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SUMMARY

It is often the case that some information is available on the parameter of failure time distributions from
previous experiments or analyses of failure time data. The Bayesian approach provides the methodology
for incorporation of previous information with the current data. In this paper, given a progressively type II
censored sample from a Rayleigh distribution, Bayesian estimators and credible intervals are obtained for
the parameter and reliability function. We also derive the Bayes predictive estimator and highest posterior
density prediction interval for future observations. Two numerical examples are presented for illustration
and some simulation study and comparisons are performed. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Rayleigh distribution is a special case of the Weibull distribution and has wide applications,
such as, in communication engineering [1, 2], in life testing of electrovacum devices [3], etc. The
probability density function and reliability function of the Rayleigh distribution, respectively,
are given by

f ðxjyÞ ¼
x

y2
exp �

x2

2y2

� �
; x > 0 ð1Þ
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and

RðxjyÞ ¼ exp �
x2

2y2

� �
; x > 0

where y > 0 is the parameter. An important characteristic of the Rayleigh distribution is that its
failure rate is an increasing linear function of time. This means that when the failure times are
distributed according to the Rayleigh law, an intense aging of the equipment takes place. Then
as time increases the reliability function decreases at a much higher rate than in the case of
exponential distribution (see Reference [3]).

Inferences for the Rayleigh distribution were discussed by several authors. Harter and Moore
[4] derived an explicit form for the maximum likelihood estimator of y based on type II censored
data. Dyer and Whisenand [1, 2] provided the best linear unbiased estimator of y based on
complete sample, censored sample and selected order statistics. Doubly censored samples were
considered, among other authors, by Lalitha and Mishra [5], and Kong and Fei [6]. Bayesian
estimation and prediction problems are also important and have been investigated, among
others, by Howlader and Hossain [7], and Fernández [8]. In addition, AL-Hussaini and Ahmad
[9, 10] studied Bayesian predictive densities and prediction bounds of generalized order statistics
and future records.

In this paper, Bayes estimators and highest posterior density credible intervals for parameter
y and reliability function RðxjyÞ of the Rayleigh distribution, as well as the Bayes predictive
estimator and prediction interval for future observations, are obtained based on progressively
type II censored samples. The rest of this paper is organized as follows. In Section 2, a brief
description of progressive type II censoring is given. In Section 3, the prior density is given and
the posterior densities are derived. Section 4 describes how to obtain Bayes estimators and
highest posterior density credible intervals. Section 5 is concerned with Bayesian prediction
problems from Rayleigh data in the progressive type II censoring case. Section 6 applies the
proposed methods to two numerical examples and some simulation studies.

2. PROGRESSIVELY TYPE II CENSORED DATA

A typical experiment in life testing consists of a sample of n units on appropriate devices and
subjecting the units to operation under specified conditions until failure of the unit is obtained.
In many studies, experiments often must terminate before all units on test have failed. In such
cases, exact lifetimes are known for only a portion of the units under study and the remainder of
the lifetimes are known only to exceed certain values. Such data are called censored. One of the
most common censoring schemes is type II censoring.

In a type II censoring, a total of n units is put on a life test, but instead of continuing until all n
units have failed, the life test is stopped at the time of the mth ð14m4nÞ unit failure. If an
experimenter desires to remove live units at points other than the final termination point of a life
test, the type II censoring scheme will not be of use to the experimenter. The disadvantage of
type II censoring is that it does not allow for units to be removed from the life test before the
final termination point. However, this allowance will be desirable, as in the case of accidental
breakage of test units, in which the loss of units at points other than the termination point may
be unavoidable. Intermediate removal may also be desirable when a compromise is sought
between time consumption and the observation of some extreme values. These lead us into the
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area of progressive type II censoring. Cohen [11] also mentioned that one of the primary goals of
progressive censoring is to save some live units for other tests, which is particularly useful when
the units being tested are very expensive. The interested readers may refer to the book by
Balakrishnan and Aggarwala [12, Chapter 1] for additional discussions of the need for
progressive censoring.

