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Abstract--A no vel multi-layer perceptrons ( MLP)-based speech recognition method is proposed in this study. In this 
method, the dynamic time warping capability o f  hidden Markov models ( H M M )  is directly combined with the 
discriminant based learning of  M L P  for the sake o f  employing a sequence of  MLPs (SMLP)  as a word recognizer. 
Each M L P  is regarded as a state recognizer to distinguish an acoustic event. Next, the word recognizer is formed by 
serially cascading all state recognizers. Advantages o f  both H M M  and M L P  methods are attained in this system 
through training the S M L P  with an algorithm which combines a dynamic programming (DP) procedure with a 
generalized probabilistic descent ( GPD ) algorithm. Additionally, two sub-syllable SMLP-based schemes are studied 
through application of  this method toward the recognition of  isolated Mandarin digits. Simulation results confirm 
that the performance of  the method is comparable to a well modeled continuous Gaussian mixture density H M M  
trained with the minimum error criterion. Not only does the S M L P  require less trainable parameters than the H M M  
system, but the former is more convenient for analysing internal features. With the aid of  internal feature selection, 
discarding the least useful parameters o f  S M L P  without affecting its performance is relatively easy. Copyright 
©1996 Elsevier Science Ltd 

Keywords---Neural network, Generalized probabilistic descent, Multi-layer perceptrons, Hidden Markov models, 
Speech recognition, Dynamic programming. 

1. INTRODUCTION 

Speech perception in the human biological system is 
known to be accomplished through a network of 
interconnected neurons. This knowledge motivates 
the application of artificial neural networks (ANNs) 
to speech recognition because they are designed to 
simulate human biological neural systems. Two main 
approaches of ANN-based speech recognition have 
been studied in recent years. One is the hybrid 
approach which combines a conventional time- 
normalization procedure with a competitive neural 
network such as multi-layer perceptrons (MLP) 
(Rumelhart, 1986; Pao, 1989; Hush & Home, 1993). 
A popular hybrid method employs an MLP to 
generate the emission probabilities of states for a 

Acknowledgements: The authors  would like to thank Tele- 
communica t ion  Laboratories, MOTC, Taiwan, ROC for their 
support of the database. The reviewers are also appreciated for 
their critical comments and suggestions. 

Requests for reprints should be sent to Wen-Yuan Cheu, M200, 
CCL/ITRI, Bldg. 11, 195-11 Sec. 4, Chung Hsing Rd., Chutung, 
31015 Taiwan, Republic of China (886-35-917815); E-mail: 
WYCHEN@M2SUN3.CCL.ITRI.ORG.TW 

continuous hidden Markov model (HMM) recogni- 
zer (Bourlard & Wellekens, 1990; Morgan & 
Bourlard, 1990; Renals et al., 1992, 1994; Bourlard 
et al., 1992). Another MLP/HMM hybrid method 
uses MLPs as front-end vector quantizers or labelers 
for a discrete HMM recognizer (Cerf et al., 1994; 
Rigoll, 1994). In a dynamic time-warping (DTW)/ 
MLP hybrid method, a DTW procedure is first 
employed to time-align the input utterance. Next, an 
MLP is followed to serve as a recognizer for 
distinguishing time-normalized input patterns (Sa- 
koe et al., 1989; Aikawa, 1991). Other hybrid 
methods which combine HMM or DTW with ANN 
have also been studied (Bridle, 1990; Niles & 
Silverman, 1990; Austin et al., 1991; Tebelskis & 
Waibel, 1991; Hassancin et al., 1994; Reichl et al., 
1994). 

Another approach is the time delay approach 
dealing with the time-alignment problem through 
mapping temporal variation of speech signals into 
interconnections existing between neurons of differ- 
ent delays (Ye et al., 1990). Time delay neural 
networks (TDNN) (Waibel et al., 1989; Lang & 
Waibel, 1990) and the temporal flow model (TFM) 
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(Watrous, 1990) are two well-known methods of this 
approach. In these two methods, speech recognizers 
are constructed by using some basic building blocks 
formed by interconnecting input signals of one to 
three frame's delay with hidden neurons for 
absorbing short-time temporal distortion in the 
input speech signals. 

A novel frame-based ANN speech recognition 
approach is proposed in this study. This approach 
directly combines the HMM method with the 
MLP-based pattern recognition method to employ a 
sequence of MLPs (SMLP) (Chen & Chen, 1991) 
as a word recognizer for solving the time-alignment 
problem. Each MLP in the SMLP is regarded as 
a state recognizer for distinguishing an acoustic 
event of the input speech signal. Next, the word 
recognizer is constructed through serially integrat- 
ing these state recognizers. The SMLP can be made 
to absorb the temporal variation of speech patterns 
by properly controlling the time period to remain 
in each individual MLP. In practice, this can be 
simply realized by dynamic programming. Some 
characteristics of the proposed approach are listed 
as follows. First, the SMLP has a dynamic time 
warping capability similar to an HMM. Therefore 
it is suitable for the classification of dynamic 
speech patterns. Second, the architectural frame- 
work of the SMLP has the same topology as that 
of the recognized word. The former is a left-to- 
right MLP sequence while the latter is a left-to- 
right phoneme sequence. Here, a two-level competi- 
tive training algorithm is proposed for the SMLP 
word recognizer. Each MLP is initially trained 
using the well-known back propagation algorithm 
to distinguish the corresponding phonemes. Next, 
the SMLP is trained to distinguish words by a 
proposed word-level discriminative training algo- 
rithm which is quite different from Morgan and 
Boulard's work. In their hybrid HMM/MLP 
approach, MLP output values are considered to be 
estimated maximum a posteriori (MAP) probabil- 
ities for pattern classification. It helps frame level 
performance but hinders word level performance 
during recognition phase (Morgan & Bourlard, 
1990). In contrast to the approach, the proposed 
word level discriminant training algorithm in this 
study is consistent with the recognition phase. 

