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Random Number Generation for Excess Life of
Mobile User Residence Time
Hui-Nien Hung, Pei-Chun Lee, and Yi-Bing Lin, Fellow, IEEE

Abstract—In a mobile telecommunications network, the period
when a mobile station (MS) resides in a cell (the radio coverage of a
base station) is called the cell residence time of that MS. The period
between when a call arrives at the MS and when the MS moves out
the cell is called the excess life of the cell residence time for that
MS. In performance evaluation of a mobile telecommunications
network, it is important to derive the excess life distribution
from the cell residence times. This distribution determines if a
connected call will be handed over to a new cell, and therefore
significantly affects the call dropping probability of the network.
In mobile-telecommunications-network simulation, generating the
excess-life random numbers is not a trivial task, which has not
been addressed in the literature. This paper shows how to gen-
erate the random numbers from the excess life distribution, and
develop the excess-life random number generation procedures for
cell residence times with gamma, Pareto, lognormal, and Weibull
distributions. This paper indicates that the generated random
numbers closely match the true excess-life distributions.

Index Terms—Cell residence time, excess life, handover,
mobility management.

I. INTRODUCTION

A MOBILE telecommunications network is populated with
several base stations (BSs). Mobile users receive mobile

telecommunications services by using mobile stations (MSs)
connecting to the BSs. When an MS moves from the radio
coverage (called cell) of a BS to the radio coverage of another
BS, the MS is disconnected from the old BS and reconnected to
the new BS. This process is called handover. Fig. 1 illustrates
the relationship between movement of an MS and a call session
to that MS. The MS moves to cell 1 at time t0, and then moves
to cell i at time ti for i > 1. A call for the MS arrives at time
t1. If the call is not blocked or dropped, it completes at time
t5. At time t1, if cell 1 does not have enough radio resources
to accommodate this call (which can be a plain voice call or
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a multimedia call), the call is blocked. When the MS moves to
cell i, the call is handed over from cell i − 1 to cell i. If no radio
resources are available in cell i, the call is dropped or forced
to terminate. Performance of a mobile telecommunications
network is typically evaluated by the call blocking probability
(a new call attempt is blocked), the call dropping probability
or force-termination probability (a handover call is forced to
terminate), and the call incompletion probability (a call is either
blocked or dropped).

Many studies [3], [4], [6], [9], [15] have been devoted to eval-
uate these probabilities for various radio resource-allocation
strategies exercised in mobile telecommunications networks.
Most of them utilized analytic approaches that provide use-
ful insights to mobile-network modeling. However, analytic
analysis has its limitations. For example, in Fig. 1, if the call
holding time tc = t5 − t1 is nonexponential (which is probably
true for multimedia calls) [2], then it is difficult to derive the
remaining call holding time τc = t5 − ti after the MS moves
into cell i (for i > 1). Furthermore, most analytic studies made
an approximate assumption that the handover traffic to a cell is a
fixed Poisson process. This assumption is reasonable for large-
scale mobile telecommunications networks, but may result in
significant inaccuracy for small-scale networks [7], [16]. Also,
if the resource-allocation policies under consideration are very
complicate (which is probably true for wireless data sessions
with QoS), it is impossible to find analytic solutions.

An alternative modeling technique to analytic analysis is
discrete event simulation. There are two approaches to mobile-
telecommunications-network simulation: the MS-based simula-
tion and the call-based simulation. In the MS-based simulation,
the number of MSs are defined in the simulation, and the MS
objects are actually simulated for their movements (even if there
are no calls destinated at these MSs). Examples of MS-based
simulation can be found in [10]. In the call-based simulation
[8], [12], the call arrival rate to the network is considered as
the input that drives the simulation progress. In this approach,
after a call arrival event is processed, the corresponding MS
movement and the call termination events are generated follow-
ing the timing diagram illustrated in Fig. 1 (details of the call-
based simulation is described in Appendix). When the number
of MSs is small in a mobile telecommunications network, the
MS-based simulation will produce more accurate results than
the call-based simulation. When the number of MSs is large,
both approaches produce results with similar accuracies. On
the other hand, the execution time for the MS-based simulation
is much longer than that for the call-based simulation (e.g.,
100 times longer [10]). Since large MS population is expected
in most third-generation systems such as Universal Mobile
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Fig. 1. Timing diagram for MS movement and call arrival.

Telecommunications System (UMTS) [1], [11], the call-based
simulation will become more important in advanced mobile
telecommunications studies.