Consider an experiment in which n independent units are placed on a test at time zero, and the
failure times of these units are recorded. Suppose that m failures are going to be observed. When
the first failure is observed, r1 of the surviving units are randomly selected and removed. At the
second observed failure, r2 of the surviving units are randomly selected and removed.
This experiment stops at the time when the mth failure is observed and the remaining
rm ¼ n� r1 � r2 � � � � � rm�1 �m surviving units are all removed. The m ordered observed
failure times are called progressively type II censored order statistics of size m from a sample of
size n with censoring scheme ðr1; . . . ; rmÞ:

Suppose that the failure times of the n independent units originally on a test are identically
distributed with probability density function f ðxÞ and cumulative distribution function FðxÞ: Let
X1:m:n; . . . ;Xm:m:n be a progressively type II censored sample from f ðxÞ with censoring scheme
ðr1; . . . ; rmÞ: The joint probability density function of all m progressively type II censored order
statistics is given by Balakrishnan and Aggarwala [12]

fX1:m:n;...;Xm:m:n ðx1:m:n; . . . ; xm:m:nÞ ¼ c
Ym
i¼1

f ðxi:m:nÞ½1� Fðxi:m:nÞ�ri ð2Þ

where

c ¼ nðn� r1 � 1Þðn� r1 � r2 � 2Þ � � � ðn� r1 � � � � � rm�1 �mþ 1Þ

When data are obtained by progressive censoring, inference problems for various distributions
have been studied by several authors including Wong [13], Yuen and Tse [14], Balasooriya and
Saw [15], Balakrishnan and Lin [16], and Wu [17].

3. PRIOR AND POSTERIOR DISTRIBUTIONS

Let X1:m:n; . . . ;Xm:m:n be a progressively type II censored sample from a Rayleigh distribution
with parameter y: According to (1) and (2), the likelihood function is given by

LðyÞ /
1

y2m
exp �

1

2y2
Xm
i¼1

ðri þ 1Þx2i:m:n

( )
ð3Þ

It is easy to obtain the maximum likelihood estimator of y to be

#y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2m

Xm

i¼1
ðri þ 1ÞX2

i:m:n

r
ð4Þ

By the invariance property of the maximum likelihood estimator, we can obtain the maximum
likelihood estimator of reliability function RðtjyÞ to be

#Rt ¼ exp �
t2

2#y2

� �
ð5Þ
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In the Bayesian approach, y is considered a random variable having some specified
distribution. In this paper, we consider conjugate prior distribution of the form

PðyÞ ¼
ab

GðbÞ2b�1
y�2b�1 exp �

a

2y2

� �
; y > 0 ð6Þ

where a > 0 and b > 0: This density is known as the square-root inverted-gamma distribution
and has expectation and variance, respectively,

EðyÞ ¼

ffiffiffi
a

2

r G b�
1

2

� �
GðbÞ

; b >
1

2

and

VarðyÞ ¼
a

2ðb� 1Þ
�

a

2

G b�
1

2

� �
GðbÞ

2
664

3
775
2

; b > 1

Most often, the parameters a and b are obtained from the past history. Note that the choice of a
square-root inverted-gamma prior for y is equivalent to selecting a gamma prior for l ¼ 1=y2:
Waller et al. [18] presented a method by which engineering experiences, judgments, and beliefs
can be used to assign values to the parameters of a gamma prior distribution. This method
requires an engineer to provide two distinct percentiles which are used to determine values for
the parameters. We can adopt this method and ask that the engineer provides two percentiles
y15y2 such that PðY5y1Þ ¼ p1 and PðY5y2Þ ¼ p2: The simultaneous solution of the above
two equations will select the values for a and b which determine the square-root inverted-gamma
prior that summarizes the information of engineer.

