
PRL 96, 171601 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
5 MAY 2006
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High-energy limit of zero-norm states in the old covariant first quantized spectrum of the 26D open
bosonic string, together with the assumption of a smooth behavior of string theory in this limit, are used to
derive infinitely many linear relations among the leading high-energy, fixed-angle behavior of four-point
functions of different string states. As a result, ratios among all high-energy scattering amplitudes of four
arbitrary string states can be calculated algebraically and the leading order amplitudes can be expressed in
terms of that of four tachyons as conjectured by Gross in 1988. A dual calculation can also be performed
and equivalent results are obtained by taking the high-energy limit of Virasoro constraints. Finally, we
compute all high-energy scattering amplitudes of three tachyons and one massive state at the leading order
by saddle-point approximation to verify our results.
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One of the fundamental issues in string theory is its
space-time symmetry. In local quantum field theories, a
symmetry principle is usually postulated, which can be
used to fix the interactions in the theory. In string theory,
on the contrary, it is the interaction, prescribed by the very
tight quantum consistency conditions due to the extended-
ness of strings, which determines the symmetry. For ex-
ample, the massless gauge symmetries of 10D Heterotic
string [1] were discovered to be SO�32� or E2

8 by the string
one-loop consistency or modular invariance of the theory.
Symmetries with parameters containing both Yang-Mills
and Einstein indices were found explicitly at massive
levels [2]. Being a consistent quantum theory with no
free parameter and an infinite number of states, it is con-
ceivable that there exists a huge symmetry group, which is
responsible for the ultraviolet finiteness of string theory.

Historically, a key progress to understand the symmetry
of string theory is to study the high-energy, fixed-angle
behavior of string scattering amplitudes [3–5]. This is
strongly motivated by the success on the study of the
high-energy behavior of a local quantum field theory, for
example, the renormalization group and the discovery of
asymptotic freedom in QCD [6]. Moreover, the spontane-
ously broken symmetries are often hidden at low energy,
but become evident at high energies. Other approaches
related to this development include the studying the high-
energy, fixed momentum transfer regime [7], vertex opera-
tor algebra for compactified space time or on a lattice [8],
or the Hagedorn transition at high temperature [9], and
taking the tensionless limit of the worldsheet theory [10].
Despite all these efforts, a concrete picture of the under-
lying symmetry of strings has not emerged.

Recently, an algebraic approach [11,12] was developed
to derive linear relations among correlation functions in the
high-energy limit, which are presumably a manifestation
of the hidden symmetry. An important ingredient of this
06=96(17)=171601(4) 17160
approach is the zero-norm states in the old covariant first
quantization (OCFQ). In fact, it can be shown that [13] off-
shell gauge transformations of Witten string field theory,
after imposing the no-ghost condition, are identical to the
on-shell stringy gauge symmetries generated by two types
of zero-norm states in the generalized massive � model
approach of string theory [14]. The corresponding on-shell
Ward identities were also constructed in Ref. [15]. The
connection between zero-norm states and the space-time
symmetry was further elucidated in the case of 2D string
where the discrete zero-norm states were shown [16] to
generate a !1 symmetry algebra [17]. Furthermore, these
discrete zero-norm states approach the discrete Polyakov
positive-norm states in the high-energy limit [18].

At first sight one may raise the objection that, while the
zero-norm states correspond to gauge transformations,
they cannot relate physically inequivalent states. The trick
is to deform zero-norm states to some positive-norm states,
which will nevertheless be called high-energy zero-norm
states (HZNS’s). It is the decoupling of the HZNS in the
high-energy limit that will allow us to derive nontrivial
relations among inequivalent amplitudes. It was empha-
sized in Refs. [18,19] that the decoupling of the HZNS in
the high-energy limit is a nontrivial assumption. Those
who are interested in a more detailed account of the
assumption please see Refs. [18,20]. Roughly speaking,
this assumption is about the regularity of the high-energy
limit of string theory.

In this Letter, we will generalize the calculations for the
first few mass levels [11,12,19] to arbitrary mass levels for
the open bosonic string. Infinite linear relations among
high-energy scattering amplitudes of different string states
at fixed but arbitrary mass levels will be obtained. These
linear relations are then used to determine uniquely the
proportional constants among high-energy scattering am-
plitudes of different string states to the leading order. Based
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on the high-energy scattering amplitudes for certain repre-
sentative states obtained in Refs. [11,19], one can then
derive the general formula of high-energy scattering am-
plitude for four arbitrary string states, and express them in
terms of that of four tachyons. It was first conjectured by
Gross in 1988 [4] that scattering amplitudes of arbitrary
states are linearly related to each other in the high-energy
limit. These linear relations hint at the existence of an
infinite space-time string symmetry hidden at low energy
[4,21] but gets restored at high energies.

