ‖W̃‖∞ �Cε2(1 + εM0). (3.15)

Thus

‖Ũ‖∞ �Cε2(1 + εM0) and ‖Ṽ ‖∞ �Cε2(1 + εM0). (3.16)

Hence the results follow by taking

M0 �2C, 2Cε0 < 1 and ε‖v1‖∞ + ε2M0 ��/2. �

Lemma 3.2. There exists M1 > 0 and 0 < ε1 �ε0 such that if 0 < ε�ε1, ‖V ‖∞ �ε2

M0 and ‖Vx‖∞ �ε2M1 then ε2M1 �1 and

‖Ũx‖∞ �ε2M1, ‖Ũt‖∞ �ε2M1, ‖Ṽx‖∞ �ε2M1 and ‖Ṽt‖∞ �ε2M1.

Proof. By (3.9) and (3.10), we have

1
2 (W̃ + Z̃)x = Ũx, (3.17)

1
2 (W̃ − Z̃)x = �(εv1 + Ṽ )(εv1,x + Ṽx) − �(εv1)εv1,x . (3.18)

Thus

|Ũx | = 1
2 |(W̃ + Z̃)x | and |Ṽx |�C|(W̃ − Z̃)x | + Cε3M0. (3.19)

Hence, it is sufficient to estimate W̃x and Z̃x .
From (3.5) and (3.13), we have

Z̃x =
∫ t

0

�L+
�x

��

�x
(�, �(�)) d�, (3.20)

�L+
�x

= �′(εv1 + V )(εv1,x + Vx)�(εv1)εv1,x + �(εv1 + V )�′(εv1)ε
2v2

1,x

+(−� + �(εv1 + V )�(εv1))εv1,xx + (�(εv1) − �(εv1 + V ))εu1,xx

+(�′(εv1)εv1,x − �′(εv1 + V )(εv1,x + Vx))εu1,x (3.21)

and
��

�x
satisfies the following equations:

d

d�

��

�x
= �′(εv1 + V )(εv1,x + Vx)

��

�x
with

��

�x
(t) = 1. (3.22)
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Since ε2M1 �1, we have |�′(εv1 + V )(εv1,x + Vx)|�Cε, and

∣∣∣∣ ��

�x

∣∣∣∣ �eCεT �C′.

On the other hand, ∣∣∣∣�L+
�x

∣∣∣∣ �Cε2(1 + εM0 + εM1). (3.23)

Hence

|Z̃x(t, x)|�Cε2(1 + εM0 + εM1). (3.24)

By the similar arguments, we also obtain

|W̃x(t, x)|�Cε2(1 + εM0 + εM1). (3.25)

On the other hand, by (3.17) we have

�(εv1 + V )Ũx = 1
2 (�(εv1 + V )W̃x + �(εv1 + V )Z̃x)

= 1
2 (W̃t − Z̃t + L+(V ) − L−(V ))

= �(εv1 + Ṽ )Ṽt + (�(εv1 + Ṽ ) − �(εv1 + V ))εu1,x . (3.26)

Therefore,

|Ṽt |�C|Ũx | + Cε3M0 �Cε2(1 + εM0 + εM1). (3.27)

Moreover, since

2Ũt = W̃t + Z̃t = �(εv1 + V )W̃x + L−(V ) − �(εv1 + V )Z̃x + L+(V ),

(3.14), (3.15), (3.24) and (3.25) imply

|Ũt |�C(|W̃x | + |Z̃x | + |L−| + |L+|)�Cε2(1 + εM0 + εM1). (3.28)

Hence, the results follow by taking

M1 �2C(1 + εM0), 2Cε1 �1 and ε2
1M1 �1. �
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Lemma 3.3. There exists M2 > 0 and 0 < ε2 �ε1 such that if 0 < ε�ε2, ‖V ‖∞ �ε2

M0, ‖Vx‖∞ �ε2M1 and ‖Vxx‖∞ �ε2M2 then ε2M2 �1 and

‖Ũxx‖∞, ‖Ũxt‖∞, ‖Ṽxx‖∞, ‖Ṽxt‖∞, ‖Ṽtt‖∞ �ε2M2.

