
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 22, 573-594 (2006)

573

A Classification Tree Based on Discriminant Functions*

BEEN-CHIAN CHIEN, JUNG-YI LIN1 AND WEI-PANG YANG1,2

Department of Computer Science and Information Engineering
National University of Tainan

Tainan, 700 Taiwan
1Department of Computer and Information Science

National Chiao Tung University
Hsinchu, 300 Taiwan

2Department of Information Management
National Dong Hwa University

Hualien, 974 Taiwan

The classification problem is an important topic in knowledge discovery and ma-

chine learning. Traditional classification tree methods and their improvements have been
discussed widely. This work proposes a new approach to construct decision trees based
on discriminant functions which are learned using genetic programming. A discriminant
function is a mathematical function for classifying data into a specific class. To learn
discriminant functions effectively and efficiently, a distance-based fitness function for
genetic programming is designed. After the set of discriminant functions for all classes is
generated, a classifier is created as a binary decision tree with the Z-value measure to
resolve the problem of ambiguity among discriminant functions. Several popular data-
sets from the UCI Repository were selected to illustrate the effectiveness of the proposed
classifiers by comparing with previous methods. The results show that the proposed
classification tree demonstrates high accuracy on the selected datasets.

Keywords: knowledge discovery, machine learning, genetic programming, classification,
discriminant function, decision tree, classifier

1. INTRODUCTION

The task of classification is to classify unknown objects into predefined classes
based on their observed attributes using a classification model learned from a set of
training data. Many applications, such as characters recognition, decision-making and
disease diagnosis, can be viewed as extensions of the classification problem [14]. A
classifier can be modeled using different structures such as decision graphs, decision
trees, neural networks and rules. Reducing the processing time and increasing the
classification rate are the two main issues in the classification problem. Many methods
for designing classifiers have been proposed, such as the Bayesian classifier, decision
trees, distance- based classifiers and neural network classifiers. However, each model has
its own advantages and disadvantages. It is not easy for a classifier to be trained

Received February 12, 2004; revised June 18 & November 5, 2004 & February 21 & April 7, 2005;
accepted August 17, 2005.
Communicated by Chuen-Tsai Sun.
* Part of this paper was presented at the Sixth International Conference on Knowledge-Based Intelligent Infor-

mation Engineering Systems,16-18 September, 2002, Podere d’Ombriano, Crema, Italy.

BEEN-CHIAN CHIEN, JUNG-YI LIN AND WEI-PANG YANG

574

efficiently and classify objects effectively simultaneously. To find faster learning
methods for building classifiers with high classification accuracy, some newly developed
techniques have been recently applied to the classification problem, such as association
rules-based learning [22], support vector machines [12], and evolutionary computation
[17, 18]. Related research of the classification problem is reviewed briefly in section 2.

A traditional decision tree is a tree-like structure in which each internal node
performs a test on one of the attributes, each branch represents an outcome of the test,
and each leaf node denotes a class. This paper proposes a new decision tree in which
each internal node is represented by a discriminant function used to determine whether
an object belongs to a specific class or not. A discriminant function is a mathematical
expression that maps a set of numerical features to a specific range for identifying the
class of objects. A classifier using discriminant functions is efficient since mathematical
functions can be easily calculated. The classifier is also concise because the number of
functions does not exceed the number of predefined classes, as Fig. 1 shows. However,
two problems have to be considered when a classifier uses discriminant functions as
decision nodes. First, it is a difficult to learn accurate discriminant functions. Second,
two ambiguous situations, conflict and reject, may occur while classifying multi-category
data using discriminant functions. The conflict case occurs when an object is recognized
by two or more discriminant functions simultaneously. The reject case arises when an
object is recognized by no discriminant function. Both situations decrease the classifi-
cation accuracy.

f1

fK

f2 Objects Y/N

Y/N

Y/N

…

…

Fig. 1. A classifier using discriminant functions.

Genetic programming (GP) technique was proposed by Koza [17, 18]. GP can dis-

cover the underlying data relationships and present them as expressions. In this paper, we
apply GP to generate discriminant functions by proposing a distance-based fitness func-
tion. Using the distance-based fitness function, discriminant functions can be learned
more efficiently and effectively than using the traditional fitness function based on accu-
racy in genetic programming. After the discriminant functions are generated, the testing
results of discriminant functions on the training data are used to construct a binary deci-
sion tree based on functions. The classification tree is then used to resolve the conflict
cases among the discriminant functions. An object following the root of the classification
tree can only be recognized by at most one of the discriminant functions. If an object
cannot be recognized by any node of the classification tree, the resolution of Z-value
measure is proposed for the reject case. Five well-known datasets were selected to show

A NEW CLASSIFICATION TREE BASED ON DISCRIMINANT FUNCTIONS

575

the effectiveness of the proposed classifier: Fisher’s Iris dataset, Wisconsin Breast Can-
cer dataset, BUPA liver dataset, Vehicle dataset and PIMA dataset [2]. The experimental
results are discussed in detail and compared with previous works.

The rest of this paper is organized as follows. Section 2 briefly reviews related work
on classification. Section 3 proposes the distance-based fitness function for genetic pro-
gramming to learn effective discriminant functions. Section 4 gives the proposed algo-
rithms for constructing a decision tree based on discriminant functions and the Z-value
measure. Section 5 describes and discusses the experimental results. Finally, conclusions
are drawn in section 6.

2. RELATED RESEARCH ON CLASSIFICATION PROBLEMS

Many learning approaches are available for constructing classifiers. The Bayesian
classifier and the decision tree are well-known and widely used. The Bayesian classifier
[13] is based on Bayesian decision theory, which learns the conditional probability of
each attribute given a specific class from training data. Classification is accomplished by
employing Bayes rule to compute the probability of each class given the attributes of an
instance and then assigning to the class with the highest probability. The decision tree is
a tree-like structure where each internal node in the decision tree denotes a decision on
an attribute. Each branch represents a decision outcome of the decision and leaf nodes
represent classes. ID3 [26] and C4.5 [27] are decision-tree classifiers which use an en-
tropy-based measure known as information gain to select the attribute. The selected at-
tribute is the “decision” attribute represented as an internal node that can separate the
samples into classes well. Such a partition repeats in each internal node until all the sam-
ples in a node belong to the same class or no more attribute remained can be further par-
titioned. By the learning process of training data, the Bayesian classifier and deci-
sion-tree classifiers can partition the domain space into classes. Although the reject case
does not exist in the Bayesian classifiers while classifying data, the conflict case may still
happen. In decision-tree classifiers, however, the conflict case never occurs, but the re-
ject case may appear [14]. The traditional solution for the above ambiguous cases is ma-
jority voting, which labels the data with the most common class in training data.

