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The classification problem is an important topic in knowledge discovery and ma-

chine learning. Traditional classification tree methods and their improvements have been 
discussed widely. This work proposes a new approach to construct decision trees based 
on discriminant functions which are learned using genetic programming. A discriminant 
function is a mathematical function for classifying data into a specific class. To learn 
discriminant functions effectively and efficiently, a distance-based fitness function for 
genetic programming is designed. After the set of discriminant functions for all classes is 
generated, a classifier is created as a binary decision tree with the Z-value measure to 
resolve the problem of ambiguity among discriminant functions. Several popular data-
sets from the UCI Repository were selected to illustrate the effectiveness of the proposed 
classifiers by comparing with previous methods. The results show that the proposed 
classification tree demonstrates high accuracy on the selected datasets.  
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discriminant function, decision tree, classifier 
 
 

1. INTRODUCTION 
 

The task of classification is to classify unknown objects into predefined classes 
based on their observed attributes using a classification model learned from a set of 
training data. Many applications, such as characters recognition, decision-making and 
disease diagnosis, can be viewed as extensions of the classification problem [14]. A 
classifier can be modeled using different structures such as decision graphs, decision 
trees, neural networks and rules. Reducing the processing time and increasing the 
classification rate are the two main issues in the classification problem. Many methods 
for designing classifiers have been proposed, such as the Bayesian classifier, decision 
trees, distance- based classifiers and neural network classifiers. However, each model has 
its own advantages and disadvantages. It is not easy for a classifier to be trained 
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efficiently and classify objects effectively simultaneously. To find faster learning 
methods for building classifiers with high classification accuracy, some newly developed 
techniques have been recently applied to the classification problem, such as association 
rules-based learning [22], support vector machines [12], and evolutionary computation 
[17, 18]. Related research of the classification problem is reviewed briefly in section 2. 

A traditional decision tree is a tree-like structure in which each internal node 
performs a test on one of the attributes, each branch represents an outcome of the test, 
and each leaf node denotes a class. This paper proposes a new decision tree in which 
each internal node is represented by a discriminant function used to determine whether 
an object belongs to a specific class or not. A discriminant function is a mathematical 
expression that maps a set of numerical features to a specific range for identifying the 
class of objects. A classifier using discriminant functions is efficient since mathematical 
functions can be easily calculated. The classifier is also concise because the number of 
functions does not exceed the number of predefined classes, as Fig. 1 shows. However, 
two problems have to be considered when a classifier uses discriminant functions as 
decision nodes. First, it is a difficult to learn accurate discriminant functions. Second, 
two ambiguous situations, conflict and reject, may occur while classifying multi-category 
data using discriminant functions. The conflict case occurs when an object is recognized 
by two or more discriminant functions simultaneously. The reject case arises when an 
object is recognized by no discriminant function. Both situations decrease the classifi- 
cation accuracy. 
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Fig. 1. A classifier using discriminant functions.  

 
Genetic programming (GP) technique was proposed by Koza [17, 18]. GP can dis-

cover the underlying data relationships and present them as expressions. In this paper, we 
apply GP to generate discriminant functions by proposing a distance-based fitness func-
tion. Using the distance-based fitness function, discriminant functions can be learned 
more efficiently and effectively than using the traditional fitness function based on accu-
racy in genetic programming. After the discriminant functions are generated, the testing 
results of discriminant functions on the training data are used to construct a binary deci-
sion tree based on functions. The classification tree is then used to resolve the conflict 
cases among the discriminant functions. An object following the root of the classification 
tree can only be recognized by at most one of the discriminant functions. If an object 
cannot be recognized by any node of the classification tree, the resolution of Z-value 
measure is proposed for the reject case. Five well-known datasets were selected to show  
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the effectiveness of the proposed classifier: Fisher’s Iris dataset, Wisconsin Breast Can-
cer dataset, BUPA liver dataset, Vehicle dataset and PIMA dataset [2]. The experimental 
results are discussed in detail and compared with previous works. 

The rest of this paper is organized as follows. Section 2 briefly reviews related work 
on classification. Section 3 proposes the distance-based fitness function for genetic pro-
gramming to learn effective discriminant functions. Section 4 gives the proposed algo-
rithms for constructing a decision tree based on discriminant functions and the Z-value 
measure. Section 5 describes and discusses the experimental results. Finally, conclusions 
are drawn in section 6. 

2. RELATED RESEARCH ON CLASSIFICATION PROBLEMS 

Many learning approaches are available for constructing classifiers. The Bayesian 
classifier and the decision tree are well-known and widely used. The Bayesian classifier 
[13] is based on Bayesian decision theory, which learns the conditional probability of 
each attribute given a specific class from training data. Classification is accomplished by 
employing Bayes rule to compute the probability of each class given the attributes of an 
instance and then assigning to the class with the highest probability. The decision tree is 
a tree-like structure where each internal node in the decision tree denotes a decision on 
an attribute. Each branch represents a decision outcome of the decision and leaf nodes 
represent classes. ID3 [26] and C4.5 [27] are decision-tree classifiers which use an en-
tropy-based measure known as information gain to select the attribute. The selected at-
tribute is the “decision” attribute represented as an internal node that can separate the 
samples into classes well. Such a partition repeats in each internal node until all the sam-
ples in a node belong to the same class or no more attribute remained can be further par-
titioned. By the learning process of training data, the Bayesian classifier and deci-
sion-tree classifiers can partition the domain space into classes. Although the reject case 
does not exist in the Bayesian classifiers while classifying data, the conflict case may still 
happen. In decision-tree classifiers, however, the conflict case never occurs, but the re-
ject case may appear [14]. The traditional solution for the above ambiguous cases is ma-
jority voting, which labels the data with the most common class in training data. 

