
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 22, 691-699 (2006)

691

Short Paper___

Authentication Protocols Using

Hoover-Kausik’s Software Token*

WEI-CHI KU AND HUI-LUNG LEE

 +

Department of Computer Science and Information Engineering
Fu Jen Catholic University

Taipei, 242 Taiwan
E-mail: wcku@csie.fju.edu.tw

+Department of Computer and Information Science
National Chiao Tung University

Hsinchu, 300 Taiwan

In 1999, Hoover and Kausik introduced a software token using the cryptographic

camouflage technique and claimed that it can resist various on-line and off-line guessing
attacks. Later, Kwon presented an authentication protocol based on the cryptographic
camouflage technique and DSA, and pointed out that this initial protocol is vulnerable to
an impersonation attack once a server’s secret key or private key is compromised. Then,
Kwon proposed a modified version that can resist such an impersonation attack by cryp-
tographically embedding the recipient’s identity in the user’s signature to ensure that
only the intended recipient will accept this signature. However, we find that Kwon’s
modified protocol still has some drawbacks. In this paper, we first demonstrate the
drawbacks of Kwon’s modified protocol and then propose an improved authentication
protocol based on the cryptographic camouflage technique and RSA. Finally, we show
that our improved protocol can provide prefect forward secrecy and can resist the
off-line guessing attack, the impersonation attack, the replay attack, and the Denning-
Sacco attack. Furthermore, the resistance of our improved protocol to the modification
attack is also enhanced by additionally using credit-card sized CD-ROMs.

Keywords: password, authentication, software token, cryptographic camouflage, guess-
ing attack

1. INTRODUCTION

As the use of public-key cryptography in authentication and signatures increases the
need for a secure, convenient, and economic mechanism for protecting a user’s private
key is becoming more pressing than ever before. Employing a tamper-resistant hardware
token to store the private key can effectively keep outsiders from extracting its content
and resist the guessing attack by locking up after a limited number of attempts to activate

Received January 2, 2004; revised July 9, 2004; accepted August 26, 2004.
Communicated by Chi-Sung Laih.
* This work was supported in part by the National Science Council of Taiwan, R.O.C., under grant No. NSC

92-2213-E-030-013.

WEI-CHI KU AND HUI-LUNG LEE

692

it with incorrect passwords.

Since the private key is protected by two authentication fac-
tors, the password and the hardware token, compromising a single authentication factor
will not immediately breach the private key. However, hardware tokens require an ex-
pensive infrastructure in the form of dedicated readers/writers, and their deployment in
large-scale communication is unfavorable. Therefore, researchers are motivated to de-
velop a means of securely storing private keys in software tokens especially suitable for
certain constrained environments, e.g., [6, 7, 10, 12].

The software key container, which
conforms to PKCS #5 [14] and PKCS #8 [13], is a widely used method for storing pri-
vate keys in software tokens. In the software key container, the private key is encrypted
with the user’s password. Because the software key container is not tamper-resistant,
data stored in it tend to be compromised in practical environments [9]. However, the
software key container has been found to be vulnerable to an off-line guessing attack [11]
once it is compromised [7-9].

Recently, Hoover and Kausik [7] introduced a software token based on the crypto-
graphic camouflage technique, in which the private key is protected by the user’s pass-
word in a particular way. The idea behind the cryptographic camouflage technique is to
guarantee that the adversary cannot distinguish the user’s private key among spurious but
plausible private keys. Although the adversary who has got a copy of the software token
can try to crack it to obtain the private key, he will only recover many plausible private
keys and cannot distinguish the correct private key from the spurious decoys. To camou-
flage private keys, Hoover and Kausik dictated: (1) do not encrypt a known structure
with the password; (2) conceal the public key and do not use it to encrypt verifiable
plaintext; (3) do not reveal information about the password; (4) randomize and protect
signatures. In practice, the cryptographic camouflage technique has been employed in
some commercial products, e.g., ArcotID™ [1]. In 2002, Kwon [9] described an authen-
tication protocol based on cryptographically camouflaged DSA (Digital Signature Algo-
rithm) [3] keys. Kwon then pointed out that this initial protocol is vulnerable to an im-
personation attack once a server’s secret key (or private key) is compromised. In addition,
he proposed a modified version, which will be abbreviated as Kwon’s modified protocol
hereafter, and claimed that his modified version is strong against the off-line guessing
attack even if the software token is compromised. However, we find that Kwon’s modi-
fied protocol still has two drawbacks. In this paper, we will first review Kwon’s modified
protocol and then show its drawbacks. Next, we will propose an improved authentication
protocol, which is based on camouflaged RSA [15] keys. We will show that the im-
proved protocol can provide prefect forward secrecy and can resist the off-line guessing
attack, the impersonation attack, the replay attack, and the Denning-Sacco attack [2].
Additionally, the resistance of the improved protocol to the modification attack will be
discussed. Hereafter, we will use ‘camouflage’ for short instead of ‘cryptographic cam-
ouflage.’