Proof. By (3.17) and (3.18), we have

1
2 (W̃ + Z̃)xx = Ũxx, (3.29)

1
2 (W̃ − Z̃)xx = �′(εv1 + Ṽ )(εv1,x + Ṽx)

2 + �(εv1 + Ṽ )(εv1,xx + Ṽxx)

−�′(εv1)(εv1,x)
2 − �(εv1)εv1,xx . (3.30)

We first estimate W̃xx and Z̃xx . By (3.20) and (3.21), we have

Z̃xx =
∫ t

0

(
�2

L+
�x2

(
��

�x

)2

+ �L+
�x

�2�

�x2

)
(�, �(�)) d�, (3.31)

�2
L+

�x2
= �′′(εv1 + V )(εv1,x + Vx)

2�(εv1)εv1,x

+�′(εv1 + V )(εv1,xx + Vxx)�(εv1)εv1,x

+2�′(εv1 + V )(εv1,x + Vx)�
′(εv1)(εv1,x)

2

+2�′(εv1 + V )(εv1,x + Vx)�(εv1)εv1,xx

+�(εv1 + V )�′′(εv1)(εv1,x)
3 + 3�(εv1 + V )�′(εv1)ε

2v1,xv1,xx

+(−� + �(εv1 + V )�(εv1))εv1,xxx

+2(�′(εv1)εv1,x − �′(εv1 + V )(εv1,x + Vx))εu1,xx

+(�(εv1) − �(εv1 + V ))εu1,xxx

+(�′′(εv1)(εv1,x)
2 − �′′(εv1 + V )(εv1,x + Vx))

2εu1,x

+(�′(εv1)εv1,xx − �′(εv1 + V )(εv1,xx + Vxx))εu1,x (3.32)

and
�2�

�x2
satisfies the following equations:

d

d�

�2�

�x2
= (

�′′(εv1 + V )(εv1,x + Vx)
2 + �′(εv1 + V )(εv1,xx + Vxx)

)��

�x

+�′(εv1 + V )(εv1,x + Vx)
�2�

�x2
with

�2�

�x2
(t) = 0.
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Since εM2 < 1, it is easy to see∣∣∣∣∣�
2
L+

�x2

∣∣∣∣∣ � Cε2(1 + εM0 + εM1 + εM2),

∣∣∣∣∣ �
2�

�x2

∣∣∣∣∣ � Cε(1 + εM0 + εM1 + εM2).

Hence (3.23) implies∣∣∣∣∣�
2
L+

�x2

(
��

�x

)2

+ �L+
�x

�2�

�x2

∣∣∣∣∣ � (Cε2 + Cε3)(1 + εM0 + εM1 + εM2)

� Cε2(1 + εM0 + εM1 + εM2).

Therefore, we have

|Z̃xx |, |W̃xx |�Cε2(1 + εM0 + εM1 + εM2)

and this implies

|Ũxx |, |Ṽxx |�Cε2(1 + εM0 + εM1 + εM2). (3.33)

Now differentiating (3.26) with respect to x, we have

�′(εv1 + V )(εv1,x + Vx)Ũx + �(εv1 + V )Ũxx

= �′(εv1 + Ṽ )(εv1,x + Ṽx)Ṽt + �(εv1 + Ṽ )Ṽtx

+(�′(εv1 + Ṽ )(εv1,x + Ṽx) − �′(εv1 + V )(εv1,x + Vx))εu1,x

+(�(εv1 + Ṽ ) − �(εv1 + V ))εu1,xx .

Hence,

|Ṽxt | � C|Ũxx | + Cε2(1 + εM0 + εM1),

� Cε2(1 + εM0 + εM1 + εM2). (3.34)

Since

2Ũt = �(εv1 + V )W̃x + L−(V ) − �(εv1 + V )Z̃x + L+(V ),
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then

2Ũtx = �′(εv1 + V )(εv1,x + Vx)W̃x + �(εv1 + V )W̃xx + L−,x(V )

−�′(εv1 + V )(εv1,x + Vx)Z̃x − �(εv1 + V )Z̃xx + L+,x(V ).

Thus

|Ũtx |�Cε2(1 + εM0 + εM1 + εM2). (3.35)

Next, differentiating (3.26) with respect to t , we have

�′(εv1 + V )(εv1,t + Vt )Ũx + �(εv1 + V )Ũxt

= �′(εv1 + Ṽ )(εv1,t + Ṽt )Ṽt + �(εv1 + Ṽ )Ṽtt

+(�′(εv1 + Ṽ )(εv1,t + Ṽt ) − �′(εv1 + V )(εv1,t + Vt ))εu1,x

+(�(εv1 + Ṽ ) − �(εv1 + V ))εu1,xt .