A neural network [4, 25, 28, 37] is a multi-layered network structure. For an n-class
classification problem with m-dimensional data, a training set is used to train a neural
network consisting of m input nodes and n output nodes. A well-trained network can be
regarded as an implicit function with m input attributes. An unknown instance then can
be classified by assigning it to the class with the maximum output in the network. The
drawbacks of the neural network method are that the knowledge representation is un-
known and the training process is inefficient.

Classification methods using support vector machines (SVM) [5, 15, 33] have also
been frequently discussed. For a training sample (xi, yi), let xi ∈ Rn be a feature vector
and let yi ∈ {± 1} be a class label. SVM tries to find an optimal hyperplane to separate
training data if the training data are linearly separable. When the training data are nonlin-
ear, the data are mapped into a higher-dimensional feature space F via a mapping func-
tion Φ: Rn → F. Then the SVM attempts to find a separating hyperplane with maximum
margin on F. Different SVM architectures can be obtained through different kernel func-

BEEN-CHIAN CHIEN, JUNG-YI LIN AND WEI-PANG YANG

576

tions k(xi, yi) = (Φ(xi), Φ(yi)). For example, k(xi, yi) = (x ⋅ y + 1)p results in a classifier that
is a p-degree polynomial.

Evolutionary computational approaches include genetic algorithms (GA) [35] and
genetic programming (GP). Generally, a genetic algorithm encodes a set of classification
rules as a sequence of bit strings called genes. The evolution operators such as reproduc-
tion, crossover and mutation then generate new classification rules with better fitness.
After a specified number of generations are computed or the conditions of fitness func-
tions are satisfied, a set of effective classification rules is obtained. For GP-based classi-
fiers, classification rules [1, 11] or classification functions [3, 6, 16, 23] can be learned
from the training dataset. Kishore [16] proposed an adaptive learning method for gener-
ating mathematical function to classify data and provide an approach called the strength
of association measure (SA measure) to overcome the conflict case. The SA measure
calculates the ratio of correctly classified examples in the training dataset to be an SA
value for each discriminant function. If a conflict occurs, the unknown object is assigned
to the class with the highest SA value. However, this approach can lead to a high mis-
classification rate due to the lower-SA functions being swamped by higher-SA functions.
Furthermore, Kishore et al. does not solve the problem of the reject case. They simply
classify the rejected objects into an extra rejected class [16]. Loveard proposed different
fitness functions for genetic programming to learn accurate discriminant functions [23].
However, the training time is too long (several hours) compared with other GP-based
methods. Due to all of these drawbacks, the proposed GP method in this paper tries to
improve the efficiency of learning discriminant functions by designing a new fitness
function, and enhances the classification accuracy by developing a classification tree to
overcome the ambiguity among discriminant functions.

3. LEARNING DISCRIMINANT FUNCTIONS

This section introduces the learning method for generating discriminant functions
based on genetic programming. First, the basic algorithm of genetic programming is re-
viewed and a formal description is presented for the classification problem. Then, a dis-
tance-based fitness function and the GP-based algorithm are provided for learning dis-
criminant functions.

3.1 Genetic Programming

The technique of genetic programming has been applied to many applications, in-
cluding symbolic regression, the evolution of robot control programs and the evolution
of classification [18]. Genetic programming can discover underlying relationships be-
tween data and present them as expressions constructed by possible terminals, operations
and functions. The most popular operations include arithmetic operations like addition,
subtraction, multiplication and division, and conditional operations like IF and ELSE.
Functions may include trigonometric functions like sine and cosine, or user-specific
functions.

Genetic programming begins with a set of randomly-created individuals called a
population. Each individual is a potential solution represented as a binary tree. Each bi-

A NEW CLASSIFICATION TREE BASED ON DISCRIMINANT FUNCTIONS

577

nary tree is constructed by all possible compositions of the sets of operations and termi-
nals. A suitable fitness function should be given for evaluating the fitness value of each
individual. Then, a set of individuals with better fitness values is selected and used to
evolve the next generation’s population using the predefined genetic operators. At the
end of the evolution, a set of individuals with good fitness is generated and the goal ex-
pression can be obtained. The genetic operators used to evolve individuals generally in-
clude reproduction, crossover and mutation.

Reproduction, the simplest operator, copies the individuals with better fitness values
as the population of the next generation. Thus, the individuals with better fitness values
can be kept continuously in offspring. The crossover operator needs additional actions to
generate new individuals. First, two individuals are selected as parents. Next, two
sub-trees are randomly selected from parents, respectively, and then swapped each other.
Two new individuals are then generated. For example, Fig. 2 shows two individuals (5 +
X) + X and (X + Y) − Z. After the crossover operator is executed, two new individuals, (X
+ Y) + X and (5 + X) − Z, are generated. The last operator, mutation, includes two types:
single-node mutation and sub-tree mutation. In single-node mutation, a terminal or an
operation in an individual is replaced. In sub-tree mutation, a whole sub-tree is replaced
by a terminal or an operation. The mutation operator is usually used to avoid trapping the
solution into a local optimum.

X

5 X X

Z

Y

+ −

+ + X

X Y

Z

5 X

+

+

−

+

Fig. 2. A crossover operator.

After evolving for a number of generations, the individual with the best fitness

value in the population can be taken as the solution. However, if the fitness values still
do not satisfy the condition specified by the user, the evolution process may be continued
until they are satisfied.

3.2 A Formal Description of Classification Problem

The notation used and a formal description of classification problem are first de-
scribed in the following. Given a dataset S, each data xj ∈ S has n attributes. Let xj be
denoted as xj = (vj1, vj2, …, vjt, …, vjn), 1 ≤ t ≤ n, where vjt ∈ R is the tth attribute value of
xj. We assume that C = {C1, C2, …, CK} is the set of K predefined classes and define <xj,
cj> as a sample if the object xj has been assigned to a specified class cj, cj ∈ C. A training
set (T) is then defined as a set of known samples, T = {<xj, cj> | xj = (vj1, vj2, …,vjn), cj ∈
C, 1 ≤ j ≤ m}, where m is the number of samples in T, so |T| = m. Let m = (m1 + m2 + … +
mi + … + mK), where mi is the number of samples in T belonging to the class Ci, 1 ≤ i ≤ K.
A discriminant function fi maps from Rn to R, and for a sample <xj, cj>, the function fi
should satisfy the following conditions,

BEEN-CHIAN CHIEN, JUNG-YI LIN AND WEI-PANG YANG

578

 () , if
,

() , if

i j j i

i j j i

f x a c C

f x a c C

≥ =
 < ≠

 where 1 ≤ i ≤ K, 1 ≤ j ≤ m.