It follows, from (3) and (6), that the posterior distribution of y is given by

PðyjxÞ ¼
aþ

Pm
i¼1 ðri þ 1Þx2i:m:n

� �bþm
2bþm�1GðbþmÞ

y�2ðbþmÞ�1 exp �
1

2y2
aþ

Xm
i¼1

ðri þ 1Þx2i:m:n

" #( )
ð7Þ

for y > 0; zero elsewhere. Substituting y2 ¼ �t2=ð2 log sÞ into (7), we obtain the posterior
probability density function of s ¼ RðtjyÞ as

PðsjxÞ ¼
1

GðbþmÞ
aþ

Pm
i¼1 ðri þ 1Þx2i:m:n

t2

� 	bþm
ð�log sÞbþm�1s

aþ
Pm

i¼1
ðriþ1Þx2i:m:n
t2

�1 ð8Þ

for 05s51; zero elsewhere.

4. BAYESIAN ESTIMATION

4.1. Bayes estimators

In order to derive Bayes estimators we must first specify a loss function which represents the cost
involved in using the estimate *y when the true value is y: The loss function is a non-negative
function that is taken to be a function of the distance between the estimate and the true value.
It generally increases as the distance increases. A commonly used loss function is squared error
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loss, Lðy; *yÞ ¼ ð*y� yÞ2: The squared error loss gives more penalty for large discrepancies. Under
squared error loss, the Bayes estimator of y is the posterior mean

*y ¼ EðyjXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
aþ

Xm

i¼1
ðri þ 1ÞX2

i:m:n

h ir
Gðbþm� 1

2Þ
GðbþmÞ

ð9Þ

Another problem of interest is that of estimating reliability function RðtjyÞ with fixed t > 0:
For squared error loss, the Bayes estimator of RðtjyÞ is given by

*Rt ¼ E½RðtjyÞjX� ¼
aþ

Pm
i¼1 ðri þ 1ÞX2

i:m:n

aþ
Pm

i¼1 ðri þ 1ÞX2
i:m:n þ t2

� 	bþm
ð10Þ

The highest posterior density (HPD) estimation is another method in popular use from the
Bayesian perspective. This parameter estimation is based on the maximum likelihood principle
and, hence the mode of posterior density will be the HPD estimator. Since the posterior density
(7) is unimodal, we can obtain the HPD estimator of y as

yn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ

Pm
i¼1 ðri þ 1ÞX2

i:m:n

2ðbþmÞ þ 1

s

From (8), the HPD estimator of RðtjyÞ is

Rn

t ¼ exp �
ðbþm� 1Þt2

aþ
Pm

i¼1 ðri þ 1ÞX2
i:m:n � t2

� �

4.2. HPD credible intervals

A 100ð1� aÞ% Bayesian credible interval for the parameter y is any interval ð‘; uÞ satisfying

Pð‘5y5ujxÞ ¼ 1� a ð11Þ

This two-sided interval ð‘; uÞ can be chosen in different ways. The most frequent use is the HPD
credible interval. Berger [19, p. 140] defined that a 100ð1� aÞ% HPD credible set for y; is the
subset CRB of ð0;1Þ of the form CRB ¼ fy; pðyjxÞ > cag; where ca is the constant such that
Pðy 2 CRB j xÞ ¼ 1� a: Hence, a 100ð1� aÞ% HPD credible interval chooses ð‘; uÞ to consist of
all values of y with PðyjxÞ > ca; where ca is chosen such that (11) holds.

Due to the unimodality of (7), the 100ð1� aÞ% HPD credible interval ð‘; uÞ for y must satisfy
the following two equations: Z u

‘
PðyjxÞ dy ¼ 1� a ð12Þ

and

Pð‘jxÞ ¼ PðujxÞ ð13Þ

From (12) and (13) and after some algebraic computation, the 100ð1� aÞ% HPD credible
interval ð‘; uÞ for y is given by the simultaneous solution of the equations

GIðn1; bþmÞ � GIðn2; bþmÞ ¼ 1� a

and

u

‘


 �2ðbþmÞþ1
¼ expfn1 � n2g
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where n1 ¼ ð1=2‘2Þ½aþ
Pm

i¼1 ðri þ 1Þx2i:m:n�; n2 ¼ ð1=2u
2Þ½aþ

Pm
i¼1 ðri þ 1Þx2i:m:n�; and GIðni; bþ

mÞ ¼ ð1=GðbþmÞÞ
R ni
0 zbþm�1e�z dz; the incomplete gamma function.