Let us now explain the first approach in detail. In the
OCFQ spectrum of open bosonic string theory, the solu-
tions of physical state conditions include positive-norm
propagating states and two types of zero-norm states.
The latter are (we use the notation in Refs. [22])

Type I : L�1jxi; where L1jxi � L2jxi � 0; L0jxi � 0;

(1)

Type II: �L�2 �
3
2L

2
�1�j~xi; where L1j~xi � L2j~xi � 0;

�L0 � 1�j~xi � 0:

(2)

While type I states have zero norm for any space-time
dimensions, type II states have zero norm only for D �
26. We take the second massive level M2 � 4 as an ex-
ample to illustrate our approach. The first step is to list the
stringy Ward identities for four-point functions derived
from the decoupling of all zero-norm states at this mass
level [15]
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� 9k���T
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� �21k�k� � 9����T
����
� � 25k�T

�
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where ��� is an arbitrary symmetric, transverse, and trace-
less polarization tensor, and �0� and �� are arbitrary trans-
verse vectors. T 0

�s in Eqs. (3)–(6) are �th order string-
loop four particle scattering amplitudes with, say, the sec-
ond vertex V2�k2� constructed from zero-norm states at the
mass level M2 � 4 and k� � k2�. For example, Eq. (3)
states the decoupling of the zero-norm state corresponding
to the vertex operator V2�k� � �k����@X

�@X�@X� �
2���@2X�@X��eik	X, and

T �����
� � hV1�@X�@X�@X�eik	X�V3V4i�;

T ����
� � hV1�@

2X��@X��eik	X�V3V4i�:
(7)

The rest of the vertices V1, V3, and V4 in T 0
�s can be

arbitrary string states and their tensor indices are omitted.
17160
Note that Eqs. (3)–(6) are valid to all loops � and at all
energies E. We use labels 1 and 2 for incoming particles
and 3 and 4 for outgoing particles. In the center of mass
frame, the scattering angle �c:m: is defined to be the angle
between ~k1 and ~k3.

To enumerate all possible polarizations ���; ��; �0� for
these equations, we define a basis of polarization vectors
for the second vertex. We have eP� 1

M2
�E2;k2;0; . . .��

k2

M2

as the momentum polarization, eL � 1
M2
�k2; E2; 0; . . .� the

longitudinal polarization, and eT � �0; 0; 1; . . .� the trans-
verse polarization. Note that eP approaches to eL in the
high-energy limit, and the scattering plane is defined by the
spatial components of eL and eT . Polarizations perpendicu-
lar to the scattering plane are ignored because they are
kinematically suppressed for four-point scatterings in the
high-energy limit.

The next step is to consider all possible polarizations for
these equations and to replace eP by eL in the high-energy
limit. To the leading order, Eqs. (3)–(6) imply (we drop
loop order � here to simplify the notation) [11,12]

T LLT �T �LT� ’ 0; (8)

10T LLT �T TTT � 18T �LT� ’ 0; (9)

T LLT �T TTT � 9T �LT� ’ 0; (10)

where the subscripts denote the polarizations. These linear
equations can be easily solved,

T TTT :T LLT :T �LT�:T �LT� ’ 8:1:� 1:� 1: (11)

After some simple power counting of the energy order for
all amplitudes [11], one concludes that all other amplitudes
with any V2 at the same mass level (but with V1;3;4 fixed)
are subleading, as compared with the amplitudes already
appearing in the linear relation above. That is, the decou-
pling of the HZNS gives complete information about all
amplitudes at the leading order in the high-energy limit.

This linear relation among scattering amplitudes agrees
with direct computation. For example, consider the four-
point functions with one tensor V2 and three tachyons
V1;3;4. The s� t channel contributions to the scattering
amplitudes in Eq. (11) are given by [11,12] T TTT ’

�8E9sin3�CMT �3� ’ 8T LLT ’ �8T �LT� ’ �8T �LT�,
where T �3� is given by

T �n��
����
	
p
��1�n�12�nE�1�2n

�
sin
�c:m:

2

�
�3




�
cos

�c:m:

2

�
5�2n


 exp
�
�
slns� tlnt��s� t� ln�s� t�

2

�
; (12)

which is the high-energy limit of ���� s
2� 1���� t

2� 1��=
��u2� 2� with s� t� u � 2n� 8. Here s � ��k1 � k2�

2,
t � ��k2 � k3�

2 and u � ��k1 � k3�
2 are the Mandelstam

variables [12].
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The aim of this Letter is to show that there is indeed
only one independent component of high-energy scattering
amplitude at the leading order for general mass levels, and
to calculate the proportional constants generalizing
Eq. (11). One first notes that the decoupling of HZNS
indicates that the only states that will survive the high-
energy limit at level M2 � 2�n� 1� are of the form

jn; 2m; qi � �
T�1�
n�2m�2q�
L�1�

2m�
L�2�
qj0; ki: (13)

It is algebraically proved in Refs. [18,20] that an amplitude
becomes subleading if we replace a state of this form by
another state not of this form at the same mass level. One
can also verify this fact by explicitly calculating an ampli-
tude using saddle-point method [18,19].