2. DRAWBACKS OF KWON’S MODIFIED PROTOCOL

In 1999, Kwon [9] described an authentication protocol based on cryptographically
camouflaged DSA [3] keys. However, Kwon [9] showed that his initial protocol is
flawed in that a malicious server can impersonate a user to login to another server by

AUTHENTICATION PROTOCOLS USING HOOVER-KAUSIK’S SOFTWARE TOKEN

693

opening interleaved sessions without having to compromise any authentication factor of
the user. Then, Kwon [9] proposed a modified version that can resist such an impersona-
tion attack. Unfortunately, we find that Kwon’s modified protocol still has some draw-
backs. In this section, we will first review Kwon’s modified protocol and then show its
drawbacks.

2.1 Kwon’s Modified Protocol

Each user selects his own DSA system with the parameters (p, q, g, x, y), where p

and q are large prime numbers, g = h(p-1)/q mod p (h ∈ Z), x is his private key, and y (= gx
mod p) is his public key. To protect x, the user chooses a password π and computes a =
E(k(π), x), where k() denotes a key derivation function and E() denotes the encryption
function of a secret-key cryptosystem. To conceal his public key, the user computes b =
ε(ϕ, (y, g, p, q)), where ϕ denotes the server’s encryption key and ε() denotes the en-
cryption function of either a secret-key or a public-key cryptosystem. In addition, b is
contained in the certificate Certb that is signed by a certification authority (CA) to ensure
its authenticity [7]. The notation σ represents the server’s decryption key. D() represents
the decryption function corresponding to E(). And D() represents the decryption func-
tion corresponding to ε().

According to the mechanism used to encrypt the user’s public key, the authentica-
tion protocol can be operated in one of the following models: the S model, where the
user’s public key is encrypted with the secret key shared by all servers; the P model,
where the user’s public key is encrypted with the public key of each server; the CP
model, where the user’s public key is encrypted with the common public key of all the
servers. In the S model, the encryption key equals the decryption key, i.e., ϕ = σ. In the P
and CP model, ϕ denotes the public key, and σ denotes its corresponding private key. In
the CP model, all the servers share the same key pair. Initially, the user memorizes π and
keeps (a, b, g, p, q, ϕ) in his software token. Kwon’s modified protocol can be described
as in the following steps:

Step 1: The user sends a login request to the server.
Step 2: The server replies with a random challenge m of L bits to the user. (L represents

the security parameter of the system.)
Step 3: The user inputs π to produce k(π) and then computes x = D(k(π), a). In addition,

the user computes n = h(svr, h(m)), where h() represents a one-way hash func-
tion and svr denotes the server’s identity. Next, the user chooses a random inte-
ger c within [1, q − 1] and computes r = (gc mod p) mod q and s = c-1(n + xr)
mod q. Then, the user computes w = ε(ϕ, (r, s)) and then sends w to the server
along with Certb.

Step 4: If Certb is valid, the server uses σ to decrypt w and b, i.e., (r, s) = D(σ, w) and (y,
g, p, q) = D(σ, b). Next, the server computes n = h(svr, h(m)), u1 = s-1n mod q,
and u2 = rs-1 mod q. Then, the server computes v = (gu1yu2 mod p) mod q. If v = r,
the server accepts the user’s login request.

WEI-CHI KU AND HUI-LUNG LEE

694

2.2 Drawbacks

Since ordinary storage is not tamper-resistant and software tokens can easily be
copied and backed up for users’ convenience, an accidental compromise of a software
token cannot be entirely prevented. Suppose that the user’s (a, b, g, p, q, ϕ) stored in the
software token is compromised by an adversary. First, the adversary tries a candidate
password π′ to compute k(π′) and then uses k(π′) to decrypt a, which yields x′ (= D(k(π′),
a)). Then, the adversary computes y′ = gx′ mod p. Then, the attack for each model can be
described as follows.