Similarly, the 100ð1� aÞ% HPD credible interval ð‘R; uRÞ for RðtjyÞ must satisfy

GIð�o log ‘R; bþmÞ � GIð�o log uR; bþmÞ ¼ 1� a

and

log uR

log ‘R

� �bþm�1

¼
‘R
uR

� �o�1

where o ¼ ½aþ
Pm

i¼1 ðri þ 1Þx2i:m:n�=t
2:

5. PREDICTING FUTURE OBSERVATIONS

It is often of interest to predict the kth failure time in a future sample of size N from the same
distribution. A two-sample scheme is used in which the informative sample is a progressively
type II censored sample and Yð1Þ5 � � �5YðNÞ are the order statistics of a future sample. Let YðiÞ;
i ¼ 1; . . . ;N; be the order statistics in a sample of size N with lifetimes distributed as (1). The
probability density function of the kth (14k4N) order statistic is

f ðyðkÞjyÞ ¼
N!

ðk� 1Þ!ðN � kÞ!
yðkÞ

y2
1� exp �

y2ðkÞ

2y2

( ) !k�1

exp �ðN � kþ 1Þ
y2ðkÞ

2y2

( )
ð14Þ

for yðkÞ > 0; zero elsewhere. By forming the product of (7) and (14), and integrating out y over
the set fy; 05y51g; the predictive distribution of YðkÞ; given X; is

f ðyðkÞjxÞ ¼
Z 1
0

f ðyðkÞjyÞpðyjxÞ dy

¼
2ðN!ÞðbþmÞ
ðk� 1Þ!ðN � kÞ!

yðkÞ aþ
Xm
i¼1

ðri þ 1Þx2i:m:n

" #bþm

Xk�1
j¼0

ð�1Þj
k� 1

j

 !
aþ

Xm
i¼1

ðri þ 1Þx2i:m:n þ ðN � kþ j þ 1Þy2ðkÞ

" #�ðbþmþ1Þ

for yðkÞ > 0; zero elsewhere. Under squared error loss, the Bayes predictive estimator of YðkÞ is
the expectation of the predictive distribution, that is

*Y ðkÞ ¼ EðYðkÞjXÞ ¼
N!

ffiffip
2

p
ðk� 1Þ!ðN � kÞ!

Xk�1
j¼0

ð�1Þ j
k� 1

j

 !
ðN � kþ j þ 1Þ�3=2 *y

where *y is the Bayes estimator of y given by (9).
The 100ð1� aÞ% HPD prediction interval ð‘k; ukÞ for YðkÞ should simultaneously

satisfy
R uk
‘k

f ðyðkÞjxÞ dyðkÞ ¼ 1� a and f ð‘kjxÞ ¼ f ðukjxÞ: After some algebraic simplification, the
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100ð1� aÞ% HPD prediction interval ð‘k; ukÞ for the future kth order statistic satisfies

1� a ¼
N!

ðk� 1Þ!ðN � kÞ!
aþ

Xm
i¼1

ðri þ 1Þx2i:m:n

" #bþmXk�1
j¼0

ð�1Þj
k� 1

j

 !
1

N � kþ j þ 1

aþ
Xm
i¼1

ðri þ 1Þx2i:m:n þ ðN � kþ j þ 1Þ‘2k

" #�ðbþmÞ8<
:
� aþ

Xm
i¼1

ðri þ 1Þx2i:m:n þ ðN � kþ j þ 1Þu2k

" #�ðbþmÞ9=
;

and

Xk�1
j¼0

ð�1Þj
k� 1

j

 !
uk aþ

Xm
i¼1

ðri þ 1Þx2i:m:n þ ðN � kþ j þ 1Þu2k

" #�ðbþmþ1Þ

¼
Xk�1
j¼0

ð�1Þj
k� 1

j

 !
‘k aþ

Xm
i¼1

ðri þ 1Þx2i:m:n þ ðN � kþ j þ 1Þ‘2k

" #�ðbþmþ1Þ

6. NUMERICAL EXAMPLES AND SIMULATION STUDY

We apply the Bayesian results to two data sets and also carry out simulations to examine the
performance of the proposed method.