A set of discriminant functions F is defined as F = {fi | fi : R
n → R, 1 ≤ i ≤ K}.

3.3 The Distance-Based Fitness Function and the Learning Algorithm

In the learning procedure, the training set T is first prepared. The samples in T in-
clude both positive instances and negative instances. Considering a specified class Ci and
a sample <xj, cj> ∈ T, <xj, cj> is regarded as a positive instance if cj = Ci; otherwise, <xj,
cj> is a negative instance, where 1 ≤ j ≤ m, 1 ≤ i ≤ K. Learning can be started after the
training set T is ready. Assuming that Ω1 denotes the set of initial population, an indi-
vidual h ∈ Ω1 is a potential solution of a discriminant function. To evaluate whether h is
good enough to be the final solution, a proper fitness function is required. A good fitness
function improves not only the effectiveness of discriminant functions but also the learn-
ing efficiency. Here, a distance-based fitness function is designed for learning the dis-
criminant functions of a classifier and is presented as follows.

Consider a discriminant function fi for a class Ci and specify a constant a. The de-
sired outcome is fi(xj) ≥ a for a positive instance (i.e., cj = Ci) and fi(xj) < a for a negative
instance (i.e., cj ≠ Ci). Instead of using a directly, two parameters p and q are defined to
achieve fi(xj), where p > a, q < a and p + q = 2a. The fitness function for evaluating an
individual h is defined using two measurements. The first for a positive instance is de-
fined as

2

0, if and ()
(,) ,

[()] , if and ()

j i ji
p j j

j j i j

c C h x a
D x c

p h x c C h x a

= ≥= 
− = <

 (1)

2[()] , if and ()
(,) .

0, if and ()

j j i ji
n j j

j i j

h x q c C h x a
D x c

c C h x a

 − ≠ ≥= 
≠ <

 (2)

Using Eqs. (1) and (2), we define the fitness value of an individual h for the training set T
as

1

(,) ((,) (,)),
m

i i i
p j j n j j

j

Fitness h T D x c D x c
=

= − +∑ (3)

where <xj, cj> ∈ T, 1 ≤ j ≤ m. Since the negative of the measurements is used as the fit-
ness value, the best fitness value is zero. If the fitness value of the individual h is zero,
then h can discriminate the samples of class Ci from those of the other classes in the
given training set T. The individual h with fitness value zero thus can be chosen as the
discriminant function fi for class Ci. The detailed learning algorithm is given as Algo-
rithm 1. The algorithm learns a single discriminant function for only a single class. The
algorithm must be run K times for the K-class problem.

A NEW CLASSIFICATION TREE BASED ON DISCRIMINANT FUNCTIONS

579

Algorithm 1 Genetic Programming for Learning a Discriminant Function
Input: The training set T.
Output: The discriminant function with the best fitness value.
Step 1: Initialize the population.

Let gen = 1 and generate the set of initial individuals Ω1 = 1 1 1
1 2{ , , ..., },wh h h

where Ω(gen) is the population in the generation gen;)(gen
kh stands for the kth in-

dividual in Ω(gen); w indicates the number of individuals in Ω(gen).
Step 2: Evaluate the fitness value of each individual in the training set.

We compute their fitness values ()gen
kE = ()(,)geni

kfitness h T for all)(gen
kh ∈

Ω(gen), where the fitness evaluating function fitnessi() is defined by Eq. (3).
Step 3: Decide if the conditions of termination is satisfied.

If the best fitness value of)(gen
kE satisfies the termination conditions or gen is

equal to the specified maximum generation, then)(gen
kh with the best fitness

value is returned and the algorithm is halted; otherwise, gen = gen + 1.
Step 4: Generate the next generation of individuals and go to step 2.

The new population of next generation Ω(gen) is generated by Pr, Pc and Pm,
where Pr, Pc and Pm represent the probabilities of reproduction, crossover and
mutation operations, respectively. Then goes to step 2.

Example: We give an example of Fisher’s Iris dataset [10]. The data set has 150 data
separated into three classes: Setosa, Versicolor and Virginica. Four numerical attributes,
sepal length, sepal width, petal length and petal width, denote SL, SW, PL and PW, re-
spectively. For the class Setosa, we first randomly generate w individuals as Ω1 = 1

1{ ,h
1
2 ,h …, 1 }.wh Each 1

kh is an expression tree like Fig. 2. After the evolution of steps 3 and
4, one of the expression trees satisfying the termination condition may be obtained. We
usually represent the expression tree as an inorder sequence for users’ understanding. For
example, the discriminant function for the class Setosa is

fsetosa = SW − PL.

The same procedure can be used to generate the other two discriminant functions
fversicolor and fvirginica. The following two functions show the possible results of discrimi-
nant functions,

fversicolor = ((((((((((((((PL + PL) − (− 33/PL))/− 22) − 11)/(SW − PL)) × 99) − 121) −
PW) × PL)/− 31) + 45)/− 21) − PW)/43),

fvirginica = ((((PW × PL) + (− 11/PW)) − ((((− 26 − 92)/(PW × 59))/− 7)/PL))/SL).

4. PROPOSED CLASSIFIERS

After the discriminant functions are learned, we construct a binary decision tree for
classification. Generally, a classifier cannot correctly recognize all objects in real appli-
cations. While building a classifier using discriminant functions, two situations of ambi-
guity will happen except in addition to misclassification.

BEEN-CHIAN CHIEN, JUNG-YI LIN AND WEI-PANG YANG

580

1. An object is simultaneously recognized by more than one discriminant function.
2. An object is not recognized by any discriminant function.

Since each object belongs to a unique class, the first situation is called conflict, and
the second is called rejection. In the following, we propose a classification tree based on
discriminant functions and the Z-value measure to resolve the problems of conflict and
rejection, respectively.

4.1 Decision Trees Using Discriminant Functions

We propose a decision tree based on discriminant functions (DFT) as follows. A
DFT is a skew tree-like structure where nodes are discriminant functions. An unknown
object first is computed by the discriminant function of the root node. If the object is
identified by the root node, i.e. f(1)(x) = fi(x) ≥ a, it is recognized as the corresponding
class Ci; otherwise, we go on examining the discriminant function at the next level.
While an object cannot be identified by all nodes of the decision tree, it is classified into
the reject class.