• For the S model: Since the adversary has obtained the servers’ shared secret key ϕ (= σ)

from the user’s software token, he can compute (y, g, p, q) = D(ϕ, b). If y′ = y, the ad-
versary has guessed the correct password π′ (= π), which also implies that he has ob-
tained the user’s private key x′ (= x).

• For P and CP model: As the adversary knows the server’s public key ϕ, he can com-
pute b′ = ε(ϕ, (y′, g, p, q)). If b′ = b, then the adversary has guessed the correct pass-
word π′ (= π), which also implies x′ (= x).

Therefore, Kwon’s modified protocol fails to resist the off-line guessing attack as

described above. Clearly, Kwon’s modified protocol operated in the P and CP models
can be easily improved by implementing ε() with an encoding method that embeds suf-
ficient randomness, e.g., the EME-PKCS1-v1.5 specified in PKCS #1 [15]. To avoid
implementation dependency, another improvement is to embed sufficient randomness
when computing b such that b = ε(ϕ, (y, g, p, q)) is modified to obtain b = ε(ϕ, (y, g, p, q,
R)), where R is a large random integer. Because the adversary does not know R, he can-
not compute b′ = ε(ϕ, (y′, g, p, q)) and compare it with b. However, in the S model, the
adversary can directly use the decryption key ϕ, which is stored in the software token in
plaintext, to mount an off-line guessing attack. At this point, we cannot recommend a
simple improvement for Kwon’s modified protocol operated in the S model.

In some situations, the content of the software token can be easily modified, e.g.,
when the software token is contained within the rewritable storage of a public computer.
We will show that the adversary can obtain the user’s password by performing such a
modification attack. Suppose that the adversary has compromised the software token and
obtained (a, b, g, p, q, ϕ). The adversary can modify ϕ to get ϕ ′, which is the adversary’s
secret key for the S model or public key for the P/CP model. Once the user uses the
modified (a, b, g, p, q, ϕ ′), the adversary can obtain the user’s password as follows.
When the user sends a login request to the server, the adversary interrupts the request and
then sends a random m to the user. Next, the user uses k(π) to decrypt a, which yields x.
Then, he chooses c at random within [1, q − 1] and computes r = (gc mod p) mod q, n =
h(svr, h(m)), and s = c-1(n + xr) mod q. Next, the user encrypts (r, s) with the adversary’s
secret key (or public key) ϕ ′ and sends out w along with Certb. Upon receiving w, the
adversary uses his secret key (or private key) σ ′ to decrypt it, which yields (r, s), and
computes n = h(svr, h(m)), u1 = s-1n mod q, and u2 = rs-1 mod q. Next, the adversary can
guess a password π′ to decrypt a, which yields the corresponding x′, and compute y′ = gx′
mod p and v′ = (gu1y′u2 mod p) mod q. If v′ = r, then the adversary has guessed the correct
password π′ (= π), which also implies that he has obtained the user’s private key x′ (= x).

AUTHENTICATION PROTOCOLS USING HOOVER-KAUSIK’S SOFTWARE TOKEN

695

3. THE IMPROVED PROTOCOL

RSA [15] is one of the most widely used public-key cryptosystems and has been
regarded as a de-facto standard that is extremely important for the development of a
digital economy. In addition, adoption of RSA has grown to the extent that standards are
being written to accommodate RSA. For example, the U.S. government changed FIPS
PUB 186-1 [4], which is the corrected version of FIPS PUB 186 [3], to FIPS PUB 186-2
[5] with the emphasis on RSA digital signatures to support the de-facto standard of offi-
cial and financial institutions. Because RSA is more popular than DSA in practice and
can be used for both encryption and digital signatures, we will describe an improved au-
thentication protocol based on RSA and Hoover-Kausik’s cryptographic camouflage
technique instead of improving Kwon’s modified protocol, which is based on camou-
flaged DSA keys. In contrast to Kwon’s modified protocol, the improved protocol addi-
tionally provides mutual authentication and session key establishment, and can resist the
off-line guessing attack, the impersonation attack, the replay attack, and the Denning-
Sacco attack. Furthermore, the improved protocol provides prefect forward secrecy. In
addition, the resistance of the improved protocol to the modification attack is enhanced
by also using credit-card sized CD-ROMs.