A neural network [4, 25, 28, 37] is a multi-layered network structure. For an n-class 
classification problem with m-dimensional data, a training set is used to train a neural 
network consisting of m input nodes and n output nodes. A well-trained network can be 
regarded as an implicit function with m input attributes. An unknown instance then can 
be classified by assigning it to the class with the maximum output in the network. The 
drawbacks of the neural network method are that the knowledge representation is un-
known and the training process is inefficient.  

Classification methods using support vector machines (SVM) [5, 15, 33] have also 
been frequently discussed. For a training sample (xi, yi), let xi ∈ Rn be a feature vector 
and let yi ∈ {± 1} be a class label. SVM tries to find an optimal hyperplane to separate 
training data if the training data are linearly separable. When the training data are nonlin-
ear, the data are mapped into a higher-dimensional feature space F via a mapping func-
tion Φ: Rn → F. Then the SVM attempts to find a separating hyperplane with maximum 
margin on F. Different SVM architectures can be obtained through different kernel func-
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tions k(xi, yi) = (Φ(xi), Φ(yi)). For example, k(xi, yi) = (x ⋅ y + 1)p results in a classifier that 
is a p-degree polynomial. 

Evolutionary computational approaches include genetic algorithms (GA) [35] and 
genetic programming (GP). Generally, a genetic algorithm encodes a set of classification 
rules as a sequence of bit strings called genes. The evolution operators such as reproduc-
tion, crossover and mutation then generate new classification rules with better fitness. 
After a specified number of generations are computed or the conditions of fitness func-
tions are satisfied, a set of effective classification rules is obtained. For GP-based classi-
fiers, classification rules [1, 11] or classification functions [3, 6, 16, 23] can be learned 
from the training dataset. Kishore [16] proposed an adaptive learning method for gener-
ating mathematical function to classify data and provide an approach called the strength 
of association measure (SA measure) to overcome the conflict case. The SA measure 
calculates the ratio of correctly classified examples in the training dataset to be an SA 
value for each discriminant function. If a conflict occurs, the unknown object is assigned 
to the class with the highest SA value. However, this approach can lead to a high mis-
classification rate due to the lower-SA functions being swamped by higher-SA functions. 
Furthermore, Kishore et al. does not solve the problem of the reject case. They simply 
classify the rejected objects into an extra rejected class [16]. Loveard proposed different 
fitness functions for genetic programming to learn accurate discriminant functions [23]. 
However, the training time is too long (several hours) compared with other GP-based 
methods. Due to all of these drawbacks, the proposed GP method in this paper tries to 
improve the efficiency of learning discriminant functions by designing a new fitness 
function, and enhances the classification accuracy by developing a classification tree to 
overcome the ambiguity among discriminant functions. 

3. LEARNING DISCRIMINANT FUNCTIONS 

This section introduces the learning method for generating discriminant functions 
based on genetic programming. First, the basic algorithm of genetic programming is re-
viewed and a formal description is presented for the classification problem. Then, a dis-
tance-based fitness function and the GP-based algorithm are provided for learning dis-
criminant functions. 
 
3.1 Genetic Programming 
 

The technique of genetic programming has been applied to many applications, in-
cluding symbolic regression, the evolution of robot control programs and the evolution 
of classification [18]. Genetic programming can discover underlying relationships be-
tween data and present them as expressions constructed by possible terminals, operations 
and functions. The most popular operations include arithmetic operations like addition, 
subtraction, multiplication and division, and conditional operations like IF and ELSE. 
Functions may include trigonometric functions like sine and cosine, or user-specific 
functions. 

Genetic programming begins with a set of randomly-created individuals called a 
population. Each individual is a potential solution represented as a binary tree. Each bi-
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nary tree is constructed by all possible compositions of the sets of operations and termi-
nals. A suitable fitness function should be given for evaluating the fitness value of each 
individual. Then, a set of individuals with better fitness values is selected and used to 
evolve the next generation’s population using the predefined genetic operators. At the 
end of the evolution, a set of individuals with good fitness is generated and the goal ex-
pression can be obtained. The genetic operators used to evolve individuals generally in-
clude reproduction, crossover and mutation. 

Reproduction, the simplest operator, copies the individuals with better fitness values 
as the population of the next generation. Thus, the individuals with better fitness values 
can be kept continuously in offspring. The crossover operator needs additional actions to 
generate new individuals. First, two individuals are selected as parents. Next, two 
sub-trees are randomly selected from parents, respectively, and then swapped each other. 
Two new individuals are then generated. For example, Fig. 2 shows two individuals (5 + 
X) + X and (X + Y) − Z. After the crossover operator is executed, two new individuals, (X 
+ Y) + X and (5 + X) − Z, are generated. The last operator, mutation, includes two types: 
single-node mutation and sub-tree mutation. In single-node mutation, a terminal or an 
operation in an individual is replaced. In sub-tree mutation, a whole sub-tree is replaced 
by a terminal or an operation. The mutation operator is usually used to avoid trapping the 
solution into a local optimum.  

X 

5 X X 

Z 

Y 

+ − 

+ + X 

X Y 

Z 

5 X 

+ 

+ 

− 

+ 

 
Fig. 2. A crossover operator. 

 
After evolving for a number of generations, the individual with the best fitness 

value in the population can be taken as the solution. However, if the fitness values still 
do not satisfy the condition specified by the user, the evolution process may be continued 
until they are satisfied. 