Thus

|Ṽtt | � C|Ũtx | + Cε2(1 + εM0 + εM1)

� Cε2(1 + εM0 + εM1 + εM2). (3.36)

By (3.33)–(3.36), the results follow by taking

M2 �6C, 2Cε2 �1 and ε2
2M2 �1. �

Basing on the estimates of the above lemmas, we now prove the convergence of
the iteration scheme for systems (3.7) and (3.8). Let V 1, V 0 satisfy the estimates of
Lemmas 3.1–3.3. We claim that

‖Ṽ 1 − Ṽ 0‖∞ � 1
2‖V 1 − V 0‖∞. (3.37)

Since

|Ṽ1 − Ṽ0|�C|W̃ 1 − Z̃1 − W̃ 0 + Z̃0|,

we first estimate |W̃ 1 − W̃ 0| and |Z̃1 − Z̃0|. By (3.13), we have

Z̃1(t, x) − Z̃0(t, x) =
∫ t

0

(
L+(V 1)(�, �1(�)) − L−(V 0)(�, �0(�))

)
d�. (3.38)
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It is obvious that

L+(V 1)(�, �1(�)) − L+(V 0)(�, �1(�))

= (�(εv1 + V 1) − �(εv1 + V 0))�(εv1)εv1,x

−(�(εv1 + V 1) − �(εv1 + V 0))εu1,x

and this implies

|L+(V 1)(�, �1(�)) − L+(V 0)(�, �1(�))|�Cε‖V 1 − V 0‖∞. (3.39)

On the other hand, from (3.23) we obtain

|L+(V 0)(�, �1(�)) − L+(V 0)(�, �0(�))| � ‖�L+
�x

‖∞|�1(�) − �0(�)|

� Cε2|�1(�) − �0(�)|. (3.40)

Denote ��(�) = �1(�) − �0(�). Then ��(�) satisfies the following equations:

d

d�
�� = �(εv1 + V 1)(�, �0 + ��) − �(εv1 + V 0)(�, �0)

= �(εv1 + V 1)(�, �0 + ��) − �(εv1 + V 1)(�, �0)

+(�(εv1 + V 1) − �(εv1 + V 0))(�, �0)

with ��(t) = 0. Since ‖�′‖∞ �C, then∣∣∣∣ d

d�
��

∣∣∣∣ �C|��| + C‖V 1 − V 0‖∞.

Applying the Gronwall’s inequality, we obtain

|��|�C‖V 1 − V 0‖∞. (3.41)

By (3.38)–(3.41), we derive

|Z̃1 − Z̃0|�εC‖V 1 − V 0‖∞.

By the same arguments, we also obtain

|W̃ 1 − W̃ 0|�εC‖V 1 − V 0‖∞.
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Hence,

|Ṽ 1 − Ṽ 0|�εC‖V 1 − V 0‖∞.

Thus the claim follows by taking 2Cε�1.

Proof of Theorem 1. Basing on the estimate (3.37), we can construct the solution by
using the iteration method. Let

V (0) = 0 and V (n+1) = Ṽ (n).

By (3.37), the sequence {V (n)} converges uniformly to a continuous function V . The
results of previous lemmas show that V

(n)
t and V

(n)
x are uniformly bounded and equi-

continuous. Therefore, there exist subsequences {V (nj )

t } and {V (nj )
x } which converge

uniformly. Thus, V is a C1 function and this gives a C2-solution y(t, x) of (1.1) by
taking

y(t, x) = εy1(t, x) +
∫ x

0
V (t, x) dx.

It is easy to show inductively that

V (n)(t, x) = V (n)(t, −x), U(n)(t, x) = −U(n)(t, −x),

W(n)(t, x) = −Z(n)(t, −x), Z(n)(t, x) = −W(n)(t, −x),

W(n)(t, x + 2n) = W(n)(t, x), Z(n)(t, x + 2n) = Z(n)(t, x),

for any integer n. Thus the limit enjoys the same property. Especially, W(t, 1) =
−Z(t, 1), which means that U(t, 1) = 0 or yt (t, 1) = 0. On the other hand, the initial
conditions W(0, x) = Z(0, x) = 0 implies V (0, x) = 0 so that y(0, 1) = 0. Therefore
the boundary condition y(t, 1) = 0 is satisfied. The proof is complete. �

4. Formulation of singularities

In this section, we investigate the formulation of singularity for solutions of (1.1)
and (1.2). We have