The next step is to use the decoupling of two types of
HZNS

L�1jn� 1; 2m� 1; qi ’ Mjn; 2m; qi � �2m� 1�


 jn; 2m� 2; q� 1i; (14)

L�2jn� 2; 0; qi ’
1

2
jn; 0; qi �Mjn; 0; q� 1i; (15)

to deduce the ratios of all amplitudes at the leading order.
The final result is [18]

T �n;2m;q� �

�
�

1

M

�
2m�q

�
1

2

�
m�q
�2m� 1�!!T �n;0;0�: (16)

Equation (16) correctly reproduces the proportional con-
stants for mass level M2 � 4; 6 after the Young tableaux
decomposition [11,12].

Equation (16) also allows us to obtain the general for-
mula for four particle scattering amplitudes at the tree level
in the high-energy limit

hV1V2V3V4i �
Y4

i�1

�
�

1

Mi

�
2mi�qi

�
1

2

�
mi�qi


 �2mi � 1�!!T T1		T2		T3		T4		
n1n2n3n4

; (17)
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where T T1		T2		T3		T4		
n1n2n3n4

is the high-energy scattering ampli-
tude for Vi � �eT

i
	 @X�nieikiXi (i � 1; . . . ; 4). (Ti is the

transverse polarization for the ith particle. eT defined ear-
lier is denoted eT

2
here.) It only depends on the sum n �P4

i�1 ni and is given by [11,19]

T T1		T2		T3		T4		
n1n2n3n4

���2E3 sin�CM�
�niT ��ni�

�2
����
	
p

en�4�stu��n�3�=2e��1=2��slns�tlnt�u lnu�:

(18)

It is interesting to see that the contribution of the second
term 3

2L
2
�1j~xi of type II zero-norm states in Eq. (2) to the

stringy Ward identities is negligible in the high-energy
limit. This hints at a ‘‘dual’’ calculation, the Virasoro
constraints, to derive Eq. (16) [18]. It is convenient to
use the Young tableaux to handle the complicated sym-
metric structures of tensor fields with higher spins. The
most general state in the mass level M2 � 2�n� 1� can be
written as

(19)

where mj is the number of the operator 
��j and the
summation runs over all possible combinations of mj

with
Pk
j�1 jmj � n. Since the upper indices f�j

1 . . .�j
mjg

for 

�j

1
�j . . .


�j
mj

�j are symmetric, we can use the 1-row
Young tableaux to stand for the coefficients in (19). The
direct product � acts on the Young tableaux in the standard
way. We have also normalized the state by factors
1=�jmjmj!�. Next, we will apply the Virasoro constraints
to the state (19). The only Virasoro constraints which need
to be considered are L1jni � L2jni � 0. They give, in the
high-energy limit [18],
It is worth emphasizing that these equations are equivalent to Eqs. (14) and (15) in the first approach. Combining Eqs. (20a)
and (20b) gives our main result Eq. (16).

Finally, we compute all high-energy scattering amplitudes of three tachyons and one massive state Eq. (13) by saddle-
point approximation [19] to justify our result Eq. (16). The s-t channel contribution to the high-energy scattering amplitude
at tree level is

T �n;2m;q� ’
Z 1

0
dxxk1	k2�1�x�k2	k3

�
eT 	k1

x
�
eT 	k3

1�x

�
n�2m�2q

	

�
eP 	k1

x
�
eP 	k3

1�x

�
2m
�
�
eP 	k1

x2 �
eP 	k3

�1�x�2

�
q
; (21)

where we have substituted the polarization L by P. In order to apply the saddle-point method, we rewrite the amplitude
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above in the form T �n;2m;q��K� �
R

1
0 dxu�x�e

�Kf�x�, where
K��k1 	k2!2E2, f�x� � lnx� � ln�1� x�, � � ��k2 	
k3�=�k1 	 k2� ! sin2 �c:m:

2 and u�x� � �k1 	 k2=M�q�2m�1�
x��n�2m�2q�f0�2m�f00�q��eT 	 k3�

n�2m�2q. The saddle
point for the integration of moduli, x � x0 �

1
1�� , is de-

fined by f0�x0� � 0. From the definition of u�x�, it is easy
to see that u�x0� � u0�x0� � 	 	 	 � u�2m�1��x0� � 0 [23],
and one can easily compute u�2m��x0� and evaluate the
Gaussian integral

T �n;2m;q� �
Z 1

0
dxu�x�e�Kf�x�

�

���������
2	
Kf000

s
e�Kf0

�
u�2m�0

2km!�f000 �
mKm �O

�
1

Km�1

��

�

���������
2	
Kf000

s
e�Kf0

�
��1�n�m

2n�q�2m�2m�!

k!Mq�2m


 ��n=2�1� ��3n=2En �O�En�2�

�
: (22)

This result shows that the high-energy four-point ampli-
tudes of states at fixed mass level n share the same energy
and angular dependence, and one can compute the ratios
among high-energy amplitudes to correctly reproduce
Eq. (16). More details can be found in Ref. [18].

Although our discussions focus on the 26D open bosonic
string theory, the same approach can be applied to super-
strings as well [24]. The infinitely many linear relations
which uniquely determine the ratios of all high-energy
four-point functions at a fixed mass level strongly suggest
the hidden symmetry of the string theory. Even though
we have not identified the symmetry group for the
string theory, this work sheds new light towards the final
answer.
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