3.2 A Formal Description of Classification Problem 

The notation used and a formal description of classification problem are first de-
scribed in the following. Given a dataset S, each data xj ∈ S has n attributes. Let xj be 
denoted as xj = (vj1, vj2, …, vjt, …, vjn), 1 ≤ t ≤ n, where vjt ∈ R is the tth attribute value of 
xj. We assume that C = {C1, C2, …, CK} is the set of K predefined classes and define <xj, 
cj> as a sample if the object xj has been assigned to a specified class cj, cj ∈ C. A training 
set (T) is then defined as a set of known samples, T = {<xj, cj> | xj = (vj1, vj2, …,vjn), cj ∈ 
C, 1 ≤ j ≤ m}, where m is the number of samples in T, so |T| = m. Let m = (m1 + m2 + … + 
mi + … + mK), where mi is the number of samples in T belonging to the class Ci, 1 ≤ i ≤ K. 
A discriminant function fi maps from Rn to R, and for a sample <xj, cj>, the function fi 
should satisfy the following conditions, 



BEEN-CHIAN CHIEN, JUNG-YI LIN AND WEI-PANG YANG 

 

578 

 

 ( ) , if 
,

( ) , if 

i j j i

i j j i

f x a c C

f x a c C

≥ =
 < ≠

 where 1 ≤ i ≤ K, 1 ≤ j ≤ m. 

A set of discriminant functions F is defined as F = {fi | fi : R
n → R, 1 ≤ i ≤ K}. 

 
3.3 The Distance-Based Fitness Function and the Learning Algorithm 
 

In the learning procedure, the training set T is first prepared. The samples in T in-
clude both positive instances and negative instances. Considering a specified class Ci and 
a sample <xj, cj> ∈ T, <xj, cj> is regarded as a positive instance if cj = Ci; otherwise, <xj, 
cj> is a negative instance, where 1 ≤ j ≤ m, 1 ≤ i ≤ K. Learning can be started after the 
training set T is ready. Assuming that Ω1 denotes the set of initial population, an indi-
vidual h ∈ Ω1 is a potential solution of a discriminant function. To evaluate whether h is 
good enough to be the final solution, a proper fitness function is required. A good fitness 
function improves not only the effectiveness of discriminant functions but also the learn-
ing efficiency. Here, a distance-based fitness function is designed for learning the dis-
criminant functions of a classifier and is presented as follows.  

Consider a discriminant function fi for a class Ci and specify a constant a. The de-
sired outcome is fi(xj) ≥ a for a positive instance (i.e., cj = Ci) and fi(xj) < a for a negative 
instance (i.e., cj ≠ Ci). Instead of using a directly, two parameters p and q are defined to 
achieve fi(xj), where p > a, q < a and p + q = 2a. The fitness function for evaluating an 
individual h is defined using two measurements. The first for a positive instance is de-
fined as 

2

0, if  and ( )
( ,  ) ,

[ ( )] , if  and ( )

j i ji
p j j

j j i j

c C h x a
D x c

p h x c C h x a

= ≥= 
− = <

                     (1) 

2[ ( ) ] , if  and ( )
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0, if  and ( )
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n j j

j i j

h x q c C h x a
D x c
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Using Eqs. (1) and (2), we define the fitness value of an individual h for the training set T 
as 

1

( ,  ) ( ( ,  ) ( ,  )),
m

i i i
p j j n j j

j

Fitness h T D x c D x c
=

= − +∑                           (3) 

where <xj, cj> ∈ T, 1 ≤ j ≤ m. Since the negative of the measurements is used as the fit-
ness value, the best fitness value is zero. If the fitness value of the individual h is zero, 
then h can discriminate the samples of class Ci from those of the other classes in the 
given training set T. The individual h with fitness value zero thus can be chosen as the 
discriminant function fi for class Ci. The detailed learning algorithm is given as Algo-
rithm 1. The algorithm learns a single discriminant function for only a single class. The 
algorithm must be run K times for the K-class problem. 
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Algorithm 1  Genetic Programming for Learning a Discriminant Function 
Input: The training set T. 
Output: The discriminant function with the best fitness value. 
Step 1: Initialize the population. 

Let gen = 1 and generate the set of initial individuals Ω1 = 1 1 1
1 2{ ,  ,  ...,  },wh h h  

where Ω(gen) is the population in the generation gen; )(gen
kh  stands for the kth in-

dividual in Ω(gen); w indicates the number of individuals in Ω(gen). 
Step 2: Evaluate the fitness value of each individual in the training set. 

We compute their fitness values ( )gen
kE  = ( )( ,  )geni

kfitness h T  for all )(gen
kh  ∈ 

Ω(gen), where the fitness evaluating function fitnessi() is defined by Eq. (3). 
Step 3: Decide if the conditions of termination is satisfied. 

If the best fitness value of )(gen
kE  satisfies the termination conditions or gen is 

equal to the specified maximum generation, then )(gen
kh  with the best fitness 

value is returned and the algorithm is halted; otherwise, gen = gen + 1. 
Step 4: Generate the next generation of individuals and go to step 2.  

The new population of next generation Ω(gen) is generated by Pr, Pc and Pm, 
where Pr, Pc and Pm represent the probabilities of reproduction, crossover and 
mutation operations, respectively. Then goes to step 2. 