The rest of this paper is organized as follows. The 
proposed SMLP speech recognition approach is 
discussed in Section 2. Two sub-syllable based 
SMLP speech recognizers are studied in Section 3 
for isolated Mandarin syllables recognition. They are 
based on the initial-final and the phonemic sub- 
syllable models, respectively. Performances of these 
two recognizers are examined by simulations dis- 
cussed in Section 4. Conclusions are finally given in 
the last section. 

Score of Class i 

/ .  • • I with I • • 
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FIGURE 1. A sequential multi-layer percepb'ons comprising ol T 
MLPs. The score of the/th class Is accumulated along the path 
determined by the Vlterbl algorithm between the Input and the/th 
class. 

2. THE SMLP SPEECH RECOGNITION 
APPROACH 

The proposed SMLP speech recognition approach is 
presented in this section. The basic architecture of the 
SMLP and the training algorithm are discussed in 
detail. 

2 . 1 .  T h e  B a s i c  A r c h i t e c t u r e  o f  t h e  S M L P  

The block diagram of an SMLP composed of T 
MLPs is shown in Figure 1. Each MLP is a 
feedforward network with M output nodes represent- 
ing the M classes to be recognized. Since an MLP 
with two hidden layers is known to be more inclined 
to fall into bad local minima (Villiers & Barnard, 
1993), all MLPs used in this study consist of one 
hidden layer only. Each MLP functions as a state 
recognizer for identifying an acoustic event of the 
input speech utterance. The operation of the SMLP is 
explained as follows. An input utterance X with N 
frames is taken to be a sequence of feature vectors: 
X = { x ( l ) , . . . , x ( n ) , . . . , x ( N ) } ,  where x(n) is as- 
sumed to have C components: x(n) = 
{xl(n),  x2 (n ) , . . . , x c (n ) } .  Outputs of hidden neuron 

j and output neuron i of the ath MLP at time n can be 
expressed, respectively, by 

~ )  (n) - 1 
1 + e - ' ~  "'(") (1)  

(.) ---- E 
k 
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and 

I 
~ o , , ,  ~,)v,J = 1 + e-'"..°'~ ") (3) 

net~ ) (n) = ~ w! °) ~)(n) (4) 
J 

where weights wJH~ ) and w (°), respectively, connect 
input node k to hidden neuron j and hidden neuron j 
to output neuron i in the ath MLP. By accumulating 
scores calculated from constituent MLPs, the 
discriminant function of the /th class for classifica- 
tion is defined as 

f o I t/¢ 

g,<X,-)-- L~s.<x,w)¢ j (5) 

where Sio(X, w) is the score accumulated along the 
0th best path of matching X with the ith class, O is the 
number of warping paths, w is the parameter set of 
the SMLP, and ~ is a positive real number. The 
discriminant function gi(X,w) is continuous with 
respect to w if the selection of O equals the total 
number of possible warping paths. In practical 
applications, only a small number of O best paths 
are evaluated due to complexity considerations. The 
effect on performance degradation caused by 
reducing O has been found to be insignificant 
(Chang & Juang, 1993). The O best paths search in 
eqn (5) can be obtained either by modifying the 
Viterbi algorithm to include the O best paths at every 
state where the dynamic programming procedure is 
performed (Schwartz & Chow, 1990), or by using the 
tree-trellis based fast search algorithm (Soong & 
Huang, 1991) which is efficient both in computation 
and storage. If only the best path is considered in the 
discriminant function defined in eqn (5), the normal 
Viterbi search algorithm can be directly applied to 
find the best path as shown in Figure 1. The Sio(X, w) 
can be expressed as 

N 
smcx, w)= ~ ,  ~()~,o)(n) (6) 

n=l 

2.2. The Training Algorithm 

In general, the error rate of a given finite set of data is 
a piecewise-constant function of the recognizer 
parameters and, thus, is not easily optimized. Juang 
and others (Katagiri et al., 1991; Juang & Katagiri, 
1992; Chang & Juang, 1993) proposed a feasible 
approach to remove this difficulty. They defined a 
smooth 0-1 cost function to convert the mis- 
recognition measure into a differentiable, smooth 
error function to approximate the total error count. 
Consequently, system parameters can be optimized 
with respect to the smooth error function by 
employing gradient descent based techniques. They 
also developed a novel adaptive discriminant learning 
paradigm, i.e., the generalized probabilistic descent 
(GPD) algorithm, by generalizing the classical 
probabilistic descent method (Amari, 1967). The 
GPD algorithm is adopted in this study to train the 
SMLP. 

The procedure of applying the GPD algorithm to 
train the weights of the SMLP is stated as follows. By 
using the discrimination function defined in eqn (5), 
the mis-classification measure for an input utterance 
X belonging to the ~;th class is defined as (Chang & 
Juang, 1993) 

d~(X, w) = -g~ (X, w) + {gi(X, w)}7 

(7) 

where M is the number of classes and "r is a constant 
with a value greater than one. For simplicity, the 
short hand notation d for d~(X,w) is used in the 
following. The 7 is a factor used to control the degree 
of participation of all competing classes in the process 
of optimizing the SMLP weights. In eqn (7), a 
negative d implies a correct classification. 