As previously explained, the authentication protocol operated in the S model is vul-
nerable to an off-line guessing attack; therefore, we will only describe the authentication
protocol that can be operated in the P and CP models. Initially, each user selects his own
RSA system with parameters (p, q, n, e, d), where p and q are large prime numbers, n = p
× q, e is the user’s public exponent, and d is the user’s private exponent. In addition, the
server selects the common Diffie-Hellman algorithm parameters (r, g), where r is a large
prime number and g (< r) is a primitive root of r, for all users. Other notations used in the
improved protocol are listed in Table 1.

Table 1. Notations of the improved protocol.

Notation Description

svr server’s identity
π user’s password

h1(), h2() one-way hash function (h1() are h2() are uncorrelated)
sk session key

k() key derivation function
ϕ server’s public key
σ server’s private key

Certb certificate of b issued by certificate authority (CA)
E() the encryption function of a secret-key cryptosystem
D() the decryption function corresponding to E()
ε() the encryption function of RSA
D() the decryption function corresponding to ε()

a a = E(k(π), (d, n))
b b = ε(ϕ, (e, n))

WEI-CHI KU AND HUI-LUNG LEE

696

To protect (d, n), the user chooses a password π and computes a = E(k(π), (d, n)).
To conceal his public key (e, n), the user encrypts it with ϕ to derive b = ε(ϕ, (e, n)). The
user memorizes the password π and keeps (a, b, g, r, ϕ) in a software token. Additionally,
the software token is stored in a credit-card sized CD-ROM, which can fit into the center
recess of most CD-ROM and DVD-ROM drives nowadays. Since the credit-card sized
CD-ROM does not require any special equipment, expensive infrastructure in the form of
dedicated readers/writers is avoided, i.e., the deployment cost remains low. To resist the
modification attack, the user should carry his CD-ROM with him and ensure that it will
not be stealthily replaced by others. Note that Arcot System Inc. [1] also gives a similar
suggestion for using its ArcotID™.

Step 1: The user chooses a random number x and computes R1 = gx mod r. Next, the user

computes T1 = ε(ϕ, R1) and sends T1 to the server.
Step 2: Upon receiving T1 from the user, the server chooses a random number y and

computes R2 = gy mod r. Subsequently, the server decrypts T1 with the server’s
private key σ, which yields R1, and then computes the session key sk = h2((R1)

y

mod r) (= h2(g
xy mod r)). Next, the server computes T2 = E(sk, R1), and then

sends R2 and T2 to the user.
Step 3: Upon receiving R2 and T2, the user computes the session key sk = h2((R2)

x
 mod r)

(= h2(g
xy mod r)). If R1 = D(sk, T2), the user authenticates the server. Otherwise,

the user terminates this session. Next, the user inputs his password π to compute
k(π) and uses k(π) to decrypt a, which yields his private key (d, n). Then, the
user computes m = h1(svr, h1((R2)

x
 mod r)) and c = md mod n. Subsequently, the

user encrypts c with sk and sends the result w to the server along with Certb.
Step 4: Upon receiving w and Certb, the server first verifies Certb. If Certb is valid, the

server computes (e, n) = D(σ, b) and c = D(sk, w). Then, the server computes m
= h1(svr, h1((R1)

y
 mod r)) and v = ce mod n. If m = v, the server accepts the user’s

login request and enables sk for communicating with the user securely. Other-
wise, the user’s login request is rejected.

4. SECURITY ANALYSIS OF THE IMPROVED PROTOCOL

Suppose that the adversary has obtained the user’s software token. We will now
analyze the security strength of the improved protocol.

Resistance to the Off-Line Guessing Attack

The adversary can use the guessed password π′ to decrypt a, which yields (d′, n′),
but he cannot produce the corresponding public key (e′, n′). Hence, the adversary cannot
verify whether he has obtained the correct (e, n) by using b = ε(ϕ, (e, n)), i.e., he cannot
verify whether π′ = π and (d′, n′) = (d, n). Therefore, the improved protocol can resist the
off-line guessing attack without relying on its implementation.

