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Abstract

FFT and complex algebra-based methods of spherical harmonic analysis and synthesis are presented. Two computer

programs in FORTRAN are developed based on the methods. Both general and special cases are discussed. Special

cases involve the analyses of gravity changes of the hydrological origin and the atmospheric origin. Functionals of the

Earth’s gravity field such as gravity anomaly and geoidal height can also be computed via synthesis. Thermal-corrected

sea level anomaly from TOPEX/Poseidon and atmospheric pressure from ECMWF are used to compute changes of

geopotential coefficients due to oceanic and atmospheric mass redistributions. Interesting phenomena in the changes of

geopotential coefficients have been identified. The two computer programs can facilitate analyses and syntheses of

gravity products from satellite missions such as GRACE.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Spherical harmonic analysis is a process of decom-

posing a function on a sphere into components of

various wavelengths using surface spherical harmonics

as base functions. Spherical synthesis combines compo-

nents of various wavelengths to generate function values

on a sphere and is the reverse process of harmonic

analysis. Spherical harmonic analysis and synthesis have

been used in many occasions, e.g., ocean dynamic

topography (Engelis, 1985) and the Earth’s static gravity

field (Lemoine et al., 1998) and temporal gravity fields
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(Wahr et al., 1998). In particular, the temporal variation

of the Earth’s gravity field is closely related to global

climate change. Satellite missions such as GRACE

(Tapley et al., 2004) have now routinely delivered

products that can be used to derive gravity variations.

Spherical harmonic analysis and synthesis are important

tools for investigating these gravity variations.

Existing works on spherical harmonic analysis and

synthesis can be found in, e.g., Colombo (1981), Dilts

(1985), Potts et al. (1998), Mohlenkamp (1999), Kostelec

et al. (2000), Suda and Takami (2002) and Healy et al.

(2003). There are two procedures in doing spherical

harmonic analysis and synthesis. One procedure is based

on numerical integration and the other based on least-

squares (e.g., Colombo, 1981). Both spherical harmonic

analysis (using numerical integration) and synthesis can

take advantage of fast Fourier transform (FFT). For

example, Colombo (1981) and Dilts (1985) have devel-

oped algorithms for spherical harmonic analysis using
d.
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FFT. In this paper, we will present two efficient, FFT-

based computer programs for spherical harmonic

analysis and synthesis. Our methods will still employ

FFT but we will use different algorithms and the

complex algebra. We will emphasize special cases

involving the temporal variation of the Earth’s gravity

field. Sea level data and atmospheric data will be used to

compute gravity variations and to demonstrate the

usages of the computer programs.
2. Spherical harmonic analysis

2.1. General case

Any spherical function, f(f, l), can be expanded into

series of surface spherical harmonics (Heiskanen and

Moritz, 1985) as

f ðy; lÞ ¼
X1
n¼0

Xn

m¼0

ānmR̄nmðy; lÞ þ b̄nmS̄nmðy; lÞ
� �

, (1)

where ānm and b̄nm are harmonic coefficients, y and l are

co-latitude (polar distance angle from the north pole)

and geocentric longitude, respectively, R̄nm ¼

P̄nmðcos yÞ cos m l and S̄nm ¼ P̄nmðcos yÞ sin m l are

fully normalized spherical harmonics, P̄nmðcos yÞ is the

fully normalized associated Legendre function, and n

and m are degree and order, respectively. In a

continuous case, ānm and b̄nm can be obtained using

the orthogonal relationship of spherical harmonics as

(Heiskanen and Moritz, 1985, p. 29)

ānm

b̄nm

( )
¼

1

4p

Z 2p

l¼0

Z p

y¼0
f ðy; lÞ

R̄nm

S̄nm

( )
sin ydydl. (2)