 
Example: We give an example of Fisher’s Iris dataset [10]. The data set has 150 data 
separated into three classes: Setosa, Versicolor and Virginica. Four numerical attributes, 
sepal length, sepal width, petal length and petal width, denote SL, SW, PL and PW, re-
spectively. For the class Setosa, we first randomly generate w individuals as Ω1 = 1

1{ ,h  
1
2 ,h  …, 1 }.wh  Each 1

kh  is an expression tree like Fig. 2. After the evolution of steps 3 and 
4, one of the expression trees satisfying the termination condition may be obtained. We 
usually represent the expression tree as an inorder sequence for users’ understanding. For 
example, the discriminant function for the class Setosa is 
 

fsetosa = SW − PL. 
 

The same procedure can be used to generate the other two discriminant functions 
fversicolor and fvirginica. The following two functions show the possible results of discrimi-
nant functions, 
 

fversicolor = ((((((((((((((PL + PL) − (− 33/PL))/− 22) − 11)/(SW − PL)) × 99) − 121) − 
PW) × PL)/− 31) + 45)/− 21) − PW)/43), 

fvirginica = ((((PW × PL) + (− 11/PW)) − ((((− 26 − 92)/(PW × 59))/− 7)/PL))/SL). 

4. PROPOSED CLASSIFIERS 

After the discriminant functions are learned, we construct a binary decision tree for 
classification. Generally, a classifier cannot correctly recognize all objects in real appli-
cations. While building a classifier using discriminant functions, two situations of ambi-
guity will happen except in addition to misclassification. 
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1. An object is simultaneously recognized by more than one discriminant function. 
2. An object is not recognized by any discriminant function. 
 

Since each object belongs to a unique class, the first situation is called conflict, and 
the second is called rejection. In the following, we propose a classification tree based on 
discriminant functions and the Z-value measure to resolve the problems of conflict and 
rejection, respectively. 
 
4.1 Decision Trees Using Discriminant Functions 
 

We propose a decision tree based on discriminant functions (DFT) as follows. A 
DFT is a skew tree-like structure where nodes are discriminant functions. An unknown 
object first is computed by the discriminant function of the root node. If the object is 
identified by the root node, i.e. f(1)(x) = fi(x) ≥ a, it is recognized as the corresponding 
class Ci; otherwise, we go on examining the discriminant function at the next level. 
While an object cannot be identified by all nodes of the decision tree, it is classified into 
the reject class.  

As we know, it is not difficult to construct such a decision tree. The only question is 
at which level a discriminant function should be located. We solve this problem as the 
method of finding a sequence of the discriminant functions that can maximize the recog-
nition rate from the permutation of discriminant functions. The information we have to 
use to determine the sequence of the discriminant functions includes two accuracy meas-
ures, the precision pi and the recall ri, which are defined as 

/  and / ,
i i i

i i
i f f i f ip N N r N m= =  

where mi is the number of objects belonging to class Ci, Nfi is the number of objects rec- 
ognized by the discriminant function fi, and 

i

i
fN  is the number of objects that belong to  

class Ci and are recognized by the discriminant function fi. 
From the above definitions, we know that a discriminant function fi with higher pre-

cision pi has a lower misclassification rate for class Ci, and a discriminant function fi with 
higher recall ri means that the fi has a higher recognition rate for class Ci. Hence, after 
evaluating the precision pi and the recall ri for each discriminant function fi on the train-
ing set T, the rules for generating the sequence of discriminant functions fi are 
 
1. If pi > pj, then fi goes ahead of fj for 1 ≤ i, j ≤ K. 
2. If pi = pj and ri ≥ rj, then fi goes ahead of fj for 1 ≤ i, j ≤ K. 
 

Thus, we see that the sequence can be obtained directly by sorting the pairs of <pi, 
ri> in descending order with primary key pi and secondary key ri. Assume that the final 
sequence of discriminant functions after sorting is f(1), f(2), …, f(i), f(i+1), …, f(K). 

Let p(i) and r(i) be the precision and the recall of f(i), respectively. We have p(i) ≥ p(i+1), 
and r(i) ≥ r(i+1) if p(i) = p(i+1). The next example may help understand the rules more 
clearly. 
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Example: For a five-class classification problem, the discriminant function is first gen-
erated using genetic programming for each class. The training set was classified and the 
precision and recall of the discriminant functions are shown as Table 1. We found that f4 
and f5 have the same precision, but the recall of f5 is greater than f4; thus f5 should be 
ahead of f4. The sequence of remaining functions, f1, f2 and f3, is determined only by the 
order of precision. The final sequence of the five discriminant functions is illustrated in 
Table 2. 
 

Table 1. The precision and recall of the five discriminant functions. 

 f1 f2 f3 f4 f5 

Precision 0.8 0.6 0.7 1.0 1.0 

Recall 0.7 0.9 0.8 0.9 1.0 

 

Table 2. The final sequence of discriminant functions. 

f(i) f(1) f(2) f(3) f(4) f(5) 

Function f5 f4 f1 f3 f2 

 
As described in the example, the discriminant function with the highest precision 

and recall, f5, is used to classify the data first. Since the data of class C5 recognized by f5 
can be filtered out correctly, other discriminant functions have no chance to recognize 
them again. Hence, it increases precision and recall of other discriminant functions if 
they also can recognize the data of C5. Note that we should not process the discriminant 
function with higher recall but lower precision before the function with high precision 
but lower recall, that is, f3 should not be ahead of f1. The reason is that although f3 can 
recognize many data belonging to C3, it also misclassifies more data that could be recog-
nized by the other correct discriminant functions. Hence, it may decrease precision and 
recall of the other discriminant functions toward the rear of the sequence. 

