
J Comb Optim (2006) 11: 321–339

DOI 10.1007/s10878-006-7911-5

One-dimensional optimal bounded-shape partitions for
Schur convex sum objective functions

F. H. Chang∗ · H. B. Chen · J. Y. Guo∗ · F. K. Hwang∗ ·
Uriel G. Rothblum

Received: 8 April 2005 / Accepted: 10 January 2006
C© Springer Science + Business Media, LLC 2006

Abstract Consider the problem of partitioning n nonnegative numbers into p parts, where

part i can be assigned ni numbers with ni lying in a given range. The goal is to maximize a

Schur convex function F whose i th argument is the sum of numbers assigned to part i .
The shape of a partition is the vector consisting of the sizes of its parts, further, a shape

(without referring to a particular partition) is a vector of nonnegative integers (n1, . . . , n p)

which sum to n. A partition is called size-consecutive if there is a ranking of the parts which

is consistent with their sizes, and all elements in a higher-ranked part exceed all elements

in the lower-ranked part. We demonstrate that one can restrict attention to size-consecutive

partitions with shapes that are nonmajorized, we study these shapes, bound their numbers

and develop algorithms to enumerate them. Our study extends the analysis of a previous

paper by Hwang and Rothblum which discussed the above problem assuming the existence

of a majorizing shape.

Keywords Optimal partition · Bounded-shape partition · Sum partition · Schur convex

function

1. Introduction

Throughout, let n and p be positive integers and let θ1 . . . , θn be real numbers satisfying

θ1 ≤ θ2 ≤ · · · ≤ θn . Consider a partition π of the indices 1, . . . , n into p nonempty parts

π1, . . . , πp. Such a partition is called consecutive if each part consists of consecutive integers.

For example, with n = 6 and p = 3, π1 = {4, 5}, π2 = {6}, π3 = {1, 2, 3}. Given a partition

∗This research is partially supported by ROC National Science grant NSC 92-2115-M-009-014.

F. H. Chang · H. B. Chen · J. Y. Guo (�)· F. K. Hwang
Department of Applied Mathematics, National Chiaotung University, Hsinchu, Taiwan, 300
e-mail: davidguo.am90g@nctu.edu.tw

U. G. Rothblum
Faculty of Industrial Engineering and Management, Technion—Israel Institute of Technology, Haifa
32000, Israel

Springer

322 J Comb Optim (2006) 11: 321–339

π , the vector (|π1|, . . . , |πp|) is called the shape of π , and for each i , |πi | is called the size
of πi . For convenience, denote ni = |πi |. Of course, a vector of nonnegative integers which

sum to n is a potential shape of a partition and we refer to such a vector as a shape. A

consecutive partition is called size-consecutive (reverse-size-consecutive) if ni > n j implies

that every member in πi is larger (smaller) than every member in π j . Of course, given any

integer vector (n1, . . . , n p) which satisfies
∑p

i=1 ni = n, there exist a size-consecutive and a

reverse-size-consecutive partition with shape (n1, . . . , n p); in fact, they are unique whenever

the ni ’s and the θi ’s are distinct.

For a vector a in Rp and i = 1, . . . , p, let a[i] be the i th largest member of {a1, . . . , ap}.
Given vectors a and b in Rp, we say that a majorizes b if

k∑
i=1

a[i] ≥
k∑

i=1

b[i] for k = 1, . . . , p − 1 (1.1)

and

p∑
i=1

ai =
p∑

i=1

bi . (1.2)

We say that a strictly majorizes b if a majorizes b and one of the inequalities in (1.1) holds

strictly. A real-valued function f on Rp is Schur convex if f (a) ≥ f (b) whenever a majorizes

b. A Schur convex function is known to be symmetric. These two properties are the only ones

we need in this paper (see Marshall and Olkin (1979) for further details about majorization

and Schur convexity).

Schur convexity has been proved to be a powerful tool in maximizing set functions.

There is a large body of literature on the so-called “sum partition problem” (see Hwang and

Rothblum (to appear) for references), i.e., to maximize the objective function

F(π) = f

(∑
j∈π1

θ j ,
∑
j∈π2

θ j , . . . ,
∑
j∈πp

θ j

)
, (1.3)

over partitions π having shape in a prescribed set. One application of this problem is to the

optimal assembly of a system where each component is a series subsystem (see Hwang and

Rothblum (1994) for a summary of literature). Hwang and Rothblum (to appear) studied the

sum partition problem with objective function being Schur convex. In particular, they proved

([Theorem 3.2]) that given a set of shapes � and a majorizing shape (n1, . . . , n p) in that set