The computation of eqns (5) and (7) would be 
quite time consuming since all of the time warping 
paths and competing classes are considered. One 
extreme case which has found extensive application in 
GPD studies is to let (, 7 ~ oo (Komori & Katagiri, 
1992; Chang & Juang, 1993). In that case, eqns (5) 
and (7) can be approximated by 

gi(X, W) = Sil (X, W) (8) 

where /~(n, 0) is the MLP corresponding to the 0th 
at the frame n, and .-,..,~°(0)(n ) is the warping path 

value of the ith output node of the /~(h, 0)th MLP. 
The final decision rule involves selecting the class 
with a maximal discriminant function, i.e., the input 
utterance is recognized as the ~;th class if 
g~(X, w) > gi(X, w) for all i(~ ~). 

d = l{-g~(X, w) + gx(X, w)} (9) 

where A is the most probable incorrect class. 
Equation (8) indicates that the discriminant function 
is measured only along the corresponding best path 
(0 = 1). Also, eqn (9) points out that only the correct 
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class and the most probable one among all incorrect 
classes are used in the classification decision. 

Next, the SMLP parameter set, w, is adjusted to 
minimize the error rate by using the GPD algorithm. 
A cost function, l(d, v) ,  is defined as (Devijver & 
Kittler, 1982) 

I(d,v) = ~_ h(r,u)dT- ( 10 )  
o o  

to evaluate the cost of  the current classification. Here 
v is a real, positive parameter to scale the d and 
h(r, v) is a well-behaved window function satisfying 
some mild conditions. When v ~ 0, h('r, v) is asked 
to converge to 8(7-) so as to make e(d, v) approximate 
the unit step function (i.e., £(d, v) = 1 if d />  0 and 
£(d, u) = 0 if d < 0). An example of such a window 
function is the Gauss Laplace function, i.e. 

[ 1 - 2  h(r, . )  = ~ exp (11) 

Notably, the cost function defined above is a 
monotonically increasing, differentiable function. A 
short-hand notation £(d) is used for g(d, v) in the 
following. Since a positive d implies an incorrect 
classification, )--~(d) approximately represents the 
total recognition error if v approaches 0. The 
objective of  the GPD algorithm is to recursively 
adjust the weights of  the SMLP to minimize ~ £(d). 
The change in the weights w! °) and ~ (H) qa "jka can be 
expressed through the GPD algorithm as 

A.(O) , , 0t(d) wO. ~ = -71tin ) ~ (12) 

Aw(n) O£(d) (13) 
#~ =-~/(m) 0w(H ) 

where r/(m) is the learning rate at the mth iteration. 
The derivative terms can actually be computed 
through application of  the chain rule as suggested 
by Rumelhart (1986) 

Oneti#(.,])( ) Ol(a~_ ~-~ Ol(a~ (o) n 
rgw!9 ) -- ~ (o) ~(o)  - ,j,~ .la(.,o=aOnet~o(.,o(n) - . - ~  

= E 6(0) (nX ,~(n,I) ' ' ~;().,1) (n) (14) 
nlf~(.,0=,~ 

Ol(d) = ~ Ol(d) Onet(H~,j~( , )(n) 
L-, (n) . (H) .lO(.,,)=~Onet)o(.,O(n) OW)k.~ 

nlB(n,l)=a 

where 6 (0) (n~ 6 (H) (n~ given by i#(n,t)~ J and j#(.,])~ J are 

!o )=  x(a) ot(a~ o~°)(.) 
~" o.et~o)(.) = o~O)( . )  O,~t~)(n) 

(15) 

Ol(d) ~O)(n)(l _ y(o)(.)) 

Oi(a~ Ol(c 0 o~H)(" )  

(16) 

Ol(d) (1 Y~)(n)  
- ). (17) 

Next, the O l ( d ) / O ~ ° ) ( n )  and Ot(d)lO~)(,) are 
computed on the basis of  simplified eqns (8) and (9). 

We obtain 

Ol(d) _ Ol(d) Od 

- I F ( d )  i f / = t ¢  

1 , 
- - - -  = + ~ l ( d )  i f / - - A  

0 else 

(18) 

or(a) _ x - .  x ( a )  o, , . ( .o)( , )  
- -  = ~ - ' # O ) ( n ~ w ( ? )  

u 

(19) 

A m p l i t u d e  
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F I G U R E  2. Der ivaUve  form of cost function with ~ = 0.2 and 0.3. 
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where u is an output unit and l'(d) is the derivative of 
l(d) with respect to d. 

The Gauss-Laplace function as shown in eqn (11) 
is selected in this study for/'(d). The scalar v depends 
on the iteration number, i.e., v = v(m) at the mth 
iteration. Figure 2 shows the derivative form of the 
cost function with v = 0.3 and 0.2. The following 
learning rate typically used in LVQ applications 
(Kohonen et al., 1988) is adopted in this study 

o(m) =n0(l-;)  (20) 

where r/0 is a positive small number and R is a large 
positive constant. Similarly, the following scale factor 
v(rn) is selected, i.e., 

v(m)= ~,o(1-R) (21) 

where v0 is a positive number. 
The GPD algorithm discussed above is ready to 

train the SMLP. However, a pre-training step is 
added to speed up the training process due to the fact 
that the GPD is a rather time-consuming algorithm. 
Specifically, all MLPs of the SMLP are first trained 
independently by the error back propagation (EBP) 
algorithm using sub-syllable training data obtained 
by pre-segmenting all training utterances. Next, the 
GPD algorithm is applied to refine the SMLP by 
considering the word-level discrimination. As all 
MLPs of the SMLP are properly trained by the 
EBP algorithm, those well-recognized utterances 
would obtain a sizable negative measure as defined 
in eqn (7). Hampshire and Waibel (1990) revealed 
that the output state space of an MLP trained with 
EBP has a fraction of miss space in which utterances 
are mis-recognized; however, the mean square errors 
were still lower than those of some portions of the hit 
space. They demonstrated that utterances in the miss 
space are located near the class boundary. Therefore, 
the cost function defined in eqn (10) would direct the 
GPD algorithm to place more attention on those 
utterances located near the class boundary than those 
which are well recognized. The decreasing v(m) 
would then cause the weight adjusting scheme to 
respond more effectively to confusing training 
utterances as the iteration progresses. 