Objects 
f(1) 

Objects classified to f(1) 

Objects classified to f(2) 

f(2) 

Objects classified to f(K-1) 

f(3) 

Objects classified to f(3) 

f(K-1) 

f(K) 

Objects classified to f(K) 
Reject class  

Fig. 3. A DFT: the decision tree using discriminant functions. 
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Actually, in our approach, two kinds of classification trees are considered. The first 
is to build a K-function decision tree, as shown in Fig. 3. Such a decision tree will pro-
duce a reject class at leaf. The classification algorithm using such kind of decision trees 
is presented as Algorithm 2 (DFT). The second approach uses only K − 1 discriminant 
functions. If objects cannot be recognized by the front K − 1 discriminant functions in the 
decision tree, they are directly assigned to the last class. The classification algorithm with 
K − 1 discriminant functions is listed as Algorithm 3 (DFT*). 
 
Algorithm 2  Classification Tree with K Discriminant Functions (DFT) 
Input: The classification tree DFT and an unknown object x. 
Output: The classification result of x. 
Step 1: Initially, i = 1 and the constant a is the same to the constant in the fitness func-

tion. 
Step 2: If i > K, the object is assigned to the reject class and the algorithm stops.  
Step 3: If f(i)(x) ≥ a, the object x is recognized by f(i). We output the class representing f(i) 

and the algorithm stops. 
Step 4: If f(i)(x) < a then i = i + 1, go to step 2. 
 

Algorithm 3  Classification Tree with (K − 1) Discriminant Functions (DFT*) 
Input: The classification tree DFT and an unknown object x. 
Output: The classification result of x. 
Step 1: Initially, i = 1 and the constant a is the same to the constant in the fitness func-

tion. 
Step 2: If i ≥ K, the object is assigned to the class representing f(K) and the algorithm 

stops.  
Step 3: If f(i)(x) ≥ a, the object x is recognized by f(i). We output the class representing f(i) 

and the algorithm stops.  
Step 4: If f(i)(x) < a then i = i + 1, go to step 2 
 
4.2 The Z-Value Measure 
 

In this subsection, we propose the Z-value measure to process the reject class in 
Algorithm 2 (DFT). This method provides a mechanism to evaluate all possible dis-
criminant functions with ambiguous results and uses the Z-values to determine the class 
of an unknown object. First, we define the Z-value of a discriminant function.  

For a discriminant function fi ∈ F and samples <xj, cj> ∈ T with cj = Ci, let µi be the 
mean of values of fi (xj) for 1 ≤ j ≤ mi. That is,  

, ,

1
( ),

j j j i

i i j
i x c TS c C

f x
m

µ
< >∈ =

= ∑  1 ≤ j ≤ mi, 1 ≤ i ≤ K.                        (4) 

For each µi, the standard deviation of values of fi(xj), 1 ≤ j ≤ mi, is defined as 

2

, ,

1
( ( ) ) ,

j j j i

i i j i
i x c TS c C

f x
m

σ µ
< >∈ =

= −∑                                  (5) 
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where 1 ≤ j ≤ mi and 1 ≤ i ≤ K. For an object x ∈ S and a discriminant function fi, where S 
is the given data set, the Z-value of object x for fi is defined as 

( )
( ) ,i i

i
i

f x
Z x

µ
σ

−
=                                                  (6) 

where 1 ≤ j ≤ |S| and 1 ≤ i ≤ K. If the discriminant functions in F can determine the class 
of an object x uniquely, then the classification task is finished. However, if an ambiguous 
case occurs (including conflict and rejection), the Z-value measure will be applied to 
determine to which class the object should be assigned. The Z-value Zi(x) is a measure of 
the degree of fi(x) approximating µi. The smaller Zi(x) is, the greater likelihood that ob-
ject x belongs to class Ci. 
 
4.3 Combination of the DFT and the Z-value Measure 
 

For resolving the problem of rejection in DFT, the method DFT is combined with 
the Z-value measure, named DFT-Z. For a K-class problem, DFT-Z uses the classifica-
tion tree with K discriminant functions first to classify unknown objects. Then, the re-
jected objects are assigned to suitable classes using the Z-value measure. We describe the 
algorithm as follows.  
 
Algorithm 4  Classification with DFT and the Z-value measure (DFT-Z) 
Input: An unknown object x. 
Output: The classification result of x. 
Step 1: Initially, i = 1 and the constant a is the same to the constant in the fitness func-

tion. 
Step 2: If i > K, go to step 5.  
Step 3: If f(i)(x) ≥ a, the object x is recognized by f(i). We output the class representing f(i) 

and the algorithm stops. 
Step 4: If f(i)(x) < a then i = i + 1, go to step 2. 
Step 5: Let Z = F, where F is the set of discriminant functions as defined in section 3.2. 
Step 6: Compute Zi(x), for all fi ∈ Z. 
Step 7: Find the arg min{ ( )},

i
i

fi
k Z x

∈
=

Z
 the object x will be assigned to the class Ck. 

5. EXPERIMENTS AND DISCUSSIONS 

Since GP Quick’s source code is well-known and easily accessible from the web, 
the GP Quick 2.1 [31] was modified to fit the requirements of the proposed approaches 
and used to demonstrate the effectiveness and efficiency of the proposed classifiers. The 
experiments were conducted using a PC with 866MHz CPU and 128MB RAM. The test 
datasets included Fisher’s Iris dataset (IRIS) [10], Wisconsin Breast Cancer dataset 
(WBC) [24], BUPA liver, Vehicle, and PIMA datasets. These datasets can be downloaded 
from the UCI Repository [2] and are well-known benchmarks for evaluating the per-
formance of classifiers. 
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The classification accuracy is evaluated through 10-fold cross validation [14]. To 
avoid randomness of training data and show the stability of the learning process, each 
evaluation of 10-fold cross validation was run ten times in our experiments for a total of 
100 runs. The results are listed in the Appendix. Table 3 shows the parameters of genetic 
programming used in GP Quick. The values used in the fitness function were empirically 
set to p = 10, q = − 10 and a = 0 for all datasets, though the exact values do not signifi-
cantly affect the classification accuracy if the number of evolving generations is large 
enough. The values p = 10, q = − 10, and a = 0 were chosen because this setting has the 
shortest function generating time for most datasets. 
 