(one that majorizes all other shapes in that set), one has the following:

(a) if θi ≥ 0 for each i , then every size-consecutive partition with shape (n1, . . . , n p) is

optimal; and

(b) if θi ≤ 0 for each i , then every reverse-size-consecutive partition with shape (n1, . . . , n p)

is optimal

In particular, once n1, . . . , n p are ordered so that n1 ≤ · · · ≤ n p, the following explicit par-

titions are optimal under (a) and (b), respectively

πi =
(

i−1∑
j=1

n j + 1, . . . ,

i∑
j=1

n j

)
for i = 1, . . . , p (1.4)

Springer

J Comb Optim (2006) 11: 321–339 323

and

πi =
(

n −
i∑

j=1

n j + 1, . . . , n −
i−1∑
j=1

n j

)
for i = 1, . . . , p. (1.5)

Of course, this is the case when � contains a single shape.

Barnes et al. (1992) first considered the problem where the size of each part must lie in a

range, i.e., nonnegative integer vectors L = (L1, . . . , L p) and U = (U1, . . . , Up) are given

where

p∑
i=1

Li ≤ n ≤
p∑

i=1

Ui , (1.6)

and the shape (n1, . . . , n p) of a feasible partition must satisfy

Li ≤ ni ≤ Ui , i = 1, . . . , p. (1.7)

They proposed the partition polytope approach. Hwang et al. (1998) further explored the

issues of representations and characterization of vertices. For nonnegative integer p-vectors

L = (L1, . . . , L p) and U = (U1, . . . , Up) that satisfy (1.6), define �(L , U) as the set of all

partitions whose shape (n1, . . . , n p) satisfies (1.7). Hwang and Rothblum (to appear) gave

the example where n = 9, p = 3, L = (1, 2, 2) and U = (5, 4, 4) to show that a majorizing

shape may not exist (neither of the two shapes (5, 2, 2) and (1, 4, 4) majorizes the other). Still,

they provided the following sufficient condition for the existence of the majorizing shape.

Without loss of generality, assume

L1 ≤ L2 ≤ · · · ≤ L p. (1.8)

The condition that was determined to suffice for the existence of a majorizing shape is that

U1 ≤ U2 ≤ · · · ≤ Up; (1.9)

further, when this condition holds, an explicit simple expression for a majorizing shape was

provided. The result stated above then shows how to obtain, when the θi ’s are one-sided,

a corresponding size-consecutive/reverse-size-consecutive optimal partition. We note that it

takes O(p ln p)-time to order L1, . . . , L p and O(p)-time to check condition (1.9); if met,

another O(p)-time is required to identify the majorizing shape.

In the current paper, we consider the general bounded-shape case without imposing the

consistency condition of (1.8)–(1.9). Given nonnegative integer p-vectors L and U , a non-
majorized shape for (L , U) is a shape in �(L , U) which is not strictly majorized by any other

shape in �(L , U). We will show that when f is Schur convex and the θi ’s are one-sided, one

can restrict attention to (reverse) size-conscutive partitions having a nonmajorized shape. As

a (reverse) size-consecutive partition with a given shape is easy to determine (see (1.4) and

(1.5)), the problem of finding an optimal partition is reduced to the task of identifying a set

of shapes that contains all nonmajorized ones.

Schur convex functions are symmetric. Thus, they do not differentiate between partitions

that are obtained by part-permutations as long as the corresponding coordinate-permutations

of the shapes are feasible. Thus, we may, in effect, restrict attention to representatives of

Springer

324 J Comb Optim (2006) 11: 321–339

shape-types which are the equivalence classes of (feasible) shapes with respect to coordinate-

permutations (rather than to shapes).

In Section 2, we explore properties of nonmajorized shapes and shape-types. In Section 3,

we obtain a 2p−1 bound on the number of nonmajorized shape-types. In Section 4, we provide

an O(2p + p2p−5 log p)-time algorithm and O(p322p)-time an algorithm for enumerating,

respectively, all nonmajorized shape-types and shapes. Finally, in Section 5, we give an

O(p2)-time algorithm that determines the existence of a majorizing shape and identifies one

when the answer is positive.

2. Nonmajorized shapes

In this section, we explore the relation between shape-majorization and the optimization

problem over partitions introduced in the Introduction. In particular, we explore the role of

nonmajorized shapes, in particular, with respect to sets of the form �(L , U).

Motivated by (1.3), for a partition π = (π1, . . . , πp) let

θπ =
(∑

j∈π1

θ j , . . . ,
∑
j∈πp

θ j

)
(2.1)

Proposition 2.1. Suppose f is Schur convex, � is a set of positive integer p-vectors that sum
to n and π is a partition with shape in � which is majorized by a shape (n1, . . . , n p) ∈ �.