3. SMLP-BASED ISOLATED MANDARIN 
SYLLABLE RECOGNITION 

In Mandarin speech, each character is pronounced as 
a monosyllable. An isolated Mandarin syllable can be 
phonetically decomposed into two sub-syllable units, 
i.e., initial and final. There are only 21 initials and 39 

finals in Mandarin speech. The initial of a syllable 
may not exist and is composed of a single consonant 
if it exists at all. The final always exists and consists of 
a vowel nucleus preceded by an optional medial and 
followed by an optional nasal ending. The number of 
medials, vowels and endings in Mandarin speech are 
three, nine, and four, respectively. Many isolated 
Mandarin syllables have quite similar phoneme 
constituents as a result of the simple phonetic 
structure of the syllable. The recognition of isolated 
Mandarin syllables is therefore a relatively difficult 
task even though their size is only 408. Two SMLP- 
based recognition methods are proposed in this study 
for distinguishing Mandarin syllables. Both methods 
utilize sub-syllable models as basic recognition units. 
One uses the initial-final model while the other uses 
the phoneme model. 

In the first method, the SMLP is composed of two 
MLPs which are used to discriminate initials and 
finals of syllables, respectively. An illustrative 
example of the method for recognizing isolated 
Mandarin digits is provided in Figure 3. In the 
second method, all of the Mandarin syllables are 
decomposed into the following phonetic structure: 

syllable = [consonant] + [medial] + vowel + [ending] 

where [ ] denotes an optional item. One MLP is used 
for each component of the above structures for 
phonemes discrimination. The SMLP therefore 

Score of Mandarin digit/chT/ 
# 

f . . . . . .  i C h l ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  " l  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i N J 13me~gnment/i/(n) 
. . . . . .  / i 

I ~rter~ A ~ m  
/ch/ . . . . .  / . . .  /ch./(n). . . . . .  i 

frame j 
. . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  

/I/ /ch/ /b/ /ieTnl /il ./~/ 
f " 'T  ""T " 'T " 

MLP MLP 
state 1 (nitial) state 2 (final) 

spectral analysis 

[ x(n)={:~(n), x2(n ) ..... Xc~n)} 

FIGURE 3. An SMLP composed of two MLPs for representing 
sub-syllable initials and finals. Ichl(n) and Ill(n) are respectively 
the outputs of Ichl in the initial MLP and I l l  in the final MLP at 
Ume n. 
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Score of Mandarindigit/lio'u/ 
6 

....................... I .............................................. ., 

i " 

:: /o//...I 11..Alignment [ .. ! 
i I I with 
', f l / l "  " "l V'terbi Algorithm • • i 

N/ . . . .  / , . . . N . ( n )  . . . . . . .  
/ frame 

spectral analysis 

[ x (n) = {:~ (n), x a(n) ..... Xc(n) } 

FIGURE 4. An SMLP based on the phoneme model for Mandarin 
syllable recognition. 

consists of four MLPs in the speech recognition 
system. The discriminant function of a reference 
syllable is calculated by using only those MLPs 
associated with phonemes of the syllable. For 
instance, the second MLP is not used for the 
calculation of the discriminant function of the 
syllable/san/since there exists no medial phonemes 
in /san/.  An illustrative example of the method is 
shown in Figure 4. 

Applying the initial-final or phonemic SMLP to 
isolated Mandarin syllable recognition has three 
distinct advantages. First, partial linguistic informa- 
tion that distinguishes confusing syllables has been 
incorporated into the architecture of the network 
through the use of one separate MLP for each sub- 
syllable unit. For instance, models are made for/1-/, 
/ j - /  and /iou/ in the initial/final model--instead of 
constructing separate models for syllables/li6u/and 
/ji6u/. Complete models for these two syllables 
subsequently have identical second halves, thereby 
causing the focus of their discrimination to be shifted 
onto the initial components. Second, the recognition 
of all 408 Mandarin syllables can be decomposed into 
two recognition tasks, respectively, for 21 initials and 
39 finals in the initial-final SMLP method, or into four 
recognition tasks, respectively, for 21 consonants, 3 
medials, 9 vowels and 4 endings in the phonemic 
SMLP method. This decomposition would cause the 
system to be feasible because its complexity is 
markedly lower than with the recognition system 
using a single MLP. Third, a smaller training set is 

TABLE 1 
Phonetic Symbols of Mandarin Digits 

Digit Yale" 

0 li~n b 
1 7 
2 er 
3 s~n 
4 s'z 
5 ~J 
6 li6-fi 
7 chi  
8 b~ 
9 ji~u 

" The phonetic symbols are in Yale system. 
b Tone Description 

- high level 
/ high rising 
V low rising 

high fall ing to low 

required for large vocabulary speech recognition since 
many syllables share the same sub-syllable units of 
initials, finals, or phonemes. 

The SMLP-based approach, although proposed 
here for Mandarin syllable recognition, can also be 
extended for speech recognition in other languages. 
Basically, each word can be first decomposed to 
recognize a concatenated sequence of phonemes, and 
then a phonemic SMLP is constructed to recognize 
words. 