Theorem 2. Assume that G satisfies (A) and G′′(v) < 0 for |v| < �. If y(t, x) ∈
C2(R × [0, 1]) is a solution of (1.1) and (1.2) such that

|yx(t, x)|��1 for t ∈ R, x ∈ [0, 1], (4.1)

where 0 < �1 < �, then y = 0 identically.
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Proof. Putting

y(t, x) = −y(t, −x) for − 1 < x < 0,

y(t, 2n + x) = y(t, x) for n ∈ Z,

we can assume that y ∈ C2(R × R) satisfies (1.1) for all x. Write (1.1) by

vt − ux = 0 and ut − G(v)x = 0, (4.2)

where u = yt and v = yx . Let

w = u + Ĝ(v) and z = u − Ĝ(v). (4.3)

Then the system (4.2) is diagonalized to

wt −√
G′(v)wx = 0 and zt +√

G′(v)zx = 0. (4.4)

From the assumptions, we know that

1/C�
√

G′(v(t, x))�C uniformly.

Now let x = x(t; a) satisfy the following equations:

dx

dt
= √

G′(v(t, x)), x|t=0 = a. (4.5)

Then X(t; a) = �
�a

x(t; a) satisfies

dX

dt
= �

�x

√
G′(v(t, x))X and X|t=0 = 1. (4.6)

Here

�
�x

√
G′(v(t, x)) = 1

2

G′′(v(t, x))√
G′(v(t, x))

vx

is continuous. Solving (4.6) directly, we obtain

X(t; a) = exp

(∫ t

0

�
�x

√
G′(v(�, x)) d�

)
> 0. (4.7)
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On the other hand, let us investigate the right-hand side of (4.6). Since w−z = 2Ĝ(v),
denote F as the inverse function of 2Ĝ(v) then

v = F(w − z),
√

G′(v) = √
G′ ◦ F(w − z),

�
�a

√
G′(v) =

(√
G′ ◦ F

)′
(wa − za).

Since

wa = �
�a

w(t, x(t; a)) = wxX,

2
√

G′(v)wx = wt +√
G′(v)wx = d

dt
w(t, x(t; a))

and dz/dt = 0, we have

wx = 1

2
√

G′(v)

d

dt
(w − z).

Thus

dX

dt
= �

�a

√
G′(v(t, x))

=
(√

G′ ◦ F
)′

2
√

G′ ◦ F

d

dt
(w − z)X −

(√
G′ ◦ F

)′
(w − z)za

= d

dt
(ln(G′ ◦ F(w − z))1/4)X −

(√
G′ ◦ F

)′
(w − z)za.

In addition, since dz/dt = 0, z(t, x(t; a)) = z(0, a), we have

za = �z

�a
(t, x(t; a)) = �z

�a
(0, a).

Thus

X =
(

G′(v(t, x(t; a)))

G′(v(0, a))

)1/4 (
1 + za(0, a)

∫ t

0
Q(�; a) d�

)
, (4.8)

where

Q(�; a) = −
(

G′(v(0, a))

G′(v(�, x(�; a)))

)1/4 (√
G′ ◦ F

)′
(w − z)(�, x(�; a)). (4.9)
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Now,

G′(v(0, a))

G′(v(t, x(t; a)))
� 1

C
> 0. (4.10)

Moreover, elementary computation gives

(√
G′ ◦ F

)′ = 1

4

G′′ ◦ F

G′ ◦ F
. (4.11)

Hence, the assumption G′′ < 0 and (4.9)–(4.11) imply that

Q(�; a)�1/C > 0 and
∫ t

0
Q(�; a) d� −→ ∞ as t −→ ∞.

Therefore, since X should remain positive, we have za(0, a)�0.
Since z(0, ·) is periodic, we have zx(0, ·) = 0, i.e. z(0, ·) is a constant. Furthermore,

the equation is invariant with respect to the parallel translation of t , thus z(t, ·) is
a constant for all t . By the same arguments, w(t, ·) is also a constant. (In fact, we
consider the solution x− = x−(t; a) of

dx−

dt
= −

√
G′(v(t, x−)), x−|t=0 = a,

and X−(t; a) = �
�a

x−(t; a). Then X−(t; a) > 0 and we have

X− =
(

G′(v(0, a))

G′(v(t, x−(t; a)))

)1/4 (
1 − wa(0, a)

∫ t

0
Q−(�; a) d�

)
,

where

Q−(�; a) = −
(G′(v(�, x−(�; a)))

G′(v(0, a))

)1/4 1

4

G′′

G′ (v(�, x−(�; a)).