(a) If θi ≥ 0 for i = 1, . . . , n, then every size-consecutive partition π ′ with shape
(n1, . . . , n p) has f (θπ ′

) ≥ f (θπ).
(b) If θi ≤ 0 for i = 1, . . . , n, then every reverse-size-consecutive partition π ′ with shape

(n1, . . . , n p) has f (θπ ′
) ≥ f (θπ).

Proof: The proof is identical to that of Theorem 3.2 of Hwang and Rothblum (to appear).

�

Corollary 2.2. Suppose f and � are as in Proposition 2.1.

(a) If θi ≥ 0 for i = 1, . . . , n, then there is a nonmajorized shape in � such that any corre-
sponding size-consecutive partition is optimal.

(b) If θi ≤ 0 for i = 1, . . . , n, then there is a nonmajorized shape in � such that any corre-
sponding reverse-size-consecutive partition is optimal.

Proof: We consider only the case where the θi ’s are nonnegative. Let π ′ be an optimal

partition. As majorization is transitive and � is finite, � contains a shape (n1, . . . , n p) which

majorizes the shape of π ′ and is not majorized by any other shape in �. By Proposition 2.1,

any size-consecutive partition with shape (n1, . . . , n p) has f (θπ) ≥ f (θπ ′
), so the optimality

of π ′ assures that π is also optimal. �

Corollary 2.2 implies that when f is Schur convex and the θi ’s are one-sided, it suffices

to restrict attention to (reverse) size-consecutive partitions whose shape is nonmajorized. Of

course, the symmetry of Schur convex functions implies that all size-consecutive partitions

with the same shape have the same objective value F (as determined by (1.3)). We conclude

Springer

J Comb Optim (2006) 11: 321–339 325

that the underlying optimization problem over partitions can be solved by obtaining a list that

contains all nonmajorized shapes, determining corresponding size-consecutive partitions, and

evaluating the right-hand side of (1.3) for each one of them. Further, it suffices to consider

only representatives of all nonmajorized shape-types. The remainder of our paper will focus

on studying and identifying nonmajorized shapes and shape-types with respect to sets of the

form �(L , U).

The next (standard) lemma is useful in exploring properties of nonmajorized vectors.

For a vector a ∈ Rp and J ⊆ {1, . . . , p}, let aJ denote the subvector of a consisting of the

coordinates indexed by J .

Lemma 2.3. Consider vectors a and b in Rp with
∑p

i=1 ai = ∑p
i=1 bi and a set J ⊆

{1, . . . , p} for which ai = bi for each i ∈ {1, . . . , p} \ J . Then

[aJ majorizes bJ] ⇔ [a majorizes b] ; (2.2)

further (2.2) holds with “majorizes” replaced by “strictly majorizes”.

Proof: Suppose aJ majorizes bJ . Let k ∈ {1, . . . , p − 1} be given and let K be a sub-

set of {1, . . . , p} with
∑k

i=1 b[i] = ∑
i∈K bi . Set m ≡ |K ∩ J |. As aJ majorizes bJ we

have that
∑m

i=1(aJ)[i] ≥ ∑m
i=1(bJ)[i] ≥ ∑

i∈K∩J bi , hence, the assertion ai = bi for each

i ∈ {1, . . . , p} \ J implies that

k∑
i=1

a[i] ≥
m∑

i=1

(aJ)[i] +
∑

i∈K∩J c

ai

≥
∑

i∈K∩J

bi +
∑

i=K∩J c

bi =
∑
i∈K

bi =
k∑

i=1

b[i] .

As k ∈ {1, . . . , p − 1} was selected arbitrarily and (by assumption)
∑p

i=1 ai = ∑p
i=1 bi , we

conclude that a majorizes b.

Next, assume that a majorizes b. As ai = bi for each i ∈ {1, . . . , p} \ J and
∑p

i=1 ai =∑p
i=1 bi , we have that

∑
i∈J ai = ∑

i∈J bi . Next, let k ∈ {1, . . . , |J | − 1} be given and let K
be a subset of J with

∑
i∈K ai = ∑k

i=1(aJ)[i]. Consider the set W consisting of all indices

i ∈ {1, . . . , p} \ J for which ai ≥ min{ai : i ∈ K }, and let m ≡ |W | (W = ∅ and m = 0 is

possible). For k ′ = k + m, we have that
∑k ′

i=1 a[i] = ∑
i∈K ai + ∑

i∈W ai . Consider any set

H ⊆ J with |H | = k. As a majorizes b,

∑
i∈K

ai +
∑
i∈W

ai =
k ′∑

i=1

a[i] ≥
k ′∑

i=1

b[i] ≥
∑
i∈H

bi +
∑
i∈W

bi .