Table 3. The parameters used in the experiments. 

Parameters Values  Parameters Values 

Node mutate weight 43.5%  Population size 1000 

Mutate constant weight 43.5%  Generations per stage g 10000 

Mutate shrink weight 13%  Crossover weight 28% 

Selection method Tournament  Crossover weight annealing 20% 

Mutation weight 8%  p, q, a 10, − 10, 0 

Mutation weight annealing 40%  Functions +, −, ×, ÷ 

 
(1) Fisher’s Iris Dataset 

The first experiment used Fisher’s Iris dataset (IRIS) [10], which is comprised of 
150 data separated into three classes, Setosa, Versicolor and Virginica, each with 50 data. 
Each datum has four numerical attributes, sepal length (denoted as SL), sepal width (SW), 
petal length (PL) and petal width (PW). After the learning procedure, 300 discriminant 
functions were obtained from 10-fold cross-validation repeating ten times. The experi-
mental results are shown in Table 10 of the Appendix. The columns show the accuracy 
(Acc.) and number of misclassified data (# error) for each run. Clearly, DFT* and DFT-Z 
perform better than DFT. Many data are not classified correctly in DFT and are classified 
as reject cases, reducing the classifier accuracy. DFT* overcomes the ambiguity through 
its tree structure, increasing the accuracy. DFT-Z was found to produce the best result.  

Table 4 compares the experimental results using the proposed methods with those 
using other methods. Due to the different experimental environments used, the compari-
son is described in different groups. Group A in Table 4 used one-half of IRIS as training 
data and the remaining half as test data. Group B used two-fold cross-validation. Group 
C used 10-fold cross-validation. 

 
(2) Wisconsin Breast Cancer Dataset 

The second experiment used Wisconsin Breast Cancer dataset (WBC) [2, 24], which 
contains 699 data in two classes, Malignant (containing 241 data) and Benign (458). The 
WBC dataset has nine numerical attributes. However, 16 WBC data have missing values; 
thus the remaining 683 data were used in the experiment. The Malignant class contained 
239 data and Benign contained 444 data. The experimental results of 10-fold cross-  
validation are shown in Table 11 of the Appendix, and the experimental results are sum-
marized in Table 5. DFT* was found to produce better than DFT and DFT-Z for the best  
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Table 4. Comparison of performance on IRIS dataset. 

Group Models or methods Accuracy 
A DFT 94.7% 

GPCE [16]  96.0% 
 

FEBFC with 4 features [19]  96.7% 
 FEBFC with 2 selected features [19]  97.1% 
 DFT* 97.3% 
 DFT-Z 100% 

B DLBAN [29]  93.4% 
C DFT (ave.) 92.3% 
 CBA [22]  92.9% 
 S-Lazy [36]  94.0% 
 Naïve Bayesian [36]  94.0% 
 DFT* (ave.) 94.4% 
 DFT-Z (ave.) 94.7% 
 C4.5 [22]  95.3% 
 DFT (best) 95.3% 
 DFT* (best) 96.7% 
 DFT-Z (best) 96.7% 

 

Table 5. Comparison of performance on WBC dataset. 

Group Models or methods Accuracy 
FEBFC with 9 features [19]  94.7% 
DFT* 94.7% 
DFT-Z 94.7% 
DFT  95.0% 
C4.5 [34]  95.0% 
FEBFC with selected 6 features [19] 95.1% 

A 

HCL [34]  95.3% 
NNFS with all features [27]  93.9% B 

NNFS with selected features [27]  94.2% 
C Bayes [8]  97.3% 
D SVM [15] 95.6% 

DFT (ave.) 95.1% 
CBA [22] 96.1% 
C4.5 [22] 96.1% 
DFT* (ave.) 96.5% 
DFT- Z (ave.) 96.4% 
DFT (best) 97.1% 
S-Lazy [36] 97.1% 
Naïve Bayesian [36]  97.4% 
DFT-Z (best) 97.4% 

E 

DFT* (best) 97.8% 
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classification tree. The results for Group A were obtained with half the BCW data being 
used for training. The results of Group B used 315 data for training, 35 data for the vali-
dation, and 349 data for testing. The Bayesian classifier in Group C used 500 data for 
training. The SVM method used in Group D used 409 for training and 274 for testing. 
Finally, methods in Group E used 10-fold cross validation. 
 
(3) BUPA Liver Disorders Dataset 

The third experiment used the BUPA liver disorders dataset selected from the UCI 
repository [2]. BUPA is a two-class problem containing 345 data, each composed of six 
numerical features. The experimental results for 10-fold cross-validation are shown in 
Table 12 of the Appendix, and are similar to those of WBC. DFT* beats DFT-Z again by 
a very small margin, and DFT preformed the worst. Table 6 compares these results with 
those of other methods. The results in Group A were obtained using one-half of the 
BUPA data as the training set. The results in Group B were obtained using 10-fold cross- 
validation. The table demonstrates that the proposed FTD* classifier is close to the SVM 
classifiers and is better than Naïve Bayesian classifiers. 
 