As we know, it is not difficult to construct such a decision tree. The only question is
at which level a discriminant function should be located. We solve this problem as the
method of finding a sequence of the discriminant functions that can maximize the recog-
nition rate from the permutation of discriminant functions. The information we have to
use to determine the sequence of the discriminant functions includes two accuracy meas-
ures, the precision pi and the recall ri, which are defined as

/ and / ,
i i i

i i
i f f i f ip N N r N m= =

where mi is the number of objects belonging to class Ci, Nfi is the number of objects rec-
ognized by the discriminant function fi, and

i

i
fN is the number of objects that belong to

class Ci and are recognized by the discriminant function fi.
From the above definitions, we know that a discriminant function fi with higher pre-

cision pi has a lower misclassification rate for class Ci, and a discriminant function fi with
higher recall ri means that the fi has a higher recognition rate for class Ci. Hence, after
evaluating the precision pi and the recall ri for each discriminant function fi on the train-
ing set T, the rules for generating the sequence of discriminant functions fi are

1. If pi > pj, then fi goes ahead of fj for 1 ≤ i, j ≤ K.
2. If pi = pj and ri ≥ rj, then fi goes ahead of fj for 1 ≤ i, j ≤ K.

Thus, we see that the sequence can be obtained directly by sorting the pairs of <pi,
ri> in descending order with primary key pi and secondary key ri. Assume that the final
sequence of discriminant functions after sorting is f(1), f(2), …, f(i), f(i+1), …, f(K).

Let p(i) and r(i) be the precision and the recall of f(i), respectively. We have p(i) ≥ p(i+1),
and r(i) ≥ r(i+1) if p(i) = p(i+1). The next example may help understand the rules more
clearly.

A NEW CLASSIFICATION TREE BASED ON DISCRIMINANT FUNCTIONS

581

Example: For a five-class classification problem, the discriminant function is first gen-
erated using genetic programming for each class. The training set was classified and the
precision and recall of the discriminant functions are shown as Table 1. We found that f4
and f5 have the same precision, but the recall of f5 is greater than f4; thus f5 should be
ahead of f4. The sequence of remaining functions, f1, f2 and f3, is determined only by the
order of precision. The final sequence of the five discriminant functions is illustrated in
Table 2.

Table 1. The precision and recall of the five discriminant functions.

 f1 f2 f3 f4 f5

Precision 0.8 0.6 0.7 1.0 1.0

Recall 0.7 0.9 0.8 0.9 1.0

Table 2. The final sequence of discriminant functions.

f(i) f(1) f(2) f(3) f(4) f(5)

Function f5 f4 f1 f3 f2

As described in the example, the discriminant function with the highest precision

and recall, f5, is used to classify the data first. Since the data of class C5 recognized by f5
can be filtered out correctly, other discriminant functions have no chance to recognize
them again. Hence, it increases precision and recall of other discriminant functions if
they also can recognize the data of C5. Note that we should not process the discriminant
function with higher recall but lower precision before the function with high precision
but lower recall, that is, f3 should not be ahead of f1. The reason is that although f3 can
recognize many data belonging to C3, it also misclassifies more data that could be recog-
nized by the other correct discriminant functions. Hence, it may decrease precision and
recall of the other discriminant functions toward the rear of the sequence.

Objects
f(1)

Objects classified to f(1)

Objects classified to f(2)

f(2)

Objects classified to f(K-1)

f(3)

Objects classified to f(3)

f(K-1)

f(K)

Objects classified to f(K)
Reject class

Fig. 3. A DFT: the decision tree using discriminant functions.

BEEN-CHIAN CHIEN, JUNG-YI LIN AND WEI-PANG YANG

582

Actually, in our approach, two kinds of classification trees are considered. The first
is to build a K-function decision tree, as shown in Fig. 3. Such a decision tree will pro-
duce a reject class at leaf. The classification algorithm using such kind of decision trees
is presented as Algorithm 2 (DFT). The second approach uses only K − 1 discriminant
functions. If objects cannot be recognized by the front K − 1 discriminant functions in the
decision tree, they are directly assigned to the last class. The classification algorithm with
K − 1 discriminant functions is listed as Algorithm 3 (DFT*).

Algorithm 2 Classification Tree with K Discriminant Functions (DFT)
Input: The classification tree DFT and an unknown object x.
Output: The classification result of x.
Step 1: Initially, i = 1 and the constant a is the same to the constant in the fitness func-

tion.
Step 2: If i > K, the object is assigned to the reject class and the algorithm stops.
Step 3: If f(i)(x) ≥ a, the object x is recognized by f(i). We output the class representing f(i)

and the algorithm stops.
Step 4: If f(i)(x) < a then i = i + 1, go to step 2.

Algorithm 3 Classification Tree with (K − 1) Discriminant Functions (DFT*)
Input: The classification tree DFT and an unknown object x.
Output: The classification result of x.
Step 1: Initially, i = 1 and the constant a is the same to the constant in the fitness func-

tion.
Step 2: If i ≥ K, the object is assigned to the class representing f(K) and the algorithm

stops.
Step 3: If f(i)(x) ≥ a, the object x is recognized by f(i). We output the class representing f(i)

and the algorithm stops.
Step 4: If f(i)(x) < a then i = i + 1, go to step 2

4.2 The Z-Value Measure

In this subsection, we propose the Z-value measure to process the reject class in
Algorithm 2 (DFT). This method provides a mechanism to evaluate all possible dis-
criminant functions with ambiguous results and uses the Z-values to determine the class
of an unknown object. First, we define the Z-value of a discriminant function.

For a discriminant function fi ∈ F and samples <xj, cj> ∈ T with cj = Ci, let µi be the
mean of values of fi (xj) for 1 ≤ j ≤ mi. That is,

, ,

1
(),

j j j i

i i j
i x c TS c C

f x
m

µ
< >∈ =

= ∑ 1 ≤ j ≤ mi, 1 ≤ i ≤ K. (4)

For each µi, the standard deviation of values of fi(xj), 1 ≤ j ≤ mi, is defined as

2

, ,

1
(()) ,

j j j i

i i j i
i x c TS c C

f x
m

σ µ
< >∈ =

= −∑ (5)

A NEW CLASSIFICATION TREE BASED ON DISCRIMINANT FUNCTIONS

583

where 1 ≤ j ≤ mi and 1 ≤ i ≤ K. For an object x ∈ S and a discriminant function fi, where S
is the given data set, the Z-value of object x for fi is defined as

()
() ,i i

i
i

f x
Z x

µ
σ

−
= (6)

where 1 ≤ j ≤ |S| and 1 ≤ i ≤ K. If the discriminant functions in F can determine the class
of an object x uniquely, then the classification task is finished. However, if an ambiguous
case occurs (including conflict and rejection), the Z-value measure will be applied to
determine to which class the object should be assigned. The Z-value Zi(x) is a measure of
the degree of fi(x) approximating µi. The smaller Zi(x) is, the greater likelihood that ob-
ject x belongs to class Ci.

