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New Construction for Transversal Design
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ABSTRACT

The study of gene functions requires the development of a DNA library of high quality
through much of testing and screening. Pooling design is a mathematical tool to reduce the
number of tests for DNA library screening. The transversal design is a special type of pooling
design, which is good in implementation. In this paper, we present a new construction for
transversal designs. We will also extend our construction to the error-tolerant case.
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1. INTRODUCTION

Arecent important development in biology is the success of Human Genome Project. This project
was done with a great deal of help from computer technology, which made computational biology

a hot interdisciplinary research area between molecular biology, computer science, and mathematics. As
the technology for obtaining sequenced genome data matures, more and more sequenced genome data
are available to the scientific research community, so that the study of gene functions has become a
popular research direction. Such a study is supported by a high quality DNA library which is usually
obtained through much testing and screening. Therefore, the efficiency of testing and screening becomes
very important. Pooling design is a mathematical tool to reduce the number of tests in DNA library
screening (D’yachkov et al., 2001; Farach et al., 1997). For example the Life Science Division of Los
Alamos National Laboratories in 1998 (Marathe et al., 2000) was dealing with 220,000 clones. Testing
those clones individually requires 220,000 tests. However, they used only 376 tests with pooling designs.

Pooling design is also called nonadaptive group testing. Given a set of n items with at most d positive
ones, group testing tests subsets of items, called pools, instead of individual items. For example, in the
above mentioned testing at Los Alamos National Laboratories, each pool contains about 5,000 clones. The
outcome of a test on a pool is positive if the pool contains a positive item and is negative otherwise.

The technology of group testing was initiated from a Wasserman-type blood test in World War II. Since
then, many constructions have been developed in the literature (Du and Hwang, 1999, unpublished). A
group testing algorithm is said to be nonadaptive if all tests are arranged in a single round, that is, if
no information on test outcomes is available for determining the composition of another test. A pooling
design is said to be transversal if it can be divided into disjoint families, each of which is a partition of
all items such that pools in different parts are disjoint.
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In this paper, we present a new construction for transversal design. To identify n items with at most d

positive ones, our construction gives a transversal design with at most (2 + o(1))
d log n

log(d log n)
)2 tests, which

is superior to all previously known transversal designs. This construction can also be easily extended to
the error-tolerant case, which is an important topic in pooling designs (Ngo and Du, 2000, 2002; Hwang,
2003; Macula, 1997; Wu et al., 2003, submitted).

Transversal designs are used very frequently in practice because implementation is easy and their per-
formance is quite good. Therefore, our new construction has a significant impact in practice.

2. MATRIX REPRESENTATION OF TRANSVERSAL DESIGNS

A pooling design is usually represented by a binary matrix with rows indexed with items and columns
indexed with pools. A cell (i, j) contains a 1-entry if and only if the ith pool contains the j th item. This
binary matrix is called the incidence matrix of the represented pooling design. By treating a column as
a set of row indices each intersecting the column with a 1-entry, we can talk about the union of several
columns. A binary matrix is d-separable if every two unions from different subsets of d columns are
different, is d̄-separable if every two unions from different subsets of at most d columns are different, and
is d-disjunct if no column is contained in a union of other d columns.

A transversal design has a special matrix representation with rows indexed by families and columns
indexed by items; a cell (i, j) contains entry k if and only if item j belongs to the kth pool in the ith
family. This matrix representation is called a transversal matrix of the represented transversal design.

Each f × n matrix can be seen as a transversal matrix of a transversal design as follows: Use entries
on the ith row to index pools in the ith family. The pool with index k in the ith family contains the j th
item if and only if cell (i, j) contains entry k in the matrix. For example, matrix

⎛
⎝1 1 −1 −1

2 3 2 3
0 1 1 2

⎞
⎠

represents transversal design

{1, 2}, {3, 4};
{1, 3}, {2, 4};
{1}, {2, 3}, {4}.

In this way, each matrix represents a transversal design and each transversal design has more than one
transversal matrix.