In mobile-telecommunications-network modeling, several
random variables are defined. Two of them are elaborated here;
others are described in Appendix. In Fig. 1, tm,1 = t2 − t0,
and tm,i = ti+1 − ti (for i > 1) are the time intervals that the
MS resides in cell i. These cell residence times are typically
modeled by a random variable with a specific distribution such
as gamma and mixed Erlang [5], [8], [12]. The interval τm =
t2 − t1 is the period between when a call arrives and when
the MS moves out of the first cell, which is referred to as the
excess life of the cell residence time. In the call-based simu-
lation, it is required to generate the random numbers for the
excess life τm (see Appendix). Clearly, the τm distribution must
be derived from the cell residence-time distribution. The call
arrivals are typically assumed to be random observers of the cell
residence times. If the cell residence times have the exponential
distribution, then τm also has the same exponential distribution
[14]. On the other hand, if the cell residence times have an
arbitrary distribution, generation of the τm random numbers is
a nontrivial task. In this paper, we describe how to generate the
τm random numbers from the cell residence-time distribution.
For various cell residence-time distributions, generation of τm

random numbers need separate treatments. We show how to
generate the excess-life random numbers for cell residence-time
random variables with gamma, Pareto, lognormal, and Weibull
distributions. Our study indicates that the generated random
numbers closely match the true excess-life distributions.

II. DERIVATION OF EXCESS LIFE DISTRIBUTION

In Fig. 1, the cell residence times tm,i (i ≥ 1) of an MS are
assumed to be independent identically distributed random vari-
ables. Therefore, we use tm to represent an arbitrary cell res-
idence time with the density function fm(tm), the distribution
function Fm(tm) and the mean µ. Let τm be the excess life of tm
with the density function rm(τm) and the distribution function
Rm(τm). Since the call arrivals form a Poisson process, a call
arrival is a random observer of the MS cell residence times.
From the excess life theorem [14], we have

rm(τm) =
1 − Fm(τm)

µ
. (1)

It is difficult to generate the random numbers for the excess
life of a cell residence-time random variable using (1) because

this equation involves the distribution function Fm(τm). To
efficiently generate the random numbers τm, we shall utilize a
variation of fm(τm). We will prove that rm(τm) can be derived
from the following function:

fT (t) =
tfm(t)

µ
. (2)

Since

∞∫
t=0

[
tfm(t)

µ

]
dt =

(
1
µ

) ∞∫
t=0

tfm(t)dt =
µ

µ
= 1

it is obvious that fT (t) can be a density function. Let T be a
random variable with the density function fT (t). We have the
following theorem.
Theorem 1: Let τm be the excess life of tm. Let random vari-

able U be uniformly distributed over the interval (0,1). Let T be
random variable with the density function fT (t) = (tfm(t)/µ),
and U and T are independent. Then, the distribution of τm is the
same as the distribution of U × T .

Proof: The joint density function of U and T is

f(U,T )(u, t) =




tfm(t)
µ , for 0 < u < 1

and t > 0
0, otherwise.

Let W = U × T . Then

Pr[W ≤ w] = Pr[U × T ≤ w]

=

1∫
u=0

w
u∫

t=0

f(U,T )(u, t)dtdu

=

1∫
u=0

w
u∫

t=0

tfm(t)
µ

dtdu. (3)

From (3), the density function fW (w) of W can be derived as

fW (w) =
d Pr[W ≤ w]

dw

=

1∫
u=0

(w

u

)[fm(w/u)
µ

](
1
u

)
du

=
(

1
µ

) 1∫
u=0

( w

u2

)
fm(w/u)du. (4)
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Let y = (w/u). Then, (4) can be rewritten as

fW (w) =
1
µ

∞∫
y=w

fm(y)dy

=
1 − Fm(w)

µ

= rm(w)

which means that W = U × T has the same distribution
as τm. �

Theorem 1 allows us to generate a τm random number using
fm(·) as follows: We first generate a random number u for
the uniform random variable U in (0,1). Then, we generate a
random number t for the random variable T with the density
function fT (t) [see (2)]. Then, we multiply t by u to obtain the
random number for the excess life τm. Derivation of fT (t) is
not a trivial task, and some fT (t) functions cannot be derived
from the corresponding fm(t) functions. In the next section, we
show how to derive fT (t) for some popular distributions.

III. EXCESS-LIFE RANDOM NUMBER GENERATION:
SOME EXAMPLES

This section derives the T distributions for cell residence
times with distributions such as gamma, Pareto, lognormal, and
Weibull. Then, we show how to generate the excess-life random
numbers using Theorem 1 and the T distributions.

A. Gamma Distribution

Suppose that tm has a gamma distribution with the shape
parameter α and the scale parameter β. Then, the mean value is
µ = αβ and the density function fm(tm) is

fm(tm) =
e−

tm
β tα−1

m

βαΓ(α)
, for tm ≥ 0. (5)

We have the following theorem.
Theorem 2: If tm has a gamma distribution with the pa-

rameters (α, β), then T has a gamma distribution with the
parameters (α + 1, β).