4. EXPERIMENTS 

Although the proposed approach is potentially 
suitable for large-vocabulary speech recognition, its 
feasibility is only explored here via a simpler task of 
recognizing ten Mandarin digits. The phonetic 
structures of these ten digits are summarized in Table 
1. Both recognition methods presented in Section 3 
were examined. The database used in our simulations 
is provided by Telecommunication Laboratories (TL) 
(Liou et al., 1990). It consists of utterances of 100 
speakers including 50 male and 50 female speakers. 

TABLE 2 
Distribution of Ages for the 100 Speakers 

Age 15-20 21-25 26-30 31-35 35-40 41-45 

Male 0 0 26 14 8 2 
Female 1 4 25 15 3 2 

TABLE 3 
Oistributlon of NaUve Languages for the 100 Speakers 

Mandarin 
Native and 
language Mandarin Amoyese Amoyese HakkineseOthers 

Male 9 32 4 4 1 
Female 11 19 5 13 2 
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TABLE 4 
Recognition Results over Testing Data ol the Minimum Error Training for Continuous Gousslan 

Mixture Density HMM method 

Input No. of No. of mixtures 
features states 2 3 4 5 6 7 8 9 10 

16 energy 2 89.4 92.3 94.2 94.0 93.8 94.0 94.5 93.0 93.6 
spectra 3 93.7 94.0 94.2 95.3 94.5 94.7 94.9 95.0 93.8 

4 93.8 93.6 95.1 95.0 94.6 94.0 94.4 94.3 93.3 
5 93.5 95.2 96.1 95.6 95.2 95.5 95.0 94.4 93.0 
6 94.6 95.1 96.1 95.5 96.2 95.6 94.8 95.4 93.5 
7 95.1 95.8 96.1 95.6 96.1 95.9 95.9 95.5 95.2 

16 energy 2 94.3 94.4 95.7 97.1 97.1 97.4 97.5 97.8 97.5 
spectra and 3 95.9 97.7 97.4 97.3 9 7 . 4  97.4 97.8 97.8 98.0 
16 delta 4 97.4 97.7 97.7 98.1 97.8 98.2 98.0 97.7 98.1 
energy 5 97.5 98.6 98.0 9 8 . 5  98.3 98.2 98.2 98.4 97.9 
spectra 6 98.1 98.5 98.3 98.7 98.7 98.8 98.4 98.4 98.3 

7 98.4 98.6 98.5 98.5 98.5 98.7 98.2 98.4 98.4 
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Each speaker repeatedly uttered the ten digits twice on 
different days, i.e., one repetition for training and 
another  for testing. Notably,  all the recognition results 
listed in this study were obtained over outside testing 
data. All these speakers were born and educated in 
Taiwan. Distributions of  their ages and native 
languages are summarized in Tables 2 and 3, 
respectively. All original recordings were first 
collected on a SONY PCM-2500 digitization recorder 
through a Beyer dynamic M500N microphone in a 
moderately noisy room. These recordings were then 
played back and digitized into 16-bit samples at a rate 
of  20 kHz using a DSC-200 digitizer. Next, signals were 
pre-emphasized with a high-pass filter, 1 - 0.95z - l .  A 
short-time spectral analysis by 512-point F F T  was 
performed over every 25.6-ms Hamming-windowed 
frame with a 12.8-ms frame shift. Next, the spectrum of  
each frame was compressed nonlinearly into 16 
triangular bands distributed in mel-scale according 
to a model of  auditory perception (Bladon, 1985). The 
energy spectra of these 16 bands were then log- 
compressed and normalized by the average (Dautrich 
et al., 1983). Besides these 16 features, 16 delta energy 
spectra which are the difference energy spectra of  two 
frames separated by 51.2 ms were also taken as 
recognition features. 

Next,  a series of  experiments were performed on a 
Convex-240 parallel computer. First, a benchmark 
test using the continuous H M M  method with a 
minimum error training algorithm (ME-HMM) 
(Rainton & Sagayama, 1992) was conducted for 
performance comparison. Each isolated digit was 
modelled in the method as a left-to-right, single- 
transition network. All of  the H M M  models were set 
to have the same number of  states. One reasonable 
approach of  determining the number of  states in an 
H M M  model would be to set it approximately equal 
to the number of  phonemes of  the word (Rabiner, 
1989). Therefore, the optimal state number  was 
determined here empirically by varying it from two 

to seven since the maximum number  of  phonemes in 
a Mandarin syllable is four. The number of  the 
Gaussian mixture components  used for every state 
was also varied from two up to ten to observe what 
accuracy was achievable when HMMs had a 
sufficient number of  Gaussian mixture components. 
For  minimum error training o f  all H M M  models, the 
following sigmoid function was selected as the cost 
function: 

1 
l(d) - 1 + exp(-a(m)d) (22) 

where 

m 

a(m) = 1 100,000" (23) 

The recognition results obtained by the M E - H M M  
method are listed in Table 4. The best recognition 
rate, 98.8%, was achieved for the case of  six states 
and seven Gaussian mixture components with 16 
spectral features and their short-term time differences 
as inputs. 

Some parameters were determined in advance 
before testing the two proposed schemes. First, 
input recognition features of  each frame were 
normalized to lie between - 1  and + 1 (Waibel et al., 
1989). Second, both the 00 in eqn (20) and the v0 in 
eqn (21) were empirically set to 0.3. Third, the 
constant R was set to 100,000 (= 10digits x 
100 speakers x 100 iterations). 