In practice, function values of f are always given at

discrete points, so (2) can only be implemented

numerically and approximately. Let t ¼ cos y and

Cnm ¼ ānm þ ib̄nm

� �
, where i ¼

ffiffiffiffiffiffiffi
�1
p

. Given f on a

global, regular Dy�Dl grid (Dy is the sampling interval

in latitude and Dl is the sampling interval in longitude),

(2) can be approximated as (Hwang, 2001)

Cnm ¼
1

4pqn

XM�1
k¼1

XN�1
l¼1

f̄ yk; llð Þ

�

Z tkþ1

tk

P̄nmðtÞdt

� � Z llþ1

ll

eiml dl
� �

¼
gm

4pqn

XM�1
k¼1

IP̄
k

nm

XN�1
l¼1

f̄ yk; llð Þei2pmðl�1Þ=ðN�1Þ

¼
gm

4pqn

XðM�1Þ=2
k¼1

IP̄
k

nm f̄ kðmÞ þ ð�1Þ
n�mf̄ M�kðmÞ

� �
, ð3Þ
gm ¼
Dl; if m ¼ 0;

sinðmDlÞ þ i 1� cosðmDlÞð Þ½ �=m if ma0;

(
(4)

where M ¼ ðp=Dyþ 1Þ is the number of grids in latitude

and N ¼ ð2p=Dlþ 1Þ is the number of grids in long-

itude, tk ¼ cosððk � 1ÞDyÞ, ll ¼ ðl � 1ÞDl, IP̄
k

nm is the

integration of associated Legendre function (Paul,

1978), qn is a quantity dependent on n and the block

size f̄ yk; lkð Þ (Rapp, 1989, p. 266) and is to make the

approximation in (3) to (2) as realistic as possible.

Colombo (1981, p. 76) suggested that qn be set to:

qn ¼ b2n; 0pnpL=3;

qn ¼ bn; N=3onoL;

qn ¼ 1; n4L;

(5)

where bn is the Pellinen smoothing factor given by

bn ¼
1

1� cos c0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
p Pn�1 cos c0

� �
� Pnþ1ðcos c0Þ

� �
(6)

with L being the maximum degree of expansion and

c0 being the radius of a spherical cap whose area is the

same as the block size of f̄ yk; lkð Þ. The last equation in

(3) is due to the fact that IP̄
M�k

nm ¼ ð�1Þn�mIP̄
k

nm. As

such, the integration of associated Legendre functions

needs to be done only for the northern hemisphere. In

(3), f̄ is the mean value in a block (or cell) and is

computed by the four-point average as

f̄ fk; ll

� �
¼

1

4
f ðkDy; lDlÞ þ f ðk þ 1ÞDy; lDlð Þ½

þ f ðk þ 1ÞDy; ðl þ 1ÞDlð Þ

þ f kDy; ðl þ 1ÞDlð Þ�. ð7Þ

In (3), let K ¼ N � 1 ¼ number of blocks in long-

itude, p ¼ l � 1. Then we have

f̄ kðmÞ ¼
XK�1
p¼0

f̄ fk; ll

� �
ei2pmp=K ; m ¼ 0; . . . ;K � 1, (8)

which can be computed efficiently by FFT for all m. The

maximum degree of expansion L follows the rule that

L ¼ p=Dy (Rapp, 1989). Since LoK � 1, for each fixed

k we will need the f̄ kðmÞ values in (8) only up to m ¼ L.

In our programming, the computations start from the

northernmost and southernmost latitude belts simulta-

neously and converge to the equator. The mean block

values (see (7)) from the northern and southern hemi-

sphere are stored in a complex array (one in the real part

and the other in the imaginary part), which is then

Fourier transformed to form the two needed Fourier

arrays. This process of simultaneously Fourier trans-

forming two real-valued arrays significantly reduces the

computing time as compared to the process of trans-

forming real-valued array one by one.
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2.2. Case for variation of Earth’s gravity field

Mass variation within the Earth system may be

induced by changes in ocean, atmosphere, precipitation

(snow and rainfall), water table, glacier, ice sheet, etc.