6.1. Illustrative examples

Example 1 (Simulated data)

Consider a progressively type II censored sample of size m ¼ 10 from a sample of size n ¼ 20
with censoring scheme r ¼ ð2; 0; 0; 2; 0; 0; 0; 2; 0; 4Þ from Rayleigh distribution with parameter y:
It is assumed that the prior distribution of y is a square-root inverted-gamma distribution given
by (6) with a ¼ 7:0 and b ¼ 2:0: Table I is a progressively type II censored sample with actual
generated population values of y and Rðt ¼ 2jyÞ are 1:7238 and 0:5101; respectively. This sample
was simulated by using the following algorithm.

Step 1: For the given values of prior parameters ða; bÞ; generate y from the square-root
inverted-gamma distribution.

Table I. Progressively type II censored sample for Example 1.

i 1 2 3 4 5 6 7 8 9 10

xi 0.1970 0.3029 0.5786 0.9758 1.0066 1.3734 1.4159 1.5209 2.0482 2.2496
ri 2 0 0 2 0 0 0 2 0 4
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Step 2: Using y obtained in Step 1, generate a progressively type II censored sample of size m
from a sample of size n with censoring scheme r ¼ ðr1; . . . ; rmÞ from Rayleigh distribution
according to the algorithm presented in Balakrishnan and Aggarwala [12, pp. 32–33].

From (4) and (5), we obtain the maximum likelihood estimates of y and Rðt ¼ 2jyÞ to be
#y ¼ 1:4957 and #Rt¼2 ¼ 0:4090; respectively. From (9) and (10), we determine the Bayes estimates
of y and Rðt ¼ 2jyÞ to be *y ¼ 1:5163 and *Rt¼2 ¼ 0:4092: Similarly, we can calculate the HPD
estimates of y and Rðt ¼ 2jyÞ to be yn ¼ 1:4386 and Rn

t¼2 ¼ 0:3979: To obtain the 90%
HPD credible intervals for y and RðtjyÞ we need to use the Newton–Raphson method to solve
the equations in Section 4.2. The 90% HPD credible intervals for y and Rðt ¼ 2jyÞ are ð1:069
9; 1:7393Þ and ð0:1860; 0:5261Þ; respectively.

Furthermore, consider a future sample of size N ¼ 10 from the same distribution. Using the
formula in Section 5, Bayes predictive estimates and the corresponding 90% HPD prediction
intervals for the kth, 14k410; failure times are shown in Table II. It is easy to see that the
length of the HPD prediction interval increases as k increases. This implies that the prediction is
less precise as a larger order statistic is considered.

Example 2 (Real life data)

We apply the proposed methods to a real data set presented in Lawless [20, p. 228]. The data
arose in tests on the endurance of deep groove ball bearings and were originally discussed by
Leiblein and Zelen [21]. They are the number of revolutions to failure for each of n ¼ 23 ball
bearings in the life test. Raqab and Madi [22] indicated that a one parameter Rayleigh
distribution is acceptable for these data. For the purposes of illustrating the methods discussed
in this article, a progressively type II censored sample was generated from this data set. The
progressively censored sample size is m ¼ 13: The observations (in hundreds of millions) and
removed numbers are reported in Table III.