Since G′′ < 0, we have wa(0, a)�0. Thus wx(0, ·) = 0.)
Therefore, u(t, ·) = (w(t, ·) + z(t, ·))/2 is also a constant. Due to u(t, 0) = 0, we

have u = 0 and this means vx = 0 since ut = G′(v)vx . Hence, v(t, ·) is a constant.
On the other hand, since y(t, 0) = y(t, 1) = 0, we have v = yx = 0 somewhere and
therefore everywhere. Since y(t, 0) = 0, then y(t, x) = 0 for any 0 < x < 1. This
completes the proof. �

Remark 4.1. For Theorem 2, if we assume that G′′(v) > 0 for |v| < � instead of
G′′(v) < 0, we can also obtain the same conclusion.
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5. Example of singularities

By Theorem 2 there are no nontrivial uniformly bounded time-global C2-solutions
satisfying (1.1) and (1.2). Therefore, we guess that the singularities at the second
derivatives of y will develop after a finite time even if we start from smooth and small
initial data. In this section we first give an example of possible singularities at the
second derivatives ytt and yxx . Then we give another kind of exact solutions to (1.1)
with singularity such that shocks occur after a finite time.

5.1.

Let us consider Eq. (1.1) and forget the boundary conditions (1.2). Putting

u = yt , v = yx, (5.1)

then Eq. (1.1) is equivalent to the system

vt − ux = 0, ut − G′(v)vx = 0. (5.2)

If the mapping (t, x) → (u, v) is invertible, then we can rewrite (5.2), taking (u, v) as
independent variables, formally as the linear system

−xu + tv = 0, xv − G′(v)tu = 0, (5.3)

since

(
ut ux

vt vx

)
=
(

tu tv
xu xv

)−1

= 1

�

(
xv −tv

−xu tu

)
,

where

� = tuxv − tvxu.

Eliminating x from (5.3) we get the following second-order linear equation:

tvv − G′(v)tuu = 0. (5.4)

Let us consider the solution of (5.4) of the form

t (u, v) = ε sin u�(v), (5.5)
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where ε is a sufficiently small positive constant and �(v) is the solution of the ordinary
differential equation

d2�

dv2 = −G′(v)� with �(0) = 1 and �′(0) = 0. (5.6)

Then we can find a positive number �0(< �) such that

�(v) > 0 for |v|��0 and �′(v)

{
> 0 for − �0 �v < 0,

< 0 for 0 < v��0.

We put

x(u, v) = 1
2 − ε cos u�′(v). (5.7)

Then the functions t = t (u, v), x = x(u, v) satisfy the system (5.3).
Now we consider the curvilinear hexagon

D̃ =
{
(u, v)| |u| <

�

2
, |v|��0, tan2 u < H(v)

}
,

where

H(v) = G′(v)�(v)2

�′(v)2
and H(0) = +∞.

By the mapping (u, v) → (t (u, v), x(u, v)) the domain D̃ is transformed onto a curvi-
linear spindle-shaped hexagon D in (t, x)-plane. The vertices {D±

k }3
k=1 of D are

D±
1 = (±ε, 1

2

)
,

D±
2 = (

ε sin u±�(±�0),
1
2 − ε cos u±�′(±�0)

)
,

D±
3 = (−ε sin u±�(±�0),

1
2 − ε cos u±�′(±�0)

)
,

where u± = arctan
√

H(±�0). Hence D contains the interval on the x-axis

L1 : t = 0, 1
2 − ε�′(−�0)�x� 1

2 − ε�′(�0),

and the interval parallel to the t-axis

L2 : −ε < t < ε, x = 1
2 .
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Note that, for any fixed v ∈ (−�0, �0), u → t (u, v) is monotone on D̃, since

tu(u, v) = ε cos u�(v) > 0

and, for any fixed u ∈ (−�/2, �/2), v → x(u, v) is monotone on D̃, since

xv(u, v) = −ε cos u�′′(v) = εG′(v) cos u�(v) > 0.

Therefore it is easy to see that the mapping (u, v) → (t (u, v), x(u, v)) admits a smooth
inverse mapping (t, x) → (u(t, x), v(t, x)) from D onto D̃, since tan2 u < H(v) and

� = ε2(G′(v) cos2 u�(v)2 − sin2 u�′(v)2) > 0 on D̃.