As ai = bi for each i ∈ {1, . . . , p} \ J ⊇ W , we conclude that

k∑
i=1

(aJ)[i] =
∑
i∈K

ai ≥
∑
i∈H

bi .

The freedom in selecting H and k allows us to conclude that aJ majorizes bJ .

Springer

326 J Comb Optim (2006) 11: 321–339

The strict version of (2.2) follows directly from the weak version and the observation that

a vector u strictly majorizes another vector v if and only if u majorizes v and v does not

majorize u. �

Lemma 2.3 will be particularly used with sets J consisting of two elements.

Throughout the remainder of this section, let L and U be nonnegative integer p-vectors

that satisfy (1.6)–(1.7). In particular, we refer to a nonmajorized shape under �(L , U) as a

nonmajorized shape. We next explore the properties of such shapes.

Lemma 2.4. Consider the following properties of a shape s = (n1, . . . , n p):
(a) s is nonmajorized;
(b) there exist no distinct i and j such that

L j < ni < Ui and L j < n j < Ui ; (2.3)

(c) if for distinct i and j , L j < n j and ni < Ui , then ni < n j ; and
(d) there exists at most one index i with Li < ni < Ui .

Then (a) ⇒ (b) ⇒ (c) ⇒ (d).

Proof: (a) ⇒ (b). Suppose ni and n j satisfy (2.3) where i �= j . Without loss of generality,

assume that ni ≥ n j . Then s is majorized by the shape obtained from s by increasing ni to

max{ni , n j } + 1, and decreasing n j to min{ni , n j } − 1 (see Lemma 2.3).

(b) ⇒ (c). Suppose condition (b) holds, and i and j are indices satisfying L j < n j , ni < Ui

and i �= j . By condition (b), either L j ≥ ni or n j ≥ Ui . In the former case, ni ≤ L j < n j

and in the latter case n j ≥ Ui > ni .

(c) ⇒ (d). Suppose condition (c) holds, and i and j are indices satisfying Li < ni < Ui ,

L j < n j < U j and i �= j . We will establish a contradiction. Indeed, if ni ≥ n j we get a

direct violation of (c) and if ni < n j we get a violation of (c) with the roles of i and j reversed.

�

The following examples shows that condition (b) of Lemma 2.4 does not imply condition

(a).

Example 2.1. Let U = (5, 5, 5, 2), L = (1, 4, 3, 1), s = (5, 4, 3, 1) and s ′ = (2, 5, 5, 1). It is

easy to verify that s is majorized by s ′. To see that there exist no i and j satisfying (2.3) for

s, observe that the only coordinate of s that is strictly larger than the lower bound is the first

one, so if (2.3) is satisfied, necessarily j = 1. But, n1 is not strictly below any upper bound.

For a given shape s, call part i an upper part, a middle part or a lower part if, respectively,

ni = Ui , Li < ni < Ui , ni = Li . If part i has Li = Ui , each shape (n1, . . . , n p) ∈ �(L , U)

has ni = Li = Ui . Thus, in search of nondominated shapes under (L , U), one can ignore such

parts. Of course, when L � U (i.e., Li < Ui for each i), the parts are classified uniquely.

Lemma 2.4 shows that a nonmajorized shape can have at most one middle part.

Suppose L � U . Given a shape s = (n1, . . . , n p), let B(s) stand for the p-vector whose

elements are the symbols L , M and U constructed in the following way: For a permutation

i1, . . . , i p of the coordinates for which ni1
≥ ni2

≥ · · · ≥ ni p , let B(s)t for t = 1, . . . , p be

L , M, U according to it being an upper, middle or lower part. The next result shows that no

Springer

J Comb Optim (2006) 11: 321–339 327

ambiguity can arise in the definition of B(s), i.e., it is uniquely defined, and that B(s) has a

simple structure.

Lemma 2.5. Suppose L � U and s = (n1, . . . , n p) is a nonmajorized shape. Let (i1, . . . , i p)

be a permutation of (1, . . . , p) such that ni1
≥ ni2

≥ · · · ≥ ni p . Then:
(a) nir = nit for r, t ∈ {1, . . . , p} implies ir and it are either both upper parts or both lower

parts.
(b) B(s) has the form (U, . . . , U, M, L , . . . , L) or (U, . . . , U, L , . . . , L).