The origins of mass changes (Dm) may be classified into

two categories. One is of the hydrological origin and in

this case mass variation is related to the density of the

underlying quantity and the change of height (or

thickness). The other is of the pressure origin and in

this case mass variation is related to the change of

pressure. At any point (r, y, l) (r: geocentric distance)

exterior to the Earth, the perturbing potential relative to

a static Earth caused by surface mass variations on a

sphere of radius R can be expressed as

DVhðr; y; lÞ

DVpðr; y; lÞ

( )
¼ G

ZZ
s

1

s

rDh

Dp=g

( )
ds, (9)

where ds ¼ R2 sin ydydl, s is the distance from a

surface area element to point (r,y,l), DVh is the

perturbing potential due to Dh ( hydrological origin),

and DVp is the perturbing potential due to Dp (pressure

origin). The perturbing potential can be used to derive

variations in gravity, geoid, deflection of the vertical and

other functionals of the Earth’s gravity field. It turns out

that conversion between surface mass variations and

perturbing potentials in the spherical harmonic domain

is much easier than conversion in the space domain as

expressed in (9). First, a perturbing potential in (9) can

be represented by a series of spherical harmonics as

DViðr; y; lÞ ¼
GM

r

X1
n¼0

a

r

� 	nXn

m¼0

� DJ̄
i

nmR̄nmðy; lÞ þ DK̄
i

nmS̄nmðy; lÞ
h i

, ð10Þ

where DJ̄
i

nm and DK̄
i

nm are changes of geopotential

coefficients, i ¼ Dh or Dp, and a is a constant that is

roughly equal to the semi-major axis of the Earth’s

reference ellipsoid. The inverse of distance s can also be

expanded into a series of spherical harmonics as

1

s
¼

1

r

X1
n¼0

1

2nþ 1

a

r

� 	nXn

m¼0

� R̄nm y0; l0
� �

R̄nmðy; lÞ þ S̄nmðy
0; l0ÞS̄nmðy; lÞ

� �
, ð11Þ

where y0; l0
� �

are the spherical coordinates of a surface

area element. Since Dh and Dp are functions on a sphere,

they can also be expanded into series of spherical

harmonics (Section 2.1):

Dhðy; lÞ ¼
X1
n¼0

Xn

m¼0

āh
nmR̄nmðy; lÞ þ b̄

h

nmS̄nmðy; lÞ
h i

, (12)

Dpðy; lÞ ¼
X1
n¼0

Xn

m¼0

āp
nmR̄nmðy; lÞ þ b̄

p

nmS̄nmðy; lÞ
� �

, (13)
Substituting (11), (12) and (11) into (9) and considering

surface loading effects leads to

DJ̄
h

nm

DK̄
h

nm

8<
:

9=
; ¼ 4pra2 1þ knð Þ

Mð2nþ 1Þ

āh
nm

b̄
h

nm

( )
, (14)

DJ̄
p

nm

DK̄
p

nm

( )
¼

4pa2 1þ knð Þ

gMð2nþ 1Þ

āp
nm

b̄
p

nm

( )
, (15)

where DJ̄
h

nm;DK̄
h

nm

� 	
are changes of geopotential

coefficients derived from Dh, DJ̄
p

nm;DK̄
p

nm

� �
are coeffi-

cients from Dp, kn is the loading Love number of degree

n (see, e.g., Han and Wahr, 1995), and M is the mass of

the Earth (E5.973� 1024 kg). In deriving (14) and (15)

the orthogonal relationships of spherical harmonics are

used. Eqs. (14) and (15) express the relationships

between mass variations and perturbing potentials in

the spherical harmonic domain. In (14) and (15), the

coefficients āh
nm; b̄

h

nm; ā
p
nm, and b̄

p

nm are derived from

global gridded data on a sphere with a radius of a.