Then (u(t, x), v(t, x)) is a smooth solution on D satisfying the initial conditions on
L1

u(0, x) = 0, v(0, x) = (�′)−1
(

1

ε

(
1

2
− x

))
.

Now let us investigate the behaviors of the derivatives of u, v as t → ε − 0(u →
�/2−0) along the interval L2, which corresponds to the interval {−�/2 < u < �/2, v =
0} on the (u, v)-plane.

Putting v = 0, we have

tu(u, 0) = ε cos u, tv(u, 0) = 0,

xu(u, 0) = 0, xv(u, 0) = ε� cos u,

�(u, 0) = ε2� cos2 u.

Thus

ut

(
t,

1

2

)
= 1

ε cos u
, ux

(
t,

1

2

)
= 0, vt

(
t,

1

2

)
= 0, vx

(
t,

1

2

)
= 1

ε� cos u
.

Solving

ut

(
t,

1

2

)
= 1

ε cos u
(
t, 1

2

) ,
we have

u

(
t,

1

2

)
= arcsin

(
1 − 1

ε
(ε − t)

)
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or

cos u

(
t,

1

2

)
=
√

1 − sin2 u

(
t,

1

2

)
=
√

2

ε
(ε − t) − 1

ε2 (ε − t)2

=
√

2

ε

√
ε − t

√
1 − 1

2ε
(ε − t) =

√
2

ε

√
ε − t

(
1 + O

(
1

ε
(ε − t)

))
.

Therefore

ut

(
t,

1

2

)
= 1√

2ε

1√
ε − t

(
1 + O

(
1

ε
(ε − t)

))

and

vx

(
t,

1

2

)
= 1

�
√

2ε

1√
ε − t

(
1 + O

(
1

ε
(ε − t)

))

as t → ε − 0. That is, the derivatives ytt = ut , yxx = vx blow up in this manner. We
note that u(t, 1

2 ), v(t, 1
2 ) themselves have finite limits.

Furthermore, we note that the second derivatives ytt = ut , yxx = vx, ytx = ux = vt

blow up on the curves D−
2 D+

1 , D+
1 D+

2 , too. But the blow up at D+
1 above observed is

typical.
Of course these particular solutions are defined only on the domain D. But if smooth

initial data which coincides with one of these particular solutions on L1, ε being
sufficiently small, is given, then a solution of (1.1) and (1.2) which coincides with
the particular solution on D ∩ {t �0} may exist by dint of the principle of the finite
propagation speed. But this is not the case if G is linear, or G′′(v) = 0.

5.2.

In this subsection, we give another kind of exact solutions to (1.1) with singularity.
In [6], John gave the solution to the initial value problem

ytt − (1 + yx)
2yxx = 0,

y(0, x) = f (x), yt (0, x) = −f ′(x) − 1
2f ′(x)2,

which develops a shock at t = 1/m, x = x∗, where f is an arbitrary function in
C∞

0 (R) with −m = min
x

f ′′(x) = f ′′(x∗) < 0. yxx blows up at this point, while y, yt ,

yx are still bounded. We try to extend his example to our equation

ytt − G′(yx)yxx = 0. (5.8)
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Let f be an arbitrary function in C∞
0 (R). Suppose v = v(t, x) solves the functional

equation

v = f ′(x − �(v)t). (5.9)

Put

�(v) =
∫ v

0
v�′(v) dv = v�(v) − Ĝ(v), (5.10)

y(t, x) = t�(v) + f (x − �(v)t), (5.11)

then y(t, x) solves Eq. (5.8). In fact, we have

yt = �(v) + tv�′(v)vt + v(−�′(v)vt t − �(v)) = �(v) − v�(v) = −Ĝ(v),

ytt = −�vt .

Differentiating (5.9) with respect to t , we have

vt = f ′′(x − �(v)t)(−�′(v)vt t − �(v)),

that is

vt = − �(v)f ′′(x − �(v)t)

1 + f ′′(x − �(v)t)�′(v)t
,

provided that 1 + f ′′(x − �(v)t)�′(v)t 
= 0. Hence

ytt = �2(v)f ′′(x − �(v)t)

1 + f ′′(x − �(v)t)�′(v)t
= G′(v)f ′′(x − �(v)t)

1 + f ′′(x − �(v)t)�′(v)t
. (5.12)

On the other hand

yx = tv�′(v)vx + v(1 − �′(v)vxt) = v,

yxx = vx.