4.3 Combination of the DFT and the Z-value Measure

For resolving the problem of rejection in DFT, the method DFT is combined with
the Z-value measure, named DFT-Z. For a K-class problem, DFT-Z uses the classifica-
tion tree with K discriminant functions first to classify unknown objects. Then, the re-
jected objects are assigned to suitable classes using the Z-value measure. We describe the
algorithm as follows.

Algorithm 4 Classification with DFT and the Z-value measure (DFT-Z)
Input: An unknown object x.
Output: The classification result of x.
Step 1: Initially, i = 1 and the constant a is the same to the constant in the fitness func-

tion.
Step 2: If i > K, go to step 5.
Step 3: If f(i)(x) ≥ a, the object x is recognized by f(i). We output the class representing f(i)

and the algorithm stops.
Step 4: If f(i)(x) < a then i = i + 1, go to step 2.
Step 5: Let Z = F, where F is the set of discriminant functions as defined in section 3.2.
Step 6: Compute Zi(x), for all fi ∈ Z.
Step 7: Find the arg min{ ()},

i
i

fi
k Z x

∈
=

Z
 the object x will be assigned to the class Ck.

5. EXPERIMENTS AND DISCUSSIONS

Since GP Quick’s source code is well-known and easily accessible from the web,
the GP Quick 2.1 [31] was modified to fit the requirements of the proposed approaches
and used to demonstrate the effectiveness and efficiency of the proposed classifiers. The
experiments were conducted using a PC with 866MHz CPU and 128MB RAM. The test
datasets included Fisher’s Iris dataset (IRIS) [10], Wisconsin Breast Cancer dataset
(WBC) [24], BUPA liver, Vehicle, and PIMA datasets. These datasets can be downloaded
from the UCI Repository [2] and are well-known benchmarks for evaluating the per-
formance of classifiers.

BEEN-CHIAN CHIEN, JUNG-YI LIN AND WEI-PANG YANG

584

The classification accuracy is evaluated through 10-fold cross validation [14]. To
avoid randomness of training data and show the stability of the learning process, each
evaluation of 10-fold cross validation was run ten times in our experiments for a total of
100 runs. The results are listed in the Appendix. Table 3 shows the parameters of genetic
programming used in GP Quick. The values used in the fitness function were empirically
set to p = 10, q = − 10 and a = 0 for all datasets, though the exact values do not signifi-
cantly affect the classification accuracy if the number of evolving generations is large
enough. The values p = 10, q = − 10, and a = 0 were chosen because this setting has the
shortest function generating time for most datasets.

Table 3. The parameters used in the experiments.

Parameters Values Parameters Values

Node mutate weight 43.5% Population size 1000

Mutate constant weight 43.5% Generations per stage g 10000

Mutate shrink weight 13% Crossover weight 28%

Selection method Tournament Crossover weight annealing 20%

Mutation weight 8% p, q, a 10, − 10, 0

Mutation weight annealing 40% Functions +, −, ×, ÷

(1) Fisher’s Iris Dataset

The first experiment used Fisher’s Iris dataset (IRIS) [10], which is comprised of
150 data separated into three classes, Setosa, Versicolor and Virginica, each with 50 data.
Each datum has four numerical attributes, sepal length (denoted as SL), sepal width (SW),
petal length (PL) and petal width (PW). After the learning procedure, 300 discriminant
functions were obtained from 10-fold cross-validation repeating ten times. The experi-
mental results are shown in Table 10 of the Appendix. The columns show the accuracy
(Acc.) and number of misclassified data (# error) for each run. Clearly, DFT* and DFT-Z
perform better than DFT. Many data are not classified correctly in DFT and are classified
as reject cases, reducing the classifier accuracy. DFT* overcomes the ambiguity through
its tree structure, increasing the accuracy. DFT-Z was found to produce the best result.

Table 4 compares the experimental results using the proposed methods with those
using other methods. Due to the different experimental environments used, the compari-
son is described in different groups. Group A in Table 4 used one-half of IRIS as training
data and the remaining half as test data. Group B used two-fold cross-validation. Group
C used 10-fold cross-validation.

(2) Wisconsin Breast Cancer Dataset

The second experiment used Wisconsin Breast Cancer dataset (WBC) [2, 24], which
contains 699 data in two classes, Malignant (containing 241 data) and Benign (458). The
WBC dataset has nine numerical attributes. However, 16 WBC data have missing values;
thus the remaining 683 data were used in the experiment. The Malignant class contained
239 data and Benign contained 444 data. The experimental results of 10-fold cross-
validation are shown in Table 11 of the Appendix, and the experimental results are sum-
marized in Table 5. DFT* was found to produce better than DFT and DFT-Z for the best

A NEW CLASSIFICATION TREE BASED ON DISCRIMINANT FUNCTIONS

585

Table 4. Comparison of performance on IRIS dataset.

Group Models or methods Accuracy
A DFT 94.7%

GPCE [16] 96.0%

FEBFC with 4 features [19] 96.7%
 FEBFC with 2 selected features [19] 97.1%
 DFT* 97.3%
 DFT-Z 100%

B DLBAN [29] 93.4%
C DFT (ave.) 92.3%
 CBA [22] 92.9%
 S-Lazy [36] 94.0%
 Naïve Bayesian [36] 94.0%
 DFT* (ave.) 94.4%
 DFT-Z (ave.) 94.7%
 C4.5 [22] 95.3%
 DFT (best) 95.3%
 DFT* (best) 96.7%
 DFT-Z (best) 96.7%

Table 5. Comparison of performance on WBC dataset.

Group Models or methods Accuracy
FEBFC with 9 features [19] 94.7%
DFT* 94.7%
DFT-Z 94.7%
DFT 95.0%
C4.5 [34] 95.0%
FEBFC with selected 6 features [19] 95.1%

A

HCL [34] 95.3%
NNFS with all features [27] 93.9% B

NNFS with selected features [27] 94.2%
C Bayes [8] 97.3%
D SVM [15] 95.6%

DFT (ave.) 95.1%
CBA [22] 96.1%
C4.5 [22] 96.1%
DFT* (ave.) 96.5%
DFT- Z (ave.) 96.4%
DFT (best) 97.1%
S-Lazy [36] 97.1%
Naïve Bayesian [36] 97.4%
DFT-Z (best) 97.4%

E

DFT* (best) 97.8%

BEEN-CHIAN CHIEN, JUNG-YI LIN AND WEI-PANG YANG

586

classification tree. The results for Group A were obtained with half the BCW data being
used for training. The results of Group B used 315 data for training, 35 data for the vali-
dation, and 349 data for testing. The Bayesian classifier in Group C used 500 data for
training. The SVM method used in Group D used 409 for training and 274 for testing.
Finally, methods in Group E used 10-fold cross validation.