Note that the geopotential coefficients are unitless and

hence care must be exercised in using the units for

pressure and height change. Specifically, if g, M, a, and r
are in SI units, Dh should be in meter and Dp should be

in hpa (i.e., kgm�1s�2).
3. Spherical harmonic synthesis

3.1. General case

Given spherical harmonic coefficients, harmonic

synthesis is to generate function values on a global

Dy�Dl grid as (see (1))

f ðkDy; lDlÞ ¼
XL

n¼0

Xn

m¼0

� ānmR̄nmðkDy; lDlÞ þ b̄nmS̄nmðkDy; lDlÞ
� �

,

k ¼ 0; . . . ;M; l ¼ 0; . . . ;N � 1. ð16Þ

It is clear that f ðkDy;NDlÞ ¼ f ðkDy; 0Þ, i.e., the values
at longitude ¼ 3601 and 01 are identical. To facilitate the

application of FFT, (16) is re-written as

f ðkDy; lDlÞ ¼
XL

0

XL

n¼m

P̄nmðkDyÞānm

" #
cosðmlDlÞ

(

þ
XL

n¼m

P̄nmðkDyÞb̄nm

" #
sinðmlDlÞ

)

¼
XL

0

Cm cosðmlDlÞ þ Sm sinðmlDlÞð Þ

k ¼ 0; . . . ;M; l ¼ 0; . . . ;N � 1. ð17Þ
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Note S0 ¼ 0. In (15), let Cm ¼ Sm ¼ 0 for

m ¼ Lþ 1; . . . ;N � 1, and

Bm ¼
Cm � iSm

2
. (18)

Then

f ðkDy; lDlÞ ¼ 2Re
XN�1
m¼0

Bme
i2pmlk=N

 !

¼ 2ReðPÞ; l ¼ 0; . . . ;N � 1, ð19Þ

where Re stands for the real part of a complex number.

In (19), the sum P can be evaluated for all gridded values

along the same parallel (co� latitude ¼ kDy) by FFT.

Because the associated Legendre function satisfies

P̄nmð�tÞ ¼ ð�1Þn�mP̄nmðtÞ, (20)

Dy should be so chosen that 90o is an integer multiplier

of Dy. In this case, the associated Legendre functions

need to be computed only for the northern hemisphere,

and they can be used for the southern hemisphere with

only a selected change of sign based on the rule in (20);

see also Colombo (1981).
3.2. Case for functional of the Earth’s gravity field

Given a set of geopotential coefficients, we can

compute any functional of the gravity field. For

example, geoidal height (or variation of geoidal height)

can be expanded into a series of spherical harmonics as

zðR; y; lÞ ¼
GM

Rg

X1
n¼2

a

R

� 	nXn

m¼0

� J̄nmR̄nmðy; lÞ þ K̄nmS̄nmðy; lÞ
� �

¼
XL

m¼0

XL

n¼m

GM

Rg
a

R

� 	n

P̄nmðyÞJ̄nm

" #
cosðmlÞ

(

þ
XL

n¼m

GM

Rg
a

R

� 	n

P̄nmðyÞK̄nm

" #
sinðmlÞ

)

¼
XL

m¼0

Cz
m cosðmlÞ þ Sz

m sin ðmlÞ
� �

, ð21Þ

where z is the geoidal height and R is the radius of the

sphere where the expansion is made. Likewise, gravity

anomaly (or variation of gravity anomaly) can be

expanded into a series of spherical harmonics as

DgðR; y; lÞ ¼
GM

R2

X1
n¼2

ðn� 1Þ
a

R

� 	nXn

m¼0
� J̄nmR̄nmðy; lÞ þ K̄nmS̄nmðy; lÞ
� �

¼
XL

m¼0

XL

n¼m

GM

R2
ðn� 1Þ

a

R

� 	n

P̄nmðyÞJ̄nm

" #
cosðmlÞ

(

þ
XL

n¼m

GM

R2
ðn� 1Þ

a

R

� 	n

P̄nmðyÞJ̄nm

" #
sinðmlÞ

)