But, differentiating (5.9) with respect to x, we have

vx = f ′′(x − �(v)t)(1 − �′(v)vxt),
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that is

yxx = vx = f ′′(x − �(v)t)

1 + f ′′(x − �(v)t)�′(v)t
. (5.13)

By (5.12) and (5.13), y(t, x) solves Eq. (5.8) to the initial value problem

y(0, x) = f (x), yt (0, x) = −Ĝ(f ′(x)).

Now we assume that f ∈ C∞
0 (R) satisfies that |f ′(�)|��0(< �) for � ∈ R and

−m = min
�

f ′′(�)�′(f ′(�)) < 0� max
�

f ′′(�)�′(f ′(�))�m.

For example, the function

f (�) =
⎧⎨⎩

�0

16
exp

(
− 1

1 − �2

)
if |�| < 1,

0 if |�|�1,

or −f (�) is such a function, provided that �′ = G′′/2
√

G′ 
= 0.
Put T = 1/m. Then the functional equation (5.9) can be solved uniquely as long as

x ∈ R, 0� t < T . In fact, Eq. (5.9) is equivalent to

� = x − �(f ′(�))t, (5.14)

provided that �′(v) = G′′(v)/(2
√

G′(v)) < 0 or > 0 for |v|��0. But the right-hand
side of (5.14) is a contraction, since∣∣∣∣ �

��

(
x − �(f ′(�))t

)∣∣∣∣ =
∣∣∣�′(f ′(�))f ′′(�)t

∣∣∣ < 1

as long as |t | < T = 1/m. Hence v(t, x) is well-defined for x ∈ R, 0� t < T and y

given by (5.11) is a smooth solution of (5.8) on x ∈ R, 0� t < T .
As t → T − 0, we see that yx = v(t, x) and yt = u(t, x) = −Ĝ(v(t, x)) remain to

be bounded. Moreover, if � which attain the minimum of f ′′(�)�′(f ′(�)) are discrete,
say �n, then we can claim that v(t, x) tends to a limit v(T − 0, x) for each fixed x.
On the other hand

yxx = vx = f ′′(x − �(v)t)

1 + f ′′(x − �(v)t)�′(v)t
−→ ∞

as t → T − 0 at x = xn such that x − �(v(T − 0, x))T = �n.
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x

v

Fig. 1. t < T .

x

v

Fig. 2. t = T .

Roughly speaking, the situation is as follows. We can approximately write

�(f ′(�)) ∼ �n − m(� − �n) + a

6
(� − �n)

3

for small � − �n, where a is a positive constant. Then � = x − �(f ′(�))t turns out to
be

x − xn ∼ (1 − mt)(� − �n) + a

6
(� − �n)

3t.
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x

v

Fig. 3. t > T .

At this moment suppose that f ′′(�) > 0 near � = �n. Then, since v = f ′(�) behaves
like �, we can see that v increasingly pass through v(t, xn) at xn for increasing x if
t < T = 1/m;

v − vn ∼ C(x − xn)
1/3, if t = T = 1/m;

and v has jump discontinuity near xn, if t > T = 1/m, as sketched in Figs. 1–3.
In this way the smooth solution develops shocks after a finite time T = 1/m.

6. Estimate of life span of smooth solutions

In this section, we apply the argument of Lax [8] to get an estimate of the life span
of smooth solutions to (1.1) and (1.2).

We consider the initial-boundary value problem

ytt − (G(yx))x = 0 for 0 < x < 1, (6.1)

y(t, 0) = y(t, 1) = 0, (6.2)

y(0, x) = y0(x) and yt (0, x) = y1(x), (6.3)

where y0 and y1 are smooth and satisfy the following compatibility conditions:

y0(0) = y0(1) = y1(0) = y1(1) = 0.

We have the following results.
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Theorem 3. There are positive constants ε and C such that |y0,x(x)|, |y1(x)|�ε and
if

|y0,xx(x)|, |y1,x(x)|�M

then there is a C2-solution y(t, x) to (6.1)–(6.3) as long as 0� t < 1/(CM).