Table 6. Comparison of performance on BUPA dataset. 

Group Models or methods Accuracy 
A HCL [34]  61.8% 
 C4.5 [34] 63.1% 

B S-Lazy [36] 60.9% 
 Naïve Bayesian [36] 63.2% 
 DFT (ave.) 63.4% 

 1-norm SVM [20] 64.3% 
 MODLEM [32] 65.8% 
 DFT (best) 67.8% 
 DFT- Z (ave.) 67.8% 
 DFT* (ave.) 68.0% 
 Classical SVM [20] 69.9% 
 DFT-Z (best) 70.1% 
 SSVM [20] 70.3% 
 DFT* (best) 71.0% 

 
(4) Vehicle Dataset 

The fourth experiment used the Vehicle dataset from UCI [2]. Vehicle is a 
four-class classification problem containing 846 data with 18 numerical features. The 
classification results of 10-fold cross-validation, shown in Table 13 of the Appendix. The 
experimental results reveal that DFT performed much worse than DFT* and DFT-Z. Ve-
hicle dataset has four classes and thus four discriminant functions. While the data cannot 
be recognized by top three functions, they are assigned to the last class by DFT*. How-
ever, since the training data may not properly generate the discriminant functions, 
many data are misclassified into the reject class. DFT-Z resolves such problem and thus 
yields the best result. Table 7 shows the comparisons, which are split into two groups.  
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Table 7. Comparison of performance on Vehicle dataset. 

Group Models or methods Accuracy 
SVM infoprop with 18 features [30] 49.64% A 
SVM infoprop with 12 features [30] 70.21% 
DFT (ave.) 41.1% 
DFT (best) 47.8% 
DFT* (ave.) 55.2% 
DFT* (best) 58.6% 
Naïve Bayesian [36] 60.5% 
S-Lazy [36] 64.8% 
DFT-Z (ave.) 63.8% 
DFT-Z (best) 68.3% 
CBA [22] 68.8% 

B 

C4.5 [22] 72.6% 

 
In Group A, the SVM [30] uses 564 training data and 282 testing data. Group B uses 
10-fold cross-validation. The comparison shows that DFT-Z has the highest classification 
rate in this dataset. 
 
 (5) PIMA Dataset 

The last experiment used the PIMA dataset [2]. PIMA is a two-class problem, con-
taining 768 data with 8 features. Two datasets were created for this experiment. The 
original PIMA dataset is denoted PIMA1. For the modified dataset, PIMA2, the serum 
insulin feature containing physically impossible values, was eliminated, giving 532 data, 
each with 7 features. Tables 14 and 15 of the Appendix present the classification results 
of ten runs of 10-fold cross-validation on PIMA1 and PIMA2. The tables show that 
DFT-Z performed better than the others. After removing the serum insulin feature, a 2% 
to 3% improvement is obtained. Table 8 compares our experimental results of the 
PIMA1 dataset with previous methods. Since PIMA2 was modified as in [21], compari-
sons of accuracy can be found in [21]. In Table 8, Group A used 345 data for training, 39 
data for validation and 384 data for testing. Group B used 10-fold cross-validation. 
DFT-Z had the best single data run, but the average accuracy of DFT* tied with DFT-Z’s. 
The experimental results show that no classification method is best overall. The original 
DFT method was found to perform poorly due to the serious ambiguity problems. The 
proposed methods, DFT* and DFT-Z, can resolve the ambiguity, and thus improve the 
classification accuracy. Furthermore, except for the BUPA dataset, DFT-Z is better than 
DFT* generally. The SVM-based classifiers also have high classification rates. 

GP Quick uses a “steady state” GA, generating one new individual and replacing 
one old individual at a time, as opposed to making a whole new batch as a “generation” 
[31]. Hence, although the generation parameter was set to 10000, the evolution was fast. 
Table 9 lists the average learning time for discriminant functions based on the experi-
mental datasets. The process of learning discriminant functions was found to be possible 
in a few seconds or minutes at most, depending on the number of instances in the training 
datasets. The proposed learning algorithm is efficient while comparing with the training 
time in [23] which is more than an hour. 
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Table 8. Comparison of performance on PIMA1 dataset. 

Group Models or methods Accuracy 

NNFS with all features [27]  71.0% A 

NNFS with selected features [27] 74.3% 
DFT (ave.) 72.9% 
CBA [22] 73.1% 
DFT (best) 73.9% 
S-Lazy [36] 74.7% 
Naïve Bayesian [36] 75.0% 
DFT* (ave.) 75.2% 
C4.5 [22] 75.5% 
DFT* (best) 76.1% 
DFT- Z (ave.) 76.1% 
SSVM [20] 78.1% 

B 

DFT-Z (best) 78.2% 
 

Table 9. Average learning time of discriminant functions for test datasets. 