¼
XL

m¼0

Cg
m cosðmlÞ þ Sg

m sinðmlÞ
� �

. ð22Þ

One can see in (21) and (22) that, by properly scaling

the geopotential coefficients, the algorithm of harmonic

synthesis presented in Section 3.1 can be used for

syntheses of gravity functionals. Also, the values of

functionals are not limited to the surface of the Earth;

rather they can be extended to an arbitrary height

defined by R. The definitions of geopotential coefficients

in (21) and (22) must be clarified here. If the coefficients

of gravity variation (see (14) and (15)) are given, then

one can use (21) and (22) directly to compute variations

of geoidal height and gravity anomaly. If the full

geopotential coefficients are given, one must first

subtract geopotential coefficients of a reference ellipsoid

(see, e.g., Torge, 1989) from the full coefficients, the

differences of coefficients are then used in (21) and (22).

If the rates of geopotential coefficients are available,

the rates of geoidal height and gravity anomaly can be

computed as

_zðR; y; lÞ ¼
GM

Rg

X1
n¼2

a

R

� 	nXn

m¼0

� _̄JnmR̄nmðy; lÞ þ _̄KnmS̄nmðy; lÞ
h i

, ð23Þ

D _̄gðR; y; lÞ ¼
GM

R2

X1
n¼2

ðn� 1Þ
a

R

� 	nXn

m¼0

� _̄JnmR̄nmðy; lÞ þ _̄KnmS̄nmðy; lÞ
h i

, ð24Þ

where _̄Jnm and _̄Knm are the rates of geopotential

coefficients. Again, in order to use FFT for an efficient

computation, the expressions in (23) and (24) can be

changed to forms similar to those in (21) and (22).
4. Computer programs

Two computer programs, coded in FORTRAN90,

were developed for spherical harmonic analysis and

synthesis in various cases. Program sha is for analysis

and syn is for synthesis. Program sha accepts three types

of global grid: height anomaly, pressure anomaly, and

arbitrary surface function. Program syn reads fully

normalized harmonic coefficients to generate a global

grid. The format of a global grid is called grd3. A

program, z2grd3, is developed to convert a netcdf grid of

GMT (Wessel and Smith, 1995) to a grd3 grid. The
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computed harmonic coefficients can be either in the fully

normalized form or the non-normalized form. The

default loading Love numbers are from Han and Wahr

(1995) and the maximum available degree is 696. Users

can supply their own Love numbers to program sha.

Appendix A shows the usages of sha and syn. Appendix

B and C show sample batch jobs of analysis and

synthesis.
5. Case studies

5.1. Altimeter and atmosphere data

Here we present two case studies using satellite

altimeter and atmospheric data. The altimeter data are

from the TOPEX/Poseidon (T/P) mission and the data

are supplied by AVISO (1996). T/P altimeter data

contain sea level anomalies (SLAs) at a 10-day interval

and cover a period from January 1993 to October 2001

(from T/P cycle 10 to cycle 344). The thermal-induced

sea level change, called steric height, represents the

volume change of the oceans and does not introduce

mass variation. Therefore, we subtracted the steric

heights from SLAs to create corrected sea level

anomalies (CSLAs), which reflect oceanic mass change.

The steric heights were supplied by Jianli Chen (2003,

private communication) at a 10-day interval and cover

the same time span as T/Ps; see also Chen et al. (2004)

for the modeling of the steric heights. For each T/P

cycle, we created a global 11� 11 grid from the along-

track CSLAs. SLAs beyond 7661 latitude were padded
-80
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-20

0
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80
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0 20 40 60 80 100 120 140 160 180

-40 -30 -20 -10 0

Fig. 1. Monthly averaged corrected sea level ano
with zeroes. The interpolation of SLAs onto a global

grid is done by ‘‘surface’’ of GMT. GMTs module

grd2xyz and program z2grd3 developed in this paper

were used to convert the netcdf grid to grd3 suitable for

use in sha. In order to reduce data noises, monthly SLAs

were created and were used in this paper. As an example,

Fig. 1 shows CSLAs in December 1997. As seen in Fig.