Raqab and Madi [22] assumed that the prior distribution of y is a square-root inverted-
gamma distribution and chose the prior parameters to be a ¼ b ¼ 2: Using the formulae
presented in Section 3, the maximum likelihood estimates of y and Rðt ¼ 1jyÞ are #y ¼ 0:6052 and
#Rt¼1 ¼ 0:2554; respectively. From (9) and (10), the Bayes estimates of y and Rðt ¼ 1jyÞ are
*y ¼ 0:6358 and *Rt¼1 ¼ 0:2870: Similarly, we can compute the HPD estimates of y and Rðt ¼ 1jyÞ
to be yn ¼ 0:6097 and Rn

t¼1 ¼ 0:2644: The 90% HPD credible intervals for y and Rðt ¼ 1jyÞ are

Table II. Bayes predictive estimates and HPD prediction intervals for Example 1.

k *Y ðkÞ ðlk; ukÞ

1 0.6010 ð0:0719; 1:0068Þ
2 0.9260 ð0:3081; 1:3886Þ
3 1.1924 ð0:5086; 1:6865Þ
4 1.4379 ð0:6897; 1:9625Þ
5 1.6794 ð0:8628; 2:2379Þ
6 1.9293 ð1:0361; 2:5281Þ
7 2.2014 ð1:2171; 2:8513Þ
8 2.5176 ð1:4164; 3:2372Þ
9 2.9255 ð1:6522; 3:7554Þ
10 3.5933 ð1:9719; 4:6693Þ
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ð0:4534; 0:6989Þ and ð0:0856; 0:3568Þ; respectively. Consider a future sample of size N ¼ 10 from
the same distribution. The Bayes predictive estimates and the corresponding 90% HPD
prediction intervals for the kth, 14k410; failure times are reported in Table IV. It can be seen
that the HPD prediction interval becomes wider when k increases.

6.2. Simulation results

In the following, the maximum likelihood estimates and Bayes estimates of the parameter y and
the RðtjyÞ are compared via Monte Carlo simulation. Using the method given in Section 6.1, the
progressively type II censored samples from Rayleigh distribution with parameter y having
square-root inverted-gamma prior density were generated for ða; bÞ ¼ ð2; 5Þ; ð6; 1:5Þ; t ¼ 0:5; and
different combinations of n; m; and censoring schemes r: For simplicity in notation, we will
denote these censoring schemes, for example, by ð4*0; 15Þ which represents the censoring
scheme r ¼ ð0; 0; 0; 0; 15Þ: Table V provides the estimated risks of the maximum likelihood
estimators and Bayes estimators. The estimated risks were calculated as the average of squared
deviations. All the results were computed over 10 000 simulations. From Table V, we can see
that the Bayes estimates are better than their corresponding maximum likelihood estimates for
the considered cases. However, more investigations are needed to see the robustness of the
choice of the prior.

Table III. Progressively type II censored sample for Example 2.

i 1 2 3 4 5 6 7

xi 0.1788 0.2892 0.3300 0.4212 0.4560 0.4848 0.5184
ri 0 0 3 0 0 2 0

i 8 9 10 11 12 13

xi 0.5196 0.6780 0.6864 0.8412 0.9312 1.2792
ri 0 2 0 2 1 0

Table IV. Bayes predictive estimates and HPD prediction intervals for Example 2.

k *Y ðkÞ ðlk; ukÞ

1 0.2520 ð0:0304; 0:4118Þ
2 0.3883 ð0:1292; 0:5668Þ
3 0.5000 ð0:2131; 0:6873Þ
4 0.6030 ð0:2892; 0:7987Þ
5 0.7042 ð0:3619; 0:9100Þ
6 0.8090 ð0:4348; 1:0273Þ
7 0.9232 ð0:5109; 1:1579Þ
8 1.0557 ð0:5947; 1:3141Þ
9 1.2268 ð0:6936; 1:5244Þ
10 1.5068 ð0:8270; 1:8967Þ
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Table V. Estimated risks of the maximum likelihood estimates (MLE) and Bayes estimates.