Resistance to the Impersonation Attack

Upon receiving w, the server can compute D(sk, w) to derive c. Next, the server can
compute ce mod n to derive m = h1(svr, h1((R1)

y
 mod r)). However, the server, with iden-

AUTHENTICATION PROTOCOLS USING HOOVER-KAUSIK’S SOFTWARE TOKEN

697

tity svr, cannot use m to impersonate the user to login to another server, with identity svr′,
by opening interleaved sessions. That is, by cryptographically embedding the recipient’s
identity in the user’s signature, we can ensure that only the intended recipient will accept
this signature. Thus, the improved protocol can resist the impersonation attack.

Resistance to the Replay Attack

Suppose that the adversary has obtained a previously used x′ and captured the cor-
responding protocol messages. Then, the adversary can try to mount a replay attack as
follows. The adversary can replay x′ and T1′ = ε(ϕ, R1′), where R1′ = gx′ mod r, to the
server. Then, the server will decrypt T1′ with σ to obtain R1′. In addition, the server will
choose a random number y and compute R2 = gy mod r and the session key sk = h2((R1′)

y

mod r) (= h2(g
x′y mod r)). Next, the server will compute T2 = E(sk, R1′) and then send R2

and T2 back to the adversary. The adversary can compute sk = h2((R2)
x′ mod r) (= h2(g

x′y
mod r)) and m = h1(svr, h1((R2)

x′ mod r)). However, the adversary cannot compute the
correct c = md mod n that can be accepted by the server because he does not know the
user’s private key (d, n). Alternatively, if the adversary encrypts the previously captured
c′ with sk and sends the result w to the server, his login request will be rejected because
the decrypted c′ (= (m′)d mod n) does not equal the expected c (= md mod n). Since the
adversary cannot generate the correct response that will be accepted by the server, the
improved protocol can resist the replay attack.

Prefect Forward Secrecy

Suppose that the adversary has obtained the user’s password π. Since sk = h2((R1)
y

mod r) = h2((R2)
x
 mod r) (= h2(g

xy)), the adversary can compute a previously used session
key sk and then derive the messages encrypted with it only if he knows either x or {R1, y}.
Knowing π, the adversary can compute the user’s private key (d, n). Although R2 is pub-
lic, the adversary cannot compute y unless the Diffie-Hellman problem is solved, which
is computationally infeasible with current techniques. In addition, since R1 (= gx mod r) is
encrypted by the server’s public key ϕ, the adversary cannot compute R1, which also im-
plies that he has no chance to compute x no matter whether the Diffie-Hellman problem
is solved or not. Hence, the improved protocol provides perfect forward secrecy.

Resistance to the Denning-Sacco Attack

If an old session key sk′ is compromised by the adversary, a Denning-Sacco attack
[2] can be attempted on obtaining π. The adversary can obtain the corresponding signa-
ture c′ by using sk′ and then guess password π* to decrypt a, which yields (d*, n*). How-
ever, the adversary cannot compute m′ from c′ (= m′d mod n) because he does not know
the user’s public key (e, n). Since the adversary cannot compute c* (= m′d* mod n*), it is
infeasible for him to verify whether π* = π by comparing c* with c′. Therefore, the im-
proved protocol can resist the Denning-Sacco attack.

Resistance to the Modification Attack

The user’s software token is stored in a credit-card sized CD-ROM, and the user
only retrieves his software token from this CD-ROM. If the user can ensure that the
CD-ROM containing his software token will not be stealthily replaced by others, he will
not be fooled into using the bogus software token forged or modified by the adversary. In

WEI-CHI KU AND HUI-LUNG LEE

698

such a situation, the improved protocol can resist the modification attack. In practice,
Arcot System Inc. [1] also gives a similar suggestion for using its ArcotID™. However,
it may be questionable in real environments whether the user can effectively safeguard
the CD-ROM containing his software token. Further research is needed to find a better
solution.