4.1. The Initial-Final S M L P  Recognition Method 

From Table 1, these ten digits are composed of  five 
i n i t i a l s - - / l / , / s / , / ch / , / b / , / j / - - and  eight finals--/ien/, 
/i/, /er/, /an/, /z/, /u/, /iou/, /a/. As a result, the 
number of  output  nodes is set to five for the MLP 
representing initials and is set to  eight for the MLP 
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TABLE 5 
Recognition Results over Testing Data of SMLPs with Initial- 

Final Model 

Input Recogn. rate 
features Condition Initial MLP Final MLP (%) 

16 energy SMLP-A1 (16 30 5) a (16 55 8) 96.4 
spectra SMLP-A2 (16 35 5) (16 60 8) 96.4 

SMLP-A3 (16 40 5 (16 65 8) 96.0 

16 energy SMLP-A4 (32 15 5) (32 15 8) 98.3 
spectra and SMLP-A5 (32 20 5) (32 20 8) 97.7 
16 delta SMLP-A6 (32 30 5) (32 30 8) 97.7 
energy 
spectra 

a(16 30 5) is referred to as the MLP consisting of a two layer 
structure with 16 inputs, 30 hidden units and 5 outputs. 

representing finals. A two-stage training procedure 
was apphed to train the SMLP. First, the two 
constituent MLPs were independently trained by 
the conventional EBP algorithm using initial and 
final sub-syllable training data obtained by manually 
segmenting all training utterances. In the EBP 
training, the target was set to 0.95 for the output 
node of the correct class; otherwise it would be set to 
0.05. After the first-stage training converges, the 
SMLP is then refined by the GPD training algorithm 
to consider word-level discrimination. Several con- 
figurations of the SMLP were examined since no 
relatively easy approach of determining the optimal 
number of hidden neurons in each MLP is currently 
available. Recognition results of the method are listed 
in Table 5. This table indicates that (x ,y ,  z) denotes 
that the MLP has a two-layer structure with x inputs, 
y hidden units, and z outputs. For the initial-final 
SMLP, the best recognition rate, 98.3%, was 
achieved for the case of SMLP-A4. 

4.2. The Phonemic SMLP Recognition Method 

In the method of using phonemic SMLP, the eight 
finals (/ien/, /i/, /er/, /an/, /z/, /u/, /iou/, /a/) are 
further decomposed into one medial (/i/), seven 
vowels (/6/, /i/, /er/, /a/, /z/, /u/, /o/) and three 
endings (/rig/,/u/,/n/). The SMLP therefore has four 
MLPs with five, one, seven, and three output nodes, 

respectively. The training procedure of the method is 
similar to that of the initial-final SMLP recognition 
method. In the first-stage training, all training 
utterances were pre-segmented into constituent 
phonemes for independently training the four 
MLPs. This is accomplished by further dividing the 
final part of each utterance by a minimum error 
segmentation algorithm (Svendsen & Soong, 1987). 
Table 6 lists the recognition rates of the method, for 
six cases which use different numbers of hidden 
neurons in these four MLPs. The best recognition 
rate, 98.8%, was achieved by the case of SMLP-B5. 
The performance is comparable to that of the ME- 
HMM method. 

4.3. Discussion and Analysis 

Although the best results for the ME-HMM and the 
SMLP achieved the same recognition rate of 98.8%, 
Tables 4-6 reveal that only the well modeled ME- 
HMMs are comparable to the phonemic SMLP. If 
performances of the initial-final SMLP (with two 
MLPs) and the phonemic SMLP (with four MLPs) 
are compared with those ME-HMMs having two and 
four states, respectively, the SMLP is superior to the 
ME-HMM. Besides, some advantages of the SMLP 
system are discussed in the following sections. 

Detailed analyses of the SMLP-B5 case are 
worthwhile since a more thorough understanding 
regarding the behavior of the SMLP can be obtained. 
Three kinds of data analyses were performed to 
explore the activities of nodes in the hidden layer, i.e., 
the relationship between activities of hidden nodes 
and weights of connections to the output layer, and 
the segmentation of input utterances. Observations 
were undertaken for both well-recognized and 
poorly-recognized utterances. 

First, the activities of nodes in the hidden layer 
were examined. These activities were calculated 
through averaging responses of overall inputs of a 
phoneme in a specific syllable. The activities of 
hidden nodes in the first MLP for those Mandarin 
digits having consonants are discussed here. Figure 5 
illustrates the activities of hidden nodes in the first 
MLP. Figures 5b and 5c demonstrate that the output 

TABLE 6 
Recognition Results over Testing Dats of SMLPs with Phoneme Model 

Input features Condition Initial MLP Medial MLP Vowel MLP Ending MLP Rate (%) 

16 energy spectra SMLP-B1 (16 30 5) (16 6 1) (16 37 7) (16 17 3) 96.1 
SMLP-B2 (16 35 5) (16 8 1) (16 42 7) (16 20 3 / 96.8 
SMLP-B3 (16 37 5 (16 10 1) (16 44 7) (16 22 3) 96.6 

16 energy spectra and 16 SMLP-B4 (32 20 5) (32 5 1) (32 25 7) (32 12 3) 98.6 
delta energy spectra SMLP-B5 (32 30 5) (32 6 1) (32 37 7) (32 17 3) 98.8 

SMLP-B6 (32 35 5) (32 8 1) (32 42 7) (32 20 3) 98.5 
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FIGURE 5. Mean of hidden outputs In the first MLP averaged overall inputs: (a) I1-1 of 1116nl; (b) Is-I of s in / ;  (c) Is-I of Is~l; (d) I1-1 of 1116ul; 
(e) Ioh-I o f / c h i / ;  (f) Ib-I o f / b & / ;  (g) IJ-I o f / l i e u / .  
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FIGURE 6. (a) Results of the acitivitles of hidden nodes in Figure 
5d minus those In Figure 5g; (b) weights connecting hidden 
nodes and output I I I  in the first MLP; (c) weights connecting 
hidden nodes and output IJl in the first MLP. 

patterns of hidden nodes for the inputs/s-/ 's/in/sAn/ 
and/s  2/are rather similar to each other in spite of 
the spectra of these two sounds not being exactly 
identical due both to different co-articulations and 
the tone difference in these two syllables. The same 
effect was observed in another illustrative example 
provided in Figures 5a and 5d for the inputs/l-/'s in 
/li~n/ and /liru/. From many observations of the 
same effect in the analysis, we can conclude that the 

1.0 ,= 

0 . 8 .  