Parameter y Reliability function Rðt ¼ 0:5jyÞ

n m Censoring scheme MLE Bayes MLE Bayes

Prior parameters ða; bÞ ¼ ð2; 5Þ
20 5 ð4*0; 15Þ 0.0611 0.0268 0.0490 0.0301

ð15; 4*0Þ 0.0627 0.0275 0.0500 0.0306
ð5; 5; 5; 2*0Þ 0.0615 0.0275 0.0506 0.0314
ð3; 3; 3; 3; 3Þ 0.0620 0.0274 0.0504 0.0309
ð0; 15; 3*0Þ 0.0604 0.0266 0.0492 0.0301

10 ð9*0; 10Þ 0.0538 0.0328 0.0515 0.0382
ð10; 9*0Þ 0.0524 0.0319 0.0494 0.0364

ð4*0; 5; 5; 4*0Þ 0.0527 0.0321 0.0498 0.0367
15 ð14*0; 5Þ 0.0503 0.0352 0.0505 0.0404

ð5; 14*0Þ 0.0492 0.0345 0.0498 0.0399
25 10 ð9*0; 15Þ 0.0524 0.0319 0.0493 0.0363

ð15; 9*0Þ 0.0527 0.0321 0.0500 0.0369
15 ð14*0; 10Þ 0.0496 0.0348 0.0505 0.0404

ð10; 14*0Þ 0.0512 0.0360 0.0522 0.0419
20 ð19*0; 5Þ 0.0485 0.0367 0.0505 0.0423

ð5; 19*0Þ 0.0488 0.0370 0.0513 0.0430
50 20 ð19*0; 30Þ 0.0489 0.0370 0.0514 0.0431

ð30; 19*0Þ 0.0484 0.0365 0.0498 0.0417
25 ð24*0; 25Þ 0.0474 0.0377 0.0506 0.0437

ð25; 24*0Þ 0.0476 0.0379 0.0514 0.0444
30 ð29*0; 20Þ 0.0474 0.0391 0.0511 0.0451

ð20; 29*0Þ 0.0472 0.0388 0.0507 0.0447

Prior parameters ða; bÞ ¼ ð6; 1:5Þ
20 5 ð4*0; 15Þ 1.8892 1.8335 0.0037 0.0016

ð15; 4*0Þ 1.6789 1.6215 0.0039 0.0016
ð5; 5; 5; 2*0Þ 1.6653 1.6093 0.0040 0.0016
ð3; 3; 3; 3; 3Þ 1.4154 1.3472 0.0040 0.0016
ð0; 15; 3*0Þ 2.2794 2.2232 0.0039 0.0017

10 ð9*0; 10Þ 1.2932 1.2659 0.0018 0.0013
ð10; 9*0Þ 1.5875 1.5643 0.0019 0.0013

ð4*0; 5; 5; 4*0Þ 1.7606 1.7408 0.0018 0.0013
15 ð14*0; 5Þ 1.5042 1.4897 0.0013 0.0011

ð5; 14*0Þ 1.6958 1.6834 0.0013 0.0011
25 10 ð9*0; 15Þ 1.6254 1.6020 0.0018 0.0013

ð15; 9*0Þ 1.5901 1.5684 0.0018 0.0013
15 ð14*0; 10Þ 1.4278 1.4134 0.0013 0.0011

ð10; 14*0Þ 1.4780 1.4635 0.0013 0.0011
20 ð19*0; 5Þ 2.8506 2.8469 0.0011 0.0010

ð5; 19*0Þ 1.5277 1.5185 0.0011 0.0010
50 20 ð19*0; 30Þ 1.4811 1.4713 0.0011 0.0010

ð30; 19*0Þ 1.5845 1.5744 0.0011 0.0010
25 ð24*0; 25Þ 1.3243 1.3160 0.0010 0.0010

ð25; 24*0Þ 1.5043 1.4965 0.0010 0.0010
30 ð29*0; 20Þ 2.5239 2.5208 0.0010 0.0009

ð20; 29*0Þ 1.4260 1.4195 0.0010 0.0009
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