1, during the 1997–1998 El Niño the oceanic mass

increased in the equatorial, eastern Pacific Ocean and

decreased in the western Pacific Ocean. The maximum

changes of sea level in these two areas reach 40 cm.

Large changes of ocean mass also occurred in the Indian

Ocean. Such a large movement of sea water will

inevitably modify the Earth’s gravity field.

The atmospheric pressure data are from the European

Centre for Medium-Range Weather Forecasts

(ECMWF). The data are monthly averaged atmospheric

pressures on a 2.51� 2.51 grid and cover the same period

as that of T/P SLAs. We first computed a global mean

pressure field by averaging all data. Monthly atmo-

spheric pressure anomalies (APAs) were then obtained

by subtracting the mean pressure from individual

monthly pressures. Fig. 2 shows APAs in December

1997. As seen in Fig. 2, it is typical that in December

atmospheric pressure highs occur over major continents

of the northern hemisphere and lows occur over major

continents of the southern hemisphere.

5.2. Analysis: time series of J2 variation

The global grids of CSLA and APA over the period

from January 1993 to October 2001 were expanded into
-80
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-20
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Fig. 2. Monthly averaged atmospheric pressure anomaly in December 1997.
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spherical harmonic series up to degree 50 using program

sha. The results are changes of geopotential coefficients

due to oceanic and atmospheric mass redistributions.

The time series of a harmonic coefficient can be used to

investigate long-term variations of certain geophysical

phenomena. For example, the degree-zero coefficient

represents the total mass change of the underlying

geophysical fluid (water or atmosphere). The degree-one

coefficients are associated with the variation of geocen-

ter. The degree-two coefficients have to do with the

variations of the Earth’s flattening (the zonal term,

DJ̄20), polar motions (the tesseral terms, DJ̄21;DK̄21) and

principal moments of inertia (the sectorial terms,

DJ̄22;DK̄22); see Heiskanen and Moritz (1985). As an

example, Fig. 3 shows the time series of DJ̄20 from

CSLAs and from APAs. The two time series show

strong annual variations and weak semi-annual varia-

tions. However, the phases of the annual variations from

the two sources are different. In general, the annual peak

of CLSA occurs in summer, while the annual peak of

APA occurs in winter. The phases of the semi-annual

variations from the two sources are also different.

Interestingly, the slopes of DJ̄20 from CSLAs before and

after December 1997 are 0.207� 10�11/year and

0.361� 10�10/year, respectively. This phenomenon

agrees with the result from satellite laser ranging

observations (Cox and Chao, 2002). Such a dramatic

change of the trend of the Earth’s flattening is believed

to be caused by a recent surge in subpolar glacial melting

and by mass shifts in the Southern, Pacific, and Indian

oceans (Dickey et al., 2002). The slopes of DJ̄20 from

APAs before and after December 1997 are
�0.408� 10�10 and, �0.608� 10�10, respectively, so

the rate of change is steady for 1993–2002. Further

investigations of the links between the J2 variation and

geophysical phenomena are left to interested readers and

will not be elaborated here.

5.3. Synthesis: rate of geoid change

The time series of harmonic coefficients obtained in

Section 5.2 were used to compute the rates of change for

individual coefficients. The rates were then used in (23)

to compute the rates of geoid change up to degree 50.

Figs. 4 and 5 show the rates of geoid change from

CSLA’s and from APAs, respectively. The patterns of

geoid rate from the two sources are different. The

CSLA-implied geoid change contains a high near the

‘‘warm pool’’ northeast of Australia, where sea water

piles up before an El Niño occurs. Also, distinct lows

occur in the eastern Pacific Ocean and the western

Indian Ocean. The atmospheric pressure-implied geoid

change contains distinct highs in the northeastern Pacific

Ocean and the East Antarctica, and distinct lows in the

waters east of Australia and the Southeast Pacific Basin.