We can also extend the concept of d-separability, d̄-separability, and d-disjunctness to the general
matrix. For a general matrix, the union of d column vectors is defined to be a column vector each of
whose components is the union of corresponding components of those d column vectors. A general matrix
is d∗-separable (d̄∗-separable) if all unions of (at most) d columns are different. A general matrix is
d∗-disjunct if no column is contained in the union of d other columns (i.e., at least one component of
the column is not contained in the corresponding component of the union). For example, the reader may
verify that the 3 × 4 matrix in above example is 2∗-disjunct.

Theorem 1. A transversal design is d-separable if and only if its general matrix representation is
d∗-separable. A transversal design is d̄-separable if and only if its general matrix representation is d̄∗-
separable. A transversal design is d-disjunct if and only if its general matrix representation is d∗-disjunct.

Proof. One may transform each general matrix representation of a transversal design to its binary
matrix representation by replacing each row Ri by several rows with indices each being a pair of i and
an entry k of Ri and in row {i, k}, the cell ({i, k}, j) contains a 1-entry if and only if in the general
matrix representation, the cell (i, j) contains entry k. Then it is easy to verify that the resulting binary
matrix is d-separable if and only if the original general matrix is d∗-separable, the resulting binary matrix



992 DU ET AL.

is d̄-seperable if and only if the original general matrix is d̄∗-separable, and the resulting binary matrix is
d-disjunct if and only if the original general matrix is d∗-disjunct.

It may be worth mentioning that a d-separable binary matrix must be d∗-separable, but a d∗-separable
binary matrix may not be d-separable. Similar relations hold between d̄-separability and d̄∗-separability,
and between d-disjunctness and d∗-disjunctness. This is why we use d∗ instead of d in the terminologies
involving general matrices.

3. A NEW CONSTRUCTION

We present a new construction of transversal design in this section.
Consider a finite field GF(q) of order q. Suppose k satisfies

n ≤ qk (1)

and

f = d(k − 1) + 1 ≤ q. (2)

We construct an f × n matrix M(d, n, q, k) as follows: Its column indices are polynomials of degree k

over the finite field GF(q). Its row indices are f distinct elements of GF(q). The cell (x, g) contains
element g(x) of GF(q).

Theorem 2. M(d, n, q, k) is a d∗-disjunct matrix.

Proof. Suppose M(d, n, q, k) is not d∗-disjunct. Then it has a column g0 contained in the union of
other d columns g1, . . . , gd . That is, for each row index xi , g0(xi) = gj (xi) for some j . Note that there
are d(k − 1) + 1 rows. Thus, there exists a gj (1 ≤ j ≤ d) such that g0(xi) = gj (xi) for at least k row
indices xi . It follows that g0 = gj , a contradiction.

By (1) and (2), k and q should be chosen to satisfy

logq n ≤ k ≤ q − 1

d
+ 1. (3)

There exists a positive integer k satisfying (3) if q satisfies

logq n ≤ q − 1

d
. (4)

That is, it is sufficient to choose q satisfying

nd ≤ qq−1. (5)

Let q0 be the smallest number q satisfying (5). Then, we have the following estimation on q0.

Lemma 3.

q0 = (1 + o(1))
d log2 n

log2(d log2 n)
.

Moreover,

q0 ≤ 1 + 2d log2 n

log2(d log2 n)

for nd ≥ 24.
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Proof. Set

q1 = 1 + (1 + h(d, n))
d log2 n

log2(d log2 n)
,

where

h(d, n) = log2 log2(d log2 n)

log2(d log2 n) − log2 log2(d log2 n)
.

Note that h(d, n) ≥ 0. Therefore,

(q1 − 1) log2 q1 > (q1 − 1) log2(q1 − 1)

≥ (1 + h(d, n))d log2 n

log2(d log2 n)
· log2

(1 + h(d, n))d log2 n

log2(d log2 n)

> d log2 n.