(3) BUPA Liver Disorders Dataset

The third experiment used the BUPA liver disorders dataset selected from the UCI
repository [2]. BUPA is a two-class problem containing 345 data, each composed of six
numerical features. The experimental results for 10-fold cross-validation are shown in
Table 12 of the Appendix, and are similar to those of WBC. DFT* beats DFT-Z again by
a very small margin, and DFT preformed the worst. Table 6 compares these results with
those of other methods. The results in Group A were obtained using one-half of the
BUPA data as the training set. The results in Group B were obtained using 10-fold cross-
validation. The table demonstrates that the proposed FTD* classifier is close to the SVM
classifiers and is better than Naïve Bayesian classifiers.

Table 6. Comparison of performance on BUPA dataset.

Group Models or methods Accuracy
A HCL [34] 61.8%
 C4.5 [34] 63.1%

B S-Lazy [36] 60.9%
 Naïve Bayesian [36] 63.2%
 DFT (ave.) 63.4%

 1-norm SVM [20] 64.3%
 MODLEM [32] 65.8%
 DFT (best) 67.8%
 DFT- Z (ave.) 67.8%
 DFT* (ave.) 68.0%
 Classical SVM [20] 69.9%
 DFT-Z (best) 70.1%
 SSVM [20] 70.3%
 DFT* (best) 71.0%

(4) Vehicle Dataset

The fourth experiment used the Vehicle dataset from UCI [2]. Vehicle is a
four-class classification problem containing 846 data with 18 numerical features. The
classification results of 10-fold cross-validation, shown in Table 13 of the Appendix. The
experimental results reveal that DFT performed much worse than DFT* and DFT-Z. Ve-
hicle dataset has four classes and thus four discriminant functions. While the data cannot
be recognized by top three functions, they are assigned to the last class by DFT*. How-
ever, since the training data may not properly generate the discriminant functions,
many data are misclassified into the reject class. DFT-Z resolves such problem and thus
yields the best result. Table 7 shows the comparisons, which are split into two groups.

A NEW CLASSIFICATION TREE BASED ON DISCRIMINANT FUNCTIONS

587

Table 7. Comparison of performance on Vehicle dataset.

Group Models or methods Accuracy
SVM infoprop with 18 features [30] 49.64% A
SVM infoprop with 12 features [30] 70.21%
DFT (ave.) 41.1%
DFT (best) 47.8%
DFT* (ave.) 55.2%
DFT* (best) 58.6%
Naïve Bayesian [36] 60.5%
S-Lazy [36] 64.8%
DFT-Z (ave.) 63.8%
DFT-Z (best) 68.3%
CBA [22] 68.8%

B

C4.5 [22] 72.6%

In Group A, the SVM [30] uses 564 training data and 282 testing data. Group B uses
10-fold cross-validation. The comparison shows that DFT-Z has the highest classification
rate in this dataset.

 (5) PIMA Dataset

The last experiment used the PIMA dataset [2]. PIMA is a two-class problem, con-
taining 768 data with 8 features. Two datasets were created for this experiment. The
original PIMA dataset is denoted PIMA1. For the modified dataset, PIMA2, the serum
insulin feature containing physically impossible values, was eliminated, giving 532 data,
each with 7 features. Tables 14 and 15 of the Appendix present the classification results
of ten runs of 10-fold cross-validation on PIMA1 and PIMA2. The tables show that
DFT-Z performed better than the others. After removing the serum insulin feature, a 2%
to 3% improvement is obtained. Table 8 compares our experimental results of the
PIMA1 dataset with previous methods. Since PIMA2 was modified as in [21], compari-
sons of accuracy can be found in [21]. In Table 8, Group A used 345 data for training, 39
data for validation and 384 data for testing. Group B used 10-fold cross-validation.
DFT-Z had the best single data run, but the average accuracy of DFT* tied with DFT-Z’s.
The experimental results show that no classification method is best overall. The original
DFT method was found to perform poorly due to the serious ambiguity problems. The
proposed methods, DFT* and DFT-Z, can resolve the ambiguity, and thus improve the
classification accuracy. Furthermore, except for the BUPA dataset, DFT-Z is better than
DFT* generally. The SVM-based classifiers also have high classification rates.

GP Quick uses a “steady state” GA, generating one new individual and replacing
one old individual at a time, as opposed to making a whole new batch as a “generation”
[31]. Hence, although the generation parameter was set to 10000, the evolution was fast.
Table 9 lists the average learning time for discriminant functions based on the experi-
mental datasets. The process of learning discriminant functions was found to be possible
in a few seconds or minutes at most, depending on the number of instances in the training
datasets. The proposed learning algorithm is efficient while comparing with the training
time in [23] which is more than an hour.

BEEN-CHIAN CHIEN, JUNG-YI LIN AND WEI-PANG YANG

588

Table 8. Comparison of performance on PIMA1 dataset.

Group Models or methods Accuracy

NNFS with all features [27] 71.0% A

NNFS with selected features [27] 74.3%
DFT (ave.) 72.9%
CBA [22] 73.1%
DFT (best) 73.9%
S-Lazy [36] 74.7%
Naïve Bayesian [36] 75.0%
DFT* (ave.) 75.2%
C4.5 [22] 75.5%
DFT* (best) 76.1%
DFT- Z (ave.) 76.1%
SSVM [20] 78.1%

B

DFT-Z (best) 78.2%

Table 9. Average learning time of discriminant functions for test datasets.

Learning time (in sec.)
Data sets

Classification
functions average stddev

fsetosa 2.07 0.18

fversicolor 3.10 0.49 IRIS

fvirginica 2.40 0.57
fmalignant 32.41 4.83

WBC
fbenign 33.34 4.20

f1 14.78 2.32
BUPA

f2 14.89 2.27
fopel 33.71 4.50
fsaab 34.45 6.46
fvan 34.91 8.39

Vehicle

fbus 33.61 7.48
fpositive 32.51 6.40

PIMA1
fnegative 32.93 8.91
fpositive 25.87 4.54

PIMA2
fnegative 24.66 4.24

6. CONCLUSIONS

This work proposes a new classification tree with discriminant functions learned by
genetic programming. This approach includes a distance-based fitness function and the
resolution of ambiguity. We create a classification tree to resolve the conflict cases of
discriminant functions and use the Z-value measure to handle the reject cases. The ex-
perimental results show that if the problem of ambiguity between discriminant functions

A NEW CLASSIFICATION TREE BASED ON DISCRIMINANT FUNCTIONS

589

can be overcome, the classifier with discriminant functions is accurate and work well
under various classification problems. Finally, although the proposed method works ef-
fectively with numerical attributes, it does not work on problems with categorical attrib-
utes or datasets with missing values. We hope to be able to extend the proposed methods
to include these kinds of classification problems.