5. CONCLUSIONS

Authentication protocols based on public-key cryptographic systems usually simply
assume that the private keys are securely protected and can be easily retrieved for use.
Some authentication protocols further assume that the private keys are stored in smart
cards or some other dedicated tamper-resistant hardware tokens. However, storing pri-
vate keys in tamper-resistant hardware tokens usually requires an expensive infrastruc-
ture in the form of dedicated readers/writers and their deployment in large-scale commu-
nication is unfavorable making them unsuitable for some constrained environments. De-
veloping more convenient and cheaper methods for securely storing private keys has
been a subject of recent researches, and among which the software token introduced by
Hoover and Kausik has been paid with much attention. By using the cryptographic cam-
ouflage technique, we can ensure that the private key can be protected by the user’s
password in such a way that the adversary who has obtained the user’s software token
cannot distinguish the user’s private key from spurious but plausible private keys. Re-
cently, Kwon described an authentication protocol based on the cryptographic camou-
flage technique and DSA, and then pointed out that it is vulnerable to an impersonation
attack. To improve the protocol’s resistance to the impersonation attack, he also pro-
posed a modified version. In this paper, we have demonstrated that Kwon’s modified
protocol still has some drawbacks. Additionally, we have described an improved protocol
based on the cryptographic camouflage technique and RSA. In the improved protocol,
the software token is stored in a credit-card sized CD-ROM. Since the credit-card sized
CD-ROM does not require any special equipment, expensive infrastructure in the form of
dedicated readers/writers is avoided, i.e., the deployment cost is low. In addition, we
have shown that the improved protocol can resist the off-line guessing attack, the imper-
sonation attack, the replay attack, and the Denning-Sacco attack. Furthermore, the im-
proved protocol provides prefect forward secrecy. However, the resistance of the im-
proved protocol to the modification attack depends on whether the user can prevent the
CD-ROM containing his software token from being stealthily replaced by others. In the
next stage of our research, we will try to find a superior solution.

REFERENCES

1. Arcot Systems Inc., available: http://www.arcot.com/.
2. D. Denning and G. Sacco, “Timestamps in key distribution protocols,” Communica-

tions of the ACM, Vol. 24, 1981, pp. 533-536.
3. DSS: Digital Signature Standard, Federal Information Processing Standards Publi-

cation 186, FIPS 186, 1994.
4. DSS: Digital Signature Standard, Federal Information Processing Standards Publi-

AUTHENTICATION PROTOCOLS USING HOOVER-KAUSIK’S SOFTWARE TOKEN

699

cation 186, FIPS 186-1, 1998.
5. DSS: Digital Signature Standard, Federal Information Processing Standards Publi-

cation 186, FIPS 186-2, 2000.
6. W. Ford and B. S. Kaliski, “Server-assisted generation of a strong secret from a

password,” in Proceedings of 5th IEEE International Workshop on Enterprise Secu-
rity, 2000, pp. 176-180.

7. D. Hoover and B. Kausik, “Software smart cards via cryptographic camouflage,” in
Proceedings of the IEEE Symposium on Security and Privacy, 1999, pp. 208-215.

8. T. Kwon and J. Song, “Security and efficiency in authentication protocols resistant
to password guessing attacks,” in Proceedings of 22nd IEEE Conference on Local
Computer Networks, 1997, pp. 245-252.

9. T. Kwon, “Impersonation attacks on software-only two-factor authentication
schemes,” IEEE Communications Letters, Vol. 6, 2002, pp. 358-360.

10. P. MacKenzie and M. Reiter, “Networked cryptographic devices resilient to cap-
ture,” in Proceedings of the IEEE Symposium on Security and Privacy, 2001, pp.
12-25.

11. R. Morris and K. Thompson, “Password security: a case history,” Communications
of the ACM, Vol. 22, 1979, pp. 594-597.

12. R. Perlman and C. Kaufman, “Secure password-based protocol for downloading a
private key,” in Proceedings of the Network and Distributed System Security Sympo-
sium, 1999, pp. 1-9.

13. PKISS: Private-Key Information Syntax Standard, PKCS#8, Version 1.2, RSA Labs
Tech. Note, 1993.

14. Password-Based Encryption Standard, PKCS #5, Version 2.0, RSA Labs Technical
Note, 1999.

15. RSA Cryptography Standard, PKCS #1, Version 2.1, RSA Labs Technical Note,
2002.

Wei-Chi Ku (顧維祺) was born in Taiwan, R.O.C., in 1967. In 2000, he received
the Ph.D. degree in Electrical Engineering from National Taiwan University. In 2001, Dr.
Ku joined the faculty of the Department of Computer Science and Information Engi-
neering at Fu Jen Catholic University, where he is currently an Associate Professor. His
research interests include cryptography and information security.

Hui-Lung Lee (李惠龍) was born in Taoyuan, Taiwan, R.O.C., on June 16, 1976.

He received the M.S. degree in Computer Science and Information Engineering from Fu
Jen Catholic University in 2003. He is now a Ph.D. student of the Department of Com-
puter and Information Science at National Chiao Tung University. His current research
interests include image cryptography and information security.