Proof. As in Section 3, we consider the problem by extending the solutions periodically
as (3.1). Introducing the variables

u = yt , v = yx,

we can write (6.1) as the first-order system

vt − ux = 0, ut − G′(v)vx = 0 (6.4)

with the initial conditions

u(0, x) = y1(x), v(0, x) = y0,x(x). (6.5)

Let q = Ĝ(v). The Riemann invariants are

w = u + q, z = u − q (6.6)

and the diagonalized system is

wt − �wx = 0, zt + �zx = 0. (6.7)

The initial conditions are

w(0, x) = w0(x), z(0, x) = z0(x). (6.8)

Suppose that there is a C1-solution (w, z) on 0� t < T . Since w and z are constants
along the characteristic curves dx

dt
= ±�, if |w0(x)|, |z0(x)|�ε0 then we have

|w(t, x)|, |z(t, x)|�ε0 and |q| = ∣∣ 1
2 (w − z)

∣∣ �ε0.

Thus, we can assume that ε0 is so small that q has an inverse function for |q|�ε0
such that |v|��0 < �.
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Now let us consider the quantities

A := √
�wx and B := √

�zx.

By elementary computation we can see that A and B satisfy the equations

At − �Ax + 	A2 = 0 and Bt + �Bx + 	B2 = 0, (6.9)

respectively. Here

	 = −1

2

1√
�

d�

dq
= −1

4
G′′(v)G′(v)−5/4. (6.10)

Since |v|��0 < �, we have |	|�C. Let

M1 = max
{

max
x

|A(0, x)|, max
x

|B(0, x)|
}

.

Then along the characteristic curve satisfying dx
dt

= −� or dx
dt

= � we have

dA

dt
+ 	A2 = 0 or

dB

dt
+ 	B2 = 0, (6.11)

respectively. By the comparison theorem of ordinary differential equations, we have the
following estimates:

|A|, |B|� M1

1 − CM1t
(6.12)

and since 1/C���C we have

|wx |, |zx |� CM2

1 − CM2t
,

where

M2 = max
{

max
x

|w0,x(x)|, max
x

|z0,x(x)|
}

.

As Lax said in [8], ‘solution to initial-value problems exists as long as one can place
an a priori limitation on the magnitude of their first derivatives’. More precisely we
have the following lemma.
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Lemma 6.1. There is a positive number ε such that for any B there exists a positive
number h depending upon B such that the initial value problem

w(0, x) = w0(x), z(0, x) = z0(x)

admits a C1-solution with Lipschitz conditions first derivatives on 0� t �h provided
that

|w0(x)|, |z0(x)|�ε, |w0,x(x)|, |z0,x(x)|�B

and w0,x and z0,x are Lipschitz continuous. Here w(t, x) = −z(t, −x), z(t, x) =
−w(t, −x) and are 2-periodic in x.

A proof can be found in the book of Courant–Hilbert (see [1, Chapter V]). We omit
the details since the argument is similar to that of Section 3. The essential point is that
the iteration converges with the first derivatives on a time interval independent of the
magnitude of the second derivatives or the Lipschitz constant of the first derivatives.
This completes the proof of the theorem. �

Acknowledgements

The authors express their sincere thanks to the referee for his/her careful reading of
the original manuscript and giving of helpful comments.

References

[1] R. Courant, D. Hilbert, Methods of Mathematical Physics, vol. II, Interscience, New York, NY, 1962.
[2] J.M. Greenberg, Smooth and time-periodic solutions to the quasilinear wave equation, Arch. Rational

Mech. Anal. 60 (1975) 29–50.
[3] J.M. Greenberg, M. Rascle, Time-periodic solutions to systems of conservation laws, Arch. Rational

Mech. Anal. 115 (1991) 395–407.
[4] J.M. Greenberg, R. Peszek, Time-periodic solutions to a class of quasilinear wave equations, Arch.

Rational Mech. Anal. 122 (1993) 35–51.
[5] C.-H. Hsu, S.-S. Lin, T. Makino, Periodic solutions to the 1-dimensional compressible Euler equation

with gravity, to appear in Proceeding of the Conference on Hyperbolic Problems 2004.
[6] F. John, Delayed singularity formation in solutions of nonlinear wave equations in higher dimensions,

Comm. Pure Appl. Math. XXIX (1976) 649–681.
[7] J.B. Keller, L. Ting, Periodic vibrations of systems governed by nonlinear partial differential equations,

Comm. Pure. Appl. Math. XIX (1966) 371–420.
[8] P.D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential

equations, J. Math. Phys. 5 (1964) 611–613.
[9] R. Peszek, Generalization of the Greenberg–Rascle construction of periodic solutions to quasilinear

equations of 1-d elasticity, Quart. Appl. Math. LVII (1999) 381–400.