Learning time (in sec.) 
Data sets 

Classification 
functions average stddev 

fsetosa 2.07 0.18 

fversicolor 3.10 0.49 IRIS 

fvirginica 2.40 0.57 
fmalignant 32.41 4.83 

WBC 
fbenign 33.34 4.20 

f1 14.78 2.32 
BUPA 

f2 14.89 2.27 
fopel 33.71 4.50 
fsaab 34.45 6.46 
fvan 34.91 8.39 

Vehicle 

fbus 33.61 7.48 
fpositive 32.51 6.40 

PIMA1 
fnegative 32.93 8.91 
fpositive 25.87 4.54 

PIMA2 
fnegative 24.66 4.24 

6. CONCLUSIONS 

This work proposes a new classification tree with discriminant functions learned by 
genetic programming. This approach includes a distance-based fitness function and the 
resolution of ambiguity. We create a classification tree to resolve the conflict cases of 
discriminant functions and use the Z-value measure to handle the reject cases. The ex-
perimental results show that if the problem of ambiguity between discriminant functions 
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can be overcome, the classifier with discriminant functions is accurate and work well 
under various classification problems. Finally, although the proposed method works ef-
fectively with numerical attributes, it does not work on problems with categorical attrib-
utes or datasets with missing values. We hope to be able to extend the proposed methods 
to include these kinds of classification problems. 
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APPENDIX 

Table 10. Experimental results using 10-fold cross validation on IRIS for 10 runs. 

 DFT       DFT*        DFT-Z  
Runs Acc. # errors Acc. # errors Acc. # errors 

1 0.953 7 0.953 7 0.967 5 
2 0.9 15 0.933 10 0.94 9 
3 0.913 13 0.933 10 0.933 10 
4 0.907 14 0.927 11 0.947 8 
5 0.92 12 0.94 9 0.933 10 
6 0.92 12 0.947 8 0.94 9 
7 0.92 12 0.953 7 0.947 8 
8 0.953 7 0.967 5 0.967 5 
9 0.913 13 0.947 8 0.947 8 
10 0.927 11 0.94 9 0.947 8 

Average 0.923 11.6 0.944 8.4 0.947 8 

Table 11. Experimental results using 10-fold cross validation on WBC for 10 runs. 

       DFT        DFT*        DFT-Z  
Runs Acc. # errors Acc. # errors Acc. # errors 

1 0.962 26 0.966 23 0.966 23 
2 0.962 26 0.965 24 0.968 22 
3 0.956 30 0.960 27 0.960 27 
4 0.953 32 0.969 21 0.965 24 
5 0.959 28 0.969 21 0.966 23 
6 0.971 20 0.978 15 0.974 18 
7 0.956 30 0.962 26 0.968 22 
8 0.959 28 0.968 22 0.963 25 
9 0.934 45 0.941 40 0.943 39 
10 0.898 70 0.966 23 0.963 25 

Average 0.951 33.5 0.965 24.2 0.964 24.8 



BEEN-CHIAN CHIEN, JUNG-YI LIN AND WEI-PANG YANG 

 

592 

 

Table 12. Experimental results using 10-fold cross validation on BUPA for 10 runs. 

 DFT DFT* DFT-Z 
Runs Acc. # errors Acc. # errors Acc. # errors 

1 0.678 111 0.701 103 0.699 104 
2 0.643 123 0.693 106 0.672 113 
3 0.632 127 0.661 117 0.678 111 
4 0.620 131 0.658 118 0.655 119 
5 0.623 130 0.652 120 0.661 117 
6 0.623 130 0.678 111 0.667 115 
7 0.635 126 0.710 100 0.701 103 
8 0.632 127 0.675 112 0.693 106 
9 0.641 124 0.704 102 0.690 107 
10 0.614 133 0.670 114 0.667 115 

Average 0.634 126.2 0.680 110.3 0.678 111 

Table 13. Experimental results using 10-fold cross validation on Vehicle for 10 runs. 

 DFT DFT* DFT-Z 
Runs Acc. # errors Acc. # errors Acc. # errors 

1 0.371 532 0.539 390 0.599 339 
2 0.382 523 0.569 365 0.683 268 
3 0.410 499 0.545 385 0.617 324 
4 0.400 508 0.535 393 0.626 316 
5 0.375 529 0.509 415 0.616 325 
6 0.434 479 0.577 358 0.683 268 
7 0.478 442 0.569 365 0.621 321 
8 0.450 465 0.586 350 0.664 284 
9 0.398 509 0.556 376 0.665 283 
10 0.409 500 0.533 395 0.609 331 

Average 0.411 498.6 0.552 379.2 0.638 305.9 

Table 14. Experimental results using 10-fold cross validation on PIMA1 for 10 runs. 

 DFT DFT* DFT-Z 
Runs Acc. # errors Acc. # errors Acc. # errors 

1 0.723 213 0.75 192 0.749 193 
2 0.695 234 0.737 202 0.751 191 
3 0.719 216 0.733 205 0.732 206 
4 0.691 237 0.728 209 0.741 199 
5 0.701 230 0.723 213 0.738 201 
6 0.68 246 0.719 216 0.727 210 
7 0.697 233 0.736 203 0.737 202 
8 0.704 227 0.733 205 0.75 192 
9 0.711 222 0.732 206 0.733 205 
10 0.704 227 0.732 206 0.727 210 

Average 0.702 228.5 0.732 205.7 0.738 200.9 
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Table 15. Experimental results using 10-fold cross validation on PIMA2 for 10 runs. 

 DFT DFT* DFT-Z 
Runs Acc. # errors Acc. # errors Acc. # errors 

1 0.718 150 0.754 131 0.765 125 
2 0.731 143 0.759 128 0.761 127 
3 0.729 144 0.746 135 0.748 134 
4 0.739 139 0.75 133 0.763 126 
5 0.731 143 0.752 132 0.763 126 
6 0.737 140 0.761 127 0.761 127 
7 0.733 142 0.756 129 0.782 116 
8 0.737 140 0.754 131 0.758 129 
9 0.716 151 0.752 132 0.765 125 
10 0.722 148 0.737 140 0.741 138 

Average 0.729 144 0.752 131.8 0.761 127.3 
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