That is, q1 satisfies (5). It follows that q0 ≤ q1. Note that h(d, n) = o(1). Hence,

q0 = (1 + o(1))
d log2 n

log2(d log2 n)
.

Moreover, for nd ≥ 24, d log2 n ≥ 4. Hence, 2d log2 n ≥ (d log2 n)2. Thus, d log2 n ≥ 2 log2(d log2 n).
It follows that h(d, n) ≤ 1. Therefore,

q0 ≤ 1 + 2d log2 n

log2(d log2 n)

for nd ≥ 24.

We need to find a prime power q satisfying

q ≥ q0.

Then, we can choose

k = �logq n�.
For such a choice of k, we have

f = d(k − 1) + 1 ≤ d(�logq n� − 1) + 1 ≤ d(�logq0
n� − 1) + 1 ≤ q0.

Since each family contains at most q pools, the total number of tests is at most q0q.

Theorem 4. There exist a prime power q and a positive integer k satisfying (1) and (2), such that
M(d, n, q, k) gives a transversal design with at most 2q2

0 tests.

Proof. Set q = 2�log2 q0�. Then q is a prime power satisfying q0 ≤ q < 2q0). Therefore, qq0 < 2q2
0 .

Corollary 5. There exists a transversal design M(d, n, q, k) with at most

(2 + o(1))

(
d log2 n

log2(d log2 n)

)2

tests.
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There exist two previous constructions for transversal designs in the literature. The first one is the grid
design (Barillot et al., 1991; Hwang, 1995; Phatarfod and Sudbury, 1994). With a k-dimensional grid,
the number of tests can be O(dn1/k). The second is the Chinese remainder sieve (Eppstein et al., 2004)

which uses O(
(d ln n)2

ln(2d ln n)
) tests. Our new construction uses O((

d log2 n

log2(d log2 n)
)2) tests, which is better than

both previous ones.
Moreover, this new construction can be easily extended to the error-tolerant case. Let e be the upper

bound for the number of possible errors in testing. To have an error-tolerant property, a pooling design
has to meet some stronger requirement. A pooling design is d#e-disjunct if its binary representation matrix
satisfies the property that every column has at least e + 1 1-entries not contained in the union of some
other d columns.

Lemma 6. A transversal design is d#e-disjunct if and only if its general matrix representation has the
property that every column has at least e + 1 components not contained in the union of some other d

columns.

Proof. Similar to the proof of Theorem 1.

Now, let us assume that q and k satisfy

n ≤ qk (6)

and

f = d(k − 1) + 1 + e ≤ q. (7)

We construct an f × n matrix M(d, n, q, k, e) as follows: Its column indices are polynomials of degree
k over the finite field GF(q). Its row indices are f distict elements of GF(q). The cell (x, g) contains
element g(x) of GF(q).

Theorem 7. M(d, n, q, k, e) is a general matrix representation of d#e-disjunct transversal design.

Proof. Suppose M(d, n, q, k, e) is not d∗-disjunct. Then it has a column g0 which has at least f − e

components contained in the union of the other d columns g1, . . . , gd . Thus, there exists a column gj

containing at least k components of g0. That is, for at least k row indices xi , g0(xi) = gj (xi). Therefore,
g0 = gj , a contradiction.

By an argument similar to the above, we can also obtain the following.

Theorem 8. By properly choosing q and k, we can obtain an M(d, n, q, k, e) with at most 2q2
e tests

where

qe = e + (2 + o(1))

(
2d log2 n

log2(d log2 n)

)2

.

4. DISCUSSION

The coefficient 2 in Theorems 7 and 8 can be further improved if we have better knowledge of the
distribution of prime powers. In fact, if Goldbach’s conjecture about even numbers is true, that is, every
even number is a sum of two primes, then there exists a prime between m and 2m for every natural number
m. This means that there exist many prime powers between m and 2m. What is the smallest constant c

such that there exists a prime power between m and cm? It is unknown and possibly an interesting open
problem. It may have a relation to the number of representations being a sum of two prime powers for an
even number.
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