REFERENCES

1. C. C. Bojarczuk, H. S. Lopes, and A. A. Freitas, “Discovering comprehensible clas-
sification rules using genetic programming: a case study in a medical domain,” in
Proceedings of the Genetic and Evolutionary Computation Conference, 1999, pp.
953-958.

2. C. Blake, E. Keogh, and C. J. Merz, UCI Repository of Machine Learning Data-
bases, http://www.ics.uci.edu/~mlearn/MLRepository.html, Dept. of Information and
Computer Science, University of California, Irvine, 1998.

3. M. Bramrier and W. Banzhaf, “A comparison of linear genetic programming and
neural networks in medical data mining,” IEEE Transactions on Evolutionary Com-
putation, Vol. 5, 2001, pp. 17-26.

4. K. H. Chen et al., “A multiclass neural network classifier with fuzzy teaching in-
puts,” Fuzzy Sets System, Vol. 91, 1997, pp. 15-35.

5. Y. Chen and J. Z. Wang, “Support vector learning for fuzzy rule-based classification
systems,” IEEE Transactions on Fuzzy Systems, Vol. 11, 2003, pp. 716-728.

6. B. C. Chien and J. Y. Lin, “Learning discriminating functions with fuzzy attributes
for classification using genetic programming,” Expert Systems with Applications,
Vol. 23, 2002, pp. 31-37.

7. T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,” IEEE Transac-
tions on Information Theory, Vol. 13, 1967, pp. 21-27.

8. P. Domingos and M. Pazzani, “On the optimality of the simple bayesian classifier
under zero-one loss,” Machine Learning, Vol. 29, 1997, pp. 103-130.

9. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, John Wiley &
Sons, New York, 1973.

10. R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of
Eugenics, Part II, Vol. 7, 1936, pp. 179-188.

11. A. A. Freitas, “A genetic programming framework for two data mining tasks: classi-
fication and generalized rule induction,” in Proceedings of 2nd Annual Conference
Morgan Kaufmann, pp. 96-101, 1997.

12. M. A. Hearst, B. Schölkopf, S. Dumais, E. Osuna, and J. Platt, “Trends and contro-
versies: support vector machines,” IEEE Intelligent Systems, Vol. 13, 1998, pp.
18-28.

13. D. Heckerman and M. P. Wellman, “Bayesian networks,” Communications of the
ACM, Vol. 38, 1995, pp. 27-30.

14. J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann
Publishers, New York, 2001.

15. B. Karacali, R. Ramanath, and W. E. Snyder, “A comparative analysis of structural
risk minimization by support vector machines and nearest neighbor rule,” Pattern

BEEN-CHIAN CHIEN, JUNG-YI LIN AND WEI-PANG YANG

590

Recognition Letters, Vol. 25, 2004, pp. 63-71.
16. J. K. Kishore, L. M. Patnaik, V. Mani, and V. K. Agrawal, “Application of genetic

programming for multicategory pattern classification,” IEEE Transactions on Evolu-
tionary Computation, Vol. 4, 2000, pp. 242-258.

17. J. R. Koza, Genetic Programming: on the Programming of Computers by means of
Natural Selection, MIT Press, Cambridge, Massachusetts, 1992.

18. J. R. Koza, D. E. Goldberg, and D. B. Gogel, (eds.), Genetic Programming, MIT
Press, Cambridge, Massachusetts, 1996.

19. H. M. Lee, C. M. Chen, J. M. Chen, and Y. L. Jou, “An efficient fuzzy classifier with
feature selection based on fuzzy entropy,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, Vol. 31, 2001, pp. 426-432.

20. Y. J. Lee and O. L. Mangasarian, “SSVM: a smooth support vector machine,” Com-
putational Optimization and Applications, Vol. 20, 2001, pp. 5-22.

21. T. S. Lim, W. Y. Loh, and Y. S. Shih, “A comparison of prediction accuracy, com-
plexity, and training time of thirty-three old and new classification algorithms,”
Machine Learning, Vol. 40, 2000, pp. 203-228.

22. B. Liu, W. Hsu, and Y. Ma, “Integrating classification and association rules mining,”
in Proceedings of 4th International Conference on Knowledge Discovery and Data
Mining, 1998, pp. 80-86.

23. T. Loveard and V. Ciesielski, “Representing classification problems in genetic pro-
gramming,” in Proceedings of the Congress on Evolutionary Computation, 2001, pp.
1070-1077.

24. O. L. Mangasarian and W. H. Wolberg, “Cancer diagnosis via linear programming,”
SIAM News, Vol. 23, 1990, pp. 1-18.

25. D. Nauck and R. Kruse, “A neuro-fuzzy method to learn fuzzy classification rules
from data,” Fuzzy Sets System, Vol. 89, 1997, pp. 277-288.

26. J. R. Quinlan, “Induction of decision trees,” Machine Learning, Vol. 1, 1986, pp.
81-106.

27. J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers,
San Mateo, California, 1993.

28. R. Setiono et al., “Neural-network feature selector,” IEEE Transactions on Neural
Networks, Vol. 8, 1997, pp. 654-662.

29. H. B. Shi, Z. H. Wang, G. Webb, and H. K. Huang, “A new restricted Bayesian net-
work classifier,” in Proceedings of 7th Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining (PAKDD), in K. Y. Whang, J. Jeon, K. Shim, and J.
Srivastava, (eds.), 2003, pp. 265-270.

30. V. Sindhwani, P. Bhattacharyya, and S. Rakshit, “Information theoretic feature cred-
iting in multiclass support vector machines,” in Proceedings of the SIAM Interna-
tional Conference on Data Mining, 2001.

31. A. Singleton, “Genetic programming with C++,” BYTE Magazine, 1994, pp.
171-176.

32. J. Stefanowski, “Changing representation of learning examples while inducing clas-
sifiers based on decision rules,” in Proceedings of the Symposium on Methods of Ar-
tificial Intelligence (AI-METH), 2003, pp. 297-301.

33. V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York,
1995.

A NEW CLASSIFICATION TREE BASED ON DISCRIMINANT FUNCTIONS

591

34. R. Vilalta and M. Achari, “A hierarchical approach to classification for systems with
complex low-level interactions,” in Proceedings of the IEEE International Sympo-
sium on Intelligent Control, 2003, pp. 110-115.

35. C. H. Wang, T. P. Hong, and S. S. Tseng, “Integrating fuzzy knowledge by genetic
algorithms,” IEEE Transactions on Evolutionary Computation, Vol. 2, 1998, pp.
138-149.

36. Z. Wang, G. I. Webb, and F. Zheng, “Adjusting dependence relations for semi-lazy
TAN classifiers,” Lecture Notes on Artificial Intelligence, Vol. 2903, 2003, pp.
453-465.