Proof: From (2) and (5), we have

fT (t) =
te−

t
β tα−1

µβαΓ(α)
, for t ≥ 0

=
βe−

t
β tα

µβα+1Γ(α + 1)
× Γ(α + 1)

Γ(α)
. (6)

Since Γ(α + 1) = αΓ(α) and µ = αβ, (6) is rewritten as

fT (t) =
e−

t
β tα

βα+1Γ(α + 1)
, for t ≥ 0. (7)

From (7), it is clear that T has the gamma distribution with
parameters (α + 1, β). �

Fig. 2. rm(τm) function for gamma excess life.

Generation of an excess-life random number for gamma
residence time with the parameters (α, β) includes the follow-
ing steps: We first generate a uniform random number u in
(0,1). Then, according to Theorem 2, we generate a random
number t for the gamma random variable T with the parameters
(α + 1, β). By multiplying u and t, we obtain a random number
for the excess life τm. Fig. 2 plots the rm(τm) function for
gamma excess life.

In this figure, the symbols “�” and “•” represent the values
obtained from the random number generation. The solid and
dashed curves are directly computed from (1). The figure indi-
cates that our random number generation procedure accurately
generates the excess-life random numbers for the gamma cell
residence times.

B. Pareto Distribution

Suppose that tm has the Pareto distribution with the parame-
ters (a, b), where a is the shape parameter and b is the scale
parameter. Then, the mean is

µ =
{

ab
a−1 , if a > 1
∞, if 0 < a ≤ 1

(8)

and the density function is

fm(tm) =
aba

ta+1
m

(9)

where tm ≥ b, a > 0, and b > 0. We have the following
theorem.
Theorem 3: Suppose that tm has a Pareto distribution with

the parameters (a, b), where a > 1. Then, T has a Pareto
distribution with the parameters (a − 1, b).

Proof: From (2), (8), and (9), we have

fT (t) =
(

taba

ta+1

)
×
(

a − 1
ab

)

=
(a − 1)ba−1

t(a−1)+1
. (10)
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Fig. 3. rm(τm) function for Pareto excess life.

Equation (10) is a Pareto density function with the parameters
(a − 1, b). �

By utilizing Theorems 1 and 3, the τm random number
generation procedure for Pareto cell residence times is sim-
ilar to that for gamma cell residence times. Fig. 3 plots the
rm(τm) function for Pareto excess life. The figure indicates
that our random number generation procedure accurately gen-
erates the excess-life random numbers for the Pareto cell resi-
dence times.

C. Lognormal Distribution

Suppose that tm has a lognormal distribution with the pa-
rameters (θ, σ). Then, the mean value is µ = eθ+σ2/2 and the
density function fm(tm) is

fm(tm) =
(

1
σtm

√
2π

)
e−

(ln tm−θ)2

2σ2 , for tm ≥ 0. (11)

We have the following theorem.
Theorem 4: Suppose that tm has a lognormal distribution

with the parameters (θ, σ). Let Y = lnT . Then, Y has a normal
distribution with the mean µ + σ2 and the standard deviation σ.

Proof: From (2) and (11)

fT (t) =
(

1
µσ

√
2π

)
e−

(ln t−θ)2

2σ2 , where t ≥ 0

=

(
1

eθ+ σ2
2 σ

√
2π

)
e−

(ln t−θ)2

2σ2 . (12)

Since Y = lnT , we have T = eY . According to the Jacobian
of the transformation [13], the density function of Y is ex-
pressed as

fY (y) = fT (ey)
∣∣∣∣ dt

dy

∣∣∣∣ = fT (ey) × ey (13)

where −∞ < y < ∞. Substitute (12) into (13) to yield

fY (y) =

(
1

eθ+ σ2
2 σ

√
2π

)
e−

(y−θ)2

2σ2 × ey

=
(

1
σ
√

2π

)
e−

[y−(θ+σ2)]2
2σ2 (14)

where −∞ < y < ∞. From (14), Y is a normal random vari-
able with the mean θ + σ2 and the standard deviation σ. �

Generation of an excess-life random number for lognormal
cell residence time with the parameters (θ, σ) includes the
following steps: We first generate a random number u from
the uniform random variable U in (0,1). Then, according to
Theorem 4, we generate a random number y for the normal
random variable Y with the mean θ + σ2 and the standard de-
viation σ. By multiplying u and ey , we obtain a random number
for the excess life τm. Details of the lognormal residence-time
curves will not be presented in this paper.

D. Weibull Distribution

Suppose that tm has a Weibull distribution with the scale
parameter θ and the shape parameter γ. Then, the mean value
is µ = θ(1/γ)Γ(1 + (1/γ)) and the density function fm(tm) is

fm(tm) =

{(
γ
θ

)
tγ−1
m e−

t
γ
m
θ , if tm ≥ 0

0, if tm < 0.
(15)

We have the following theorem.
Theorem 5: Suppose that tm has a Weibull distribution with

the parameters (γ, θ). Let Y = T γ . Then, Y has a gamma
distribution with the parameters (1 + (1/γ), θ).