0 . 6 .  

0 . 4 .  

0 . 2 .  

0.0 ,I,,,,,,Jl,,,,,, 
6 11 16 

(b) 

I I  II 
21 26 31 36 

hidden node 

FIGURE 7. Mean of hidden node outputs in the third MLP 
averaged over all inputs: (a) ~ / ;  (b)//~,/. 

hidden nodes of MLPs in the SMLP have learned to 
produce similar output patterns for inputs belonging 
to the same category. 

The relationship between activities of hidden 
nodes and weights of connections to the output 
layer was examined next. The purpose of the analysis 
was to explore how the SMLP distinguishes 
confusing words. Therefore, only those Mandarin 
digits differing in a single phoneme were selected. The 
competition between Mandarin digits /liru/ and 
/ j i r u /was  first verified. Average responses of hidden 
nodes in the first MLP to the input /1- /of / l i ru /and  
to the input / j - /of / j io~/are  calculated and displayed 
in Figures 5d and 5g, respectively. The differential 
activities of hidden nodes calculated by subtracting 
the average responses in Figure 5g from those in 
Figure 5d are displayed in Figure 6a. Weights of 
connections between hidden nodes and the two 
output nodes, /1/ and /j/, are plotted in Figures 6b 
and 6c, respectively. Those figures indicate that the 
hidden node 19, which strongly responds to the input 
/1-/of/ l iru/(see Figure 6a), is positively and heavily 
weighted to excite the output/1/ (see Figure 6b); in 
addition, it is negatively weighted to inhibit the 
output / j / (see  Figure 6c). On the other hand, some 
hidden nodes, e.g., nodes 11 and 28, which strongly 
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FIGURE 8. (e) Results of the ecUvities of hidden nodes in Figure 
7a minus those in Figure 7b; (b) weights connecting hidden 
nodes and output I i l  in the third MLP; (c) weights connecting 
hidden nodes and output node lul  in the third MLP. 

respond to the input / j - /of / j i6u/(see  Figure 6a), are 
positively weighted to excite the output/j/(see Figure 
6c) and are negatively weighted to inhibit the output 
/1/ (see Figure 6b). Another example is the 
competition between digits /~/ and /~ / .  Average 
responses of hidden nodes in the third MLP to inputs 
/~/ and /~/ are shown in Figures 7a and 7b, 
respectively. The differential activities of them are 
displayed in Figure 8a. Weights of connections 
between hidden nodes and the two output nodes,/i/  
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FIGURE 9. A well-recognized Mandarin digit 1116ul: (a) spectro- 
gram; (b) outputs of MLPs corresponding to phonemes I I I ,  Ill, Io l  
and lul .  The boundaries located a! frames 7, 17, and 24 can be 
detected by the DP algorithm. 

and/u/, are plotted in Figures 8b and 8c, respectively. 
These figures indicate that the hidden node 33 which 
strongly responds to the input/ f i / (see  Figure 8a) is 
negatively weighted to inhibit the output node/ i / (see 
Figure 8b) and is positively weighted to excite the 
output node /h/ (see Figure 8c). Similar excitation 
and inhibition phenomena have also been observed 
for other pairs of confusing digits. We therefore 
conclude that the well-trained SMLP is highly 
capable of distinguishing between confusing digits. 
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FIGURE 10. A well-recognized Mandarin digit/chi/: (a) spectro- 
gram; (b) outputs of MLPs corresponding to phonemes I c h / a n d  
/ i / .  The boundaries located at frame 17 can be detected by the 
DP algorithm. 
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FIGURE 11. A well-recognized Mandarin digit / l ieu/ :  (a) 
spectrogram; (b) outputs of MLPs corresponding to phonemes 
/Jl, I i l ,  I o / a n d  lu / .  The  boundaries located at frames 6 ,13 ,18  can 
be detected by the DP algorithm. 

From Figures 5--8, analysing internal features is 
convenient for the SMLP system, but is difficult for 
HMM systems. Internal feature selection provides a 
more thorough understanding as to which parameters 
of the SMLP system make the greatest contribution 
to the recognition performance. Consequently, 
discarding the least useful parameters of the SMLP 
without affecting its performance is relatively easy. 
For instance, the hidden nodes 1, 2 and 23 in the first 
MLP are not functioning elements of the SMLP-B5 
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FIGURE 12. Mandarin digit I l ibul  was misreCognized for/Ji6u//: 
(Is) spectrogram; (b) output values of MLPs corresponding to 
phonemes I I I ,  I i / ,  I o l , / u / a n d  IJl. 
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FIGURE 13. Mandarin digi t /1 / /was misrecognized fo r /c l~ / :  (a) 
spectrogram; (b) output values of MLPs corresponding to 
phonemes Ichl  and/ I / / .  

case since their outputs are very close to zero for all 
inputs (Figure 5). Without any re-training procedure, 
the recognition result over the testing data for 
annihilating these three hidden nodes still retains 
98.8°,/0, and 114 parameters of the SMLP-B5 have 
been saved. 