37. G. P. Zhang, “Neural networks for classification: a survey,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews, Vol. 30, 2000, pp.
451-462.

APPENDIX

Table 10. Experimental results using 10-fold cross validation on IRIS for 10 runs.

 DFT DFT* DFT-Z
Runs Acc. # errors Acc. # errors Acc. # errors

1 0.953 7 0.953 7 0.967 5
2 0.9 15 0.933 10 0.94 9
3 0.913 13 0.933 10 0.933 10
4 0.907 14 0.927 11 0.947 8
5 0.92 12 0.94 9 0.933 10
6 0.92 12 0.947 8 0.94 9
7 0.92 12 0.953 7 0.947 8
8 0.953 7 0.967 5 0.967 5
9 0.913 13 0.947 8 0.947 8
10 0.927 11 0.94 9 0.947 8

Average 0.923 11.6 0.944 8.4 0.947 8

Table 11. Experimental results using 10-fold cross validation on WBC for 10 runs.

 DFT DFT* DFT-Z
Runs Acc. # errors Acc. # errors Acc. # errors

1 0.962 26 0.966 23 0.966 23
2 0.962 26 0.965 24 0.968 22
3 0.956 30 0.960 27 0.960 27
4 0.953 32 0.969 21 0.965 24
5 0.959 28 0.969 21 0.966 23
6 0.971 20 0.978 15 0.974 18
7 0.956 30 0.962 26 0.968 22
8 0.959 28 0.968 22 0.963 25
9 0.934 45 0.941 40 0.943 39
10 0.898 70 0.966 23 0.963 25

Average 0.951 33.5 0.965 24.2 0.964 24.8

BEEN-CHIAN CHIEN, JUNG-YI LIN AND WEI-PANG YANG

592

Table 12. Experimental results using 10-fold cross validation on BUPA for 10 runs.

 DFT DFT* DFT-Z
Runs Acc. # errors Acc. # errors Acc. # errors

1 0.678 111 0.701 103 0.699 104
2 0.643 123 0.693 106 0.672 113
3 0.632 127 0.661 117 0.678 111
4 0.620 131 0.658 118 0.655 119
5 0.623 130 0.652 120 0.661 117
6 0.623 130 0.678 111 0.667 115
7 0.635 126 0.710 100 0.701 103
8 0.632 127 0.675 112 0.693 106
9 0.641 124 0.704 102 0.690 107
10 0.614 133 0.670 114 0.667 115

Average 0.634 126.2 0.680 110.3 0.678 111

Table 13. Experimental results using 10-fold cross validation on Vehicle for 10 runs.

 DFT DFT* DFT-Z
Runs Acc. # errors Acc. # errors Acc. # errors

1 0.371 532 0.539 390 0.599 339
2 0.382 523 0.569 365 0.683 268
3 0.410 499 0.545 385 0.617 324
4 0.400 508 0.535 393 0.626 316
5 0.375 529 0.509 415 0.616 325
6 0.434 479 0.577 358 0.683 268
7 0.478 442 0.569 365 0.621 321
8 0.450 465 0.586 350 0.664 284
9 0.398 509 0.556 376 0.665 283
10 0.409 500 0.533 395 0.609 331

Average 0.411 498.6 0.552 379.2 0.638 305.9

Table 14. Experimental results using 10-fold cross validation on PIMA1 for 10 runs.

 DFT DFT* DFT-Z
Runs Acc. # errors Acc. # errors Acc. # errors

1 0.723 213 0.75 192 0.749 193
2 0.695 234 0.737 202 0.751 191
3 0.719 216 0.733 205 0.732 206
4 0.691 237 0.728 209 0.741 199
5 0.701 230 0.723 213 0.738 201
6 0.68 246 0.719 216 0.727 210
7 0.697 233 0.736 203 0.737 202
8 0.704 227 0.733 205 0.75 192
9 0.711 222 0.732 206 0.733 205
10 0.704 227 0.732 206 0.727 210

Average 0.702 228.5 0.732 205.7 0.738 200.9

A NEW CLASSIFICATION TREE BASED ON DISCRIMINANT FUNCTIONS

593

Table 15. Experimental results using 10-fold cross validation on PIMA2 for 10 runs.

 DFT DFT* DFT-Z
Runs Acc. # errors Acc. # errors Acc. # errors

1 0.718 150 0.754 131 0.765 125
2 0.731 143 0.759 128 0.761 127
3 0.729 144 0.746 135 0.748 134
4 0.739 139 0.75 133 0.763 126
5 0.731 143 0.752 132 0.763 126
6 0.737 140 0.761 127 0.761 127
7 0.733 142 0.756 129 0.782 116
8 0.737 140 0.754 131 0.758 129
9 0.716 151 0.752 132 0.765 125
10 0.722 148 0.737 140 0.741 138

Average 0.729 144 0.752 131.8 0.761 127.3

Been-Chian Chien (錢炳全) received a B.S. in Computer
Engineering from National Chiao Tung University in 1987, an
M.S. and a Ph.D. in Computer Science and Information Engi-
neering in 1989 and 1992 from National Chiao Tung University,
Hsinchu, Taiwan, respectively. He is currently an associate pro-
fessor and the Head of the Department of Computer Science and
Information Engineering, National University of Tainan, Tainan,
Taiwan, since August 2004. His current research activities involve
multimedia databases, intelligent content-based information re-
trieval, machine learning, knowledge discovery, and data mining.

Jung-Yi Lin (林忠億) was born in Taitung, Taiwan. He re-
ceives the B.S. degree in Applied Mathematics and the M.S. de-
gree in Computer Science and Information Engineering from
I-Shou University in 2000 and 2002, respectively. Lin is currently
a Ph.D. candidate in Computer and Information Science, National
Chiao Tung University, Hsinchu, Taiwan. His research interests
include evolutionary computing, machine learning, data mining,
and knowledge discovery.

BEEN-CHIAN CHIEN, JUNG-YI LIN AND WEI-PANG YANG

594

Wei-Pang Yang (楊維邦) was born in Hualien, Taiwan. He
received the B.S. degree in Mathematics from National Taiwan
Normal University in 1974, and the M.S. and Ph.D. degrees from
the National Chiao Tung University in 1979 and 1984, respec-
tively, both in Computer Engineering. Dr. Yang currently is a
professor in Computer and Information Science in National
Chiao Tung University, Hsinchu, Taiwan. Since 2004, he has
transferred to National Dong Hwa University at Hualien, Taiwan,
and acted as the Head of the Department of Information Man-
agement and the Dean of School of Management. His research
interests include database theory and application, information re-
trieval, data miming, digital library, and digital museum.