Again, investigations of the phenomena seen in Figs. 4

and 5 are left to interested readers.
6. Conclusions

This paper presents FFT-based methods for spherical

harmonic analysis and synthesis. Two efficient computer

programs coded in FORTRAN have been developed
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based on the proposed methods. Both general cases and

special cases of analysis and synthesis were investigated.

The special cases involve the Earth’s gravity field. We

demonstrate these computer programs using sea level

data from T/P and atmospheric data from ECMWF.

Interesting phenomena have been found in the J2 time

series and the rates of geoid change. The programs

developed in this paper can facilitate the analysis and

synthesis of temporal gravity variations from satellite

missions such as GRACE.
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Appendix A. Usages of computer programs sha and syn

The usage of sha is

sha file.grd3 -Gcoef_file -TtypeId [-C –Ddensity -Lnmax

-Kloadnumbers.txt]

where

file.grd3: input file of grd3 grid containing data (must

cover the entire sphere)

-G: output file of fully normalized harmonic coefficients

-T: type of gridded data
1 ¼ height change of hydrological origin (e.g. sea

level, water table, snow, ice) (unit: m)

2 ¼ pressure anomaly (unit: mbar)

3 ¼ arbitrary surface function (eg., SST, height)

(unit: m)

Options:

-C: harmonic coefficients will not be normalized

[default: fully-normalized]

-D: density (in kg/m3 ) associated with height change of

hydrological origin [default: 1000]

-K: file of loading Love numbers [default: Han and

Wahr (1995) up to degree 696]

-L: maximum degree of spherical harmonic expansion

[default: p/Dy]

The usage of syn is

syn coef_file -Idx/dy -Gfile.grd3 -Lnmax -Ttype [-Aa -B

-Dr –Mgm -R]

where

coef_file: input file of harmonic coefficients

-I: sampling (grid) interval (in degrees) along longitude

and latitude

-G: output file of global grid in .grd3

-L: maximum degree of spherical harmonic expansion

-T: type of value to compute

0 ¼ geoidal height

1 ¼ gravity anomaly

2 ¼ arbitrary function
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Options:
-A: scaling factor (a) associated with harmonic

coefficients [default: a ¼ 6378136:3m]

-B: file of harmonic coefficient is a binary file [default:

ascii]

-D: radius (in meter) of sphere on which the expansion is

made [default: r ¼ a ¼ 6378136:3m]

-M: product of Newtonian constant and the mass of the

earth [default: 3986004.415� 108m3/s2]

-R: subtract geopotential coefficients of the GRS80

ellipsoid from the input coefficients [default: do not

subtract]
Appendix B. Batch job of spherical harmonic analysis

using CSLAs
(1)
 Interpolate along-track CSLAs onto a global 11� 11

grid using GMTs ‘‘surface’’ surface tp_1997_12.xyh

-R0/360/-90/90 -I1/1 -T0 -Gtemp.grd
(2)
 Convert the GMT grd grid to a grd3 grid grd2xyz

temp.grd -Z | z2grd3 -R0/360/-90/90 -I1/1 -

Gtemp.grd3
(3)
 Perform spherical harmonic analysis to degree 50

using sha sha temp.grd3 -L50 -T1 –D1000

–Gtp_1997_12.coe
Appendix C. Batch job of spherical harmonic synthesis

using rates of geopotential coefficients
(1)
 Compute rates of geoid change on a global 11� 11

grid using rates of geopotential coefficients up to

degree 50

syn tp_coe_rate.dat -L50 -I1/1 -T0 -Gtemp.grd3
(2)
 Convert the grd3 grid to a GMT netcdf grid

grd3toz temp.grd3 | xyz2grd -Z -R0/360/-90/90 -I1/1

–Gtp_coe_rate.grd
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