Proof: From (2) and (15), we have

fT (t) =
(γ

θ

)
×


 tγe−

tγ

θ

θ
1
γ Γ
(
1 + 1

γ

)

 (16)

where t ≥ 0. Let Y = T γ . Then, T = Y (1/γ). According to
the Jacobian of the transformation [13], the density function
of Y is

fY (y) = fT

(
y

1
γ

) ∣∣∣∣ dt

dy

∣∣∣∣ = fT

(
y

1
γ

)
×
(

y
1
γ −1

γ

)
(17)

where y ≥ 0. Substitute (16) into (17) to yield

fY (y) =
y

1
γ e−

y
θ

θ1+ 1
γ Γ
(
1 + 1

γ

) , where y ≥ 0. (18)

From (18), Y has a gamma distribution with the parameters
(1 + (1/γ), θ). �

Generation of an excess-life random number for Weibull cell
residence time with the parameters (γ, θ) includes the following
steps: We first generate a random number u of the uniform
random variable U in (0,1). Then, according to Theorem 5, we
generate a random number y for the gamma random variable
Y with the parameters (1 + (1/γ), θ). By multiplying u and
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y(1/γ), we obtain a random number for the excess life τm. De-
tails of the Weibull residence-time curves will not be presented
in this paper.

IV. CONCLUSION

In performance evaluation of a mobile telecommunications
network, it is important to derive the excess life distribution
from the cell residence times. This distribution determines
if a connected call will be handed over to a new cell, and
therefore significantly affects the call dropping probability of
the network. In mobile-telecommunications-network simula-
tion, generating the excess-life random numbers is not a trivial
task, which has not been addressed in the literature. This
paper showed how to derive the excess life distribution and to
generate the random numbers from the excess life distribution.
We then developed the excess-life random number generation
procedures for cell residence times with gamma, Pareto, log-
normal, and Weibull distributions. Our study indicates that the
generated random numbers closely match the true excess-life
distribution [i.e., (1)]. Therefore, our procedures can be utilized
to efficiently generate excess-life random numbers in mobile-
telecommunications-network simulation.

APPENDIX

CALL-BASED SIMULATION

This Appendix describes the basic call-based discrete event
simulation for mobile telecommunications network. Several
random variables are defined: the intercall arrival time (the call
arrivals are typically modeled as a Poisson process), the call
holding time, the cell residence time, and the excess life of
the cell residence time. Three basic event types are considered:
the arrival event (a call arrival), the move event (an MS
movement), and the complete event (a call completion). Every
event is associated with a timestamp representing the time when
the event occurs. All unprocessed events are inserted in an
event list and are processed in the nondecreasing timestamp
order. Details of the call-based simulation are described in the
following steps.

Step 1) (Initialization) Generate the first arrival event and
insert it in the event list.

Step 2) Remove the next event from the event list. If the
event type is arrival then go to Step 3). If the type
is move then go to Step 5). If the type is complete
then go to Step 6).

Step 3) (Arrival) Check if the cell can accommodate this call
based on some wireless resource-allocation policy.
If not, reject the call, update the call statistics, and go
to Step 4). Otherwise, generate the random numbers
for the excess life τm of the cell residence time and
the call holding time tc.
Step 3.1) If τm > tc, generate a complete event

with timestamp “current time + tc.”
Step 3.2) If τm < tc, generate a move event with

timestamp “current time + τm.” Note that
when the next move event occurs, the

remaining call holding time is τc = tc −
τm.

Insert the generated event into the event list.
Step 4) Generate the next arrival event according to the

Poisson process and insert it into the event list. Go
to Step 2).

Step 5) (Move) The MS moves from the old cell to the new
cell. Check if the new cell can accommodate this
handover call. If not, drop the call, update the call
statistics, and go to Step 2). Otherwise, generate the
cell residence time tm. The remaining call holding
time is τc.
Step 5.1) If tm > τc, generate a complete event

with timestamp “current time + τc.”
Step 5.2) If tm < τc, generate the next move

event with timestamp “current time +
tm.” Note that when the next move event
occurs the remaining call holding time
is τc = τc − tm.

Insert the generated event into the event list. Go to
Step 2).

Step 6) (Complete) Reclaim the resources used by this call.
Update the call statistics, and go to Step 2).

The simulation can be terminated based on various criteria.
For example, at Step 3), we may check if some terminating
conditions are satisfied (e.g., 1 000 000 call arrivals have been
simulated). If so, the simulation terminates.
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