Next, segmentations of input utterances by the 
SMLP were examined. Typical examples for some 
well-recognized utterances are shown in Figures 9--11. 
Spectrograms and related outputs of MLPs for these 
utterances are shown in part (a) and (b), respectively 
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of these figures. Parts (a) and (b) of these figures 
reveal that all boundaries of phonemes detected 
automatically by the DP algorithm match quite well 
with the corresponding spectral transitions. Next, the 
recognition results of some incorrectly recognized 
utterances were examined for the sake of under- 
standing the cause of mis-classification of the SMLP 
recognizer. A typical example that mis-recognizes an 
utterance o f / l i 6u / a s  / j i6u/ is shown in Figure 12. 
Actually, only the consonant part has become 
confused. Figure 12a is the spectrogram of the input 
utterance of/li6u/. Outputs of MLPs corresponding 
to /1 / , / j / , / i / , / o / ,  a n d / u / a r e  plotted in Figure 12b. 
This figure reveals that output /j/ attained higher 
values in response to the consonant part of the input 
utterance than those of output /1/. This would 
account for why the utterance was inaccurately 
recognized. Figure 13 shows yet another example in 
which an utterance of f i / i s  misrecognized as /cM/ .  
Figure 13a reveals that most of the energy in the 
initial part of the utterance are located in high- 
frequency bands. As shown in Figure 13b, this causes 
the output /oh/ to  strongly respond to the initial part 
of the input utterance and cause the mis-classifica- 
tion. An example of yet another type of mis- 
classification is provided in Figure 14. An utterance 
of f i /was  inaccurately recognized as/f i / .  Outputs on 
the third MLP corresponding to /i/ and /u/ are 
plotted in Figure 14b. This figure reveals that both/ i /  
and /u/ did not respond well to the entire input 
utterance and finally caused the recognition error. 
Further investigations have been performed to find 
the causes of those faulty segmentations. Those 
results indicated that most of these faulty segmenta- 
tions result from the incapability of the hidden layers 
of the SMLP to unambiguously distinguish the 
correct acoustic events from incorrect ones. 

Based on above analyses, we can conclude that 
nodes on the hidden layers of MLPs act as 
recognizers of basic acoustic events and the SMLP 
serves as a mechanism to link the sequence of 
detected acoustic events for forming word tem- 
plates. Recognition of a syllable in the SMLP can 
then be regarded as distributively recognizing its own 
constituent acoustic events. Similar roles of hidden 
layers on speech recognition have also been found in 
TDNN by Waibel et al. (1989). Their investigation 
revealed that the hidden nodes on the first layer of the 
TDNN have learned to search for basic acoustic 
events; in addition, the lower layers of the network 
have learned to form alternate representations linking 
different acoustic events. 

Finally, an analysis is performed of the complex- 
ities of the proposed approach and the CDHMM in 
terms of both the number of coefficients or weights 
used in their models and computations needed in the 
testing. Table 7 lists the numbers of coefficients used 

TABLE 7 
Coefficients Used In CDHMM and SMLP for ten Mandarin Digits 

Recognition 

CDHMM 6 states, 7 mixtures, 
32 inputs SMLP-B5 

Transition prob. 
6 x 6 x  1 0 = 3 6 0  
Mixture coefficients 
6 x 7 x  1 0 = 4 2 0  
Gaussian density 
Mean vector 
6 x 7 x 32 x 10 = 13,440 
Covariance matrix 
6 x 7 x 32 x 10 = 13,440 

Total = 27660 

Initial MLP (32 30 5) 1145 

Medial MLP (32 6 1) 205 

Vowel MLP (32 37 7) 1487 
Ending MLP (32 17 3) 615 

Total 3452 

in the SMLP-B5 and the CDHMM with six states 
and seven mixtures. These two cases are selected 
because they yielded the best results in our studies of 
using the SMLP approach and of using the CDHMM 
method, respectively. This table reveals that substan- 
tially fewer coefficients were used in the SMLP-B5. 
The computational complexities of these two 
methods are analysed as follows. In the recognition 
phase, the main computational load is determined by 
calculating the model likelihoods for the CDHMM 
and the discriminant functions for the SMLP. Both 
of these two scores are computed by using the Viterbi 
algorithm requiring the order of M x K 2 x N 
computation for the case of M classes in vocabulary 
size, K states in the model, and N frames of the input 
utterance. In this study, the best results attained when 
using the SMLP and the HMM are four states and six 
states, respectively. The computation power and the 
memory resource required for the SMLP system are 
obviously much less than the HMM system. 

5. CONCLUSIONS 

A novel SMLP-based approach for speech recogni- 
tion has been discussed in this study. The approach 
can be characterized as successfully solving the time- 
alignment problem while retaining the competitive 
learning of ANN via incorporating an SMLP 
network with a word level discriminative training 
algorithm which is different from Morgan and 
Bourlard's work. Validation of the proposed 
approach has been confirmed by simulations on 
speech recognition of isolated Mandarin digits. The 
SMLP system requires less parameters and computa- 
tion power than the HMM system during the 
recognition phase. In addition, the SMLP system 
provides a more feasible analysis of internal feature 
selection than the HMM system. Experimental results 
have shown that discarding the least useful para- 
meters of SMLP through analysing the internal 
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feature selection without affecting the performance of 
the SMLP system would be relatively easy. 

With its superiority in discriminating isolated 
Mandarin digits, future studies should extend this 
approach toward applications of isolated speech 
recognition for all Mandarin syllables. 
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