Proof: (a) If nir = nit , ir is a lower-part and it is not, then Lit < nit = nir = Lir < Uir , in

contradiction to implication (a) ⇒ (b) in Lemma 2.4. A similar argument applies to prove

that if ir is an upper-part, so is it .

(b) The implication (a) ⇒ (c) in Lemma 2.4 assures that if n j = U j > L j and ni < Ui ,

then ni < n j , and that if ni = Li < Ui and n j > L j , then ni < n j . It follows that for every

permutation i1, . . . , i p of 1, . . . , p with ni1
≥ · · · ≥ ni p and r, t ∈ {1, . . . , p}[

nir = Uir and nit < Uit

] ⇒ [r < t]

and [
nit = Lit and nir > Lir

] ⇒ [r < t] .

These implications establish the asserted structure of B(s). �

We conclude this section with an observation about a necessary difference between two

nonmajorized shapes.

Lemma 2.6. Two distinct nonmajorized shapes s = (n1, . . . , n p) and s ′ = (n′
1, . . . , n′

p) must
differ in at least two coordinates; further, if such s and s ′ differ in exactly two coordinates,
say coordinate i and coordinate j , where ni > n′

i , then s ′ is obtained from s by permuting
these coordinates,

ni = Ui or n j = L j (2.4)

and

n′
i = Li or n′

j = U j . (2.5)

Proof: Suppose shapes s and s ′ differ in only one part, then
∑

i ni �= ∑
i n′

i , contradicting

the fact that both are shapes and their coordinate sum is n.

Next, assume that s = (n1, . . . , n p) and s ′ = (n′
1, . . . , n′

p) are nonmajorized shapes that

differ only in coordinates i and j . As neither strictly dominates the other (they are nonma-

jorized), we have that s ′ is obtained from s by permuting two coordinates, say coordinates i
and j . Now, suppose ni < n′

i = n j . As L j ≤ n j = n′
i < ni ≤ Ui , the implication (a) ⇒ (b)

in Lemma 2.4 assures that either ni = Ui or n j = L j , and (applying the result on s ′ with the

roles of i and j reversed), either n′
j = U j or n′

i = Li . �
Springer

328 J Comb Optim (2006) 11: 321–339

We say that two shapes are equivalent if one is obtained from the other by coordinate-

permutation. Of course, not all coordinate-permutations of a shape in �(L , U) are necessarily

in �(L , U).

The following is an immediate corollary of Lemma 2.6.

Corollary 2.7. If s and s ′ are nonmajorized shapes which are not equivalent, then they differ
in at least 3 coordinates.

3. The number of nonmajorized shape-types

In the current section, we continue to assume that L and U are integer p-vectors satisfying

(1.6) and L � U . We recall that two shapes are equivalent if one is obtained as a coordinate

permutation of the other. We refer to the resulting equivalence classes as shape-types. As

strict-majorization is (clearly) invariant of the corresponding shape-types, we can and will

refer to nonmajorized shape-types. The purpose of the current section is to derive a bound

on the number of nonmajorized shape-types.

We note that a single nonmajorized shape-type may correspond to many shapes as the

following example suggests.

Example 3.1. Let L = (1, . . . , 1), U = (2, . . . , 2) and p < n < 2p. Then all nonmajorized

shapes are equivalent and each such shape, say (n1, . . . , n p) is determined by a set J of

{1, . . . , p} consisting of n − p elements, where ni = 2 if i ∈ J and ni = 1 otherwise. So,

there is a single nonmajorized shape-type that corresponds to (p
n−p) nonmajorized shapes.

A (nonmajorized) shape-type can be identified with the multiset {n1, . . . , n p} where

(n1, . . . , n p) is any corresponding shape. It is noted that not every ordering of n1, . . . , n p

necessarily yields a feasible shape, that is, one that satisfies the lower and upper bounds.

For a nonmajorized shape s = (n1, . . . , n p), let U (s), M(s) and L(s) be set of corre-

sponding upper-, middle- and lower-parts of s, that is, U (s) = { j = 1, . . . , p : n j = U j },
M(s) = { j = 1, . . . , p : L j < n j < U j } and L(s) = { j = 1, . . . , p : n j = L j }.

Lemma 3.1. Suppose s = (n1, . . . , n p) and s ′ = (n′
1, . . . , n′

p) are nonmajorized shapes that
are not equivalent. Then:
(a) U (s) �= U (s ′), and
(b) if U (s ′) is included in U (s), then M(s ′) contains a single element j ′ that satisfies

Ui ′ > n′
j ′ for every i ′ in U (s ′) (3.1)

and

Ui ≤ n′
j ′ for every i in U (s)\U (s ′) . (3.2)

Proof: (a) Lemma 2.4 assures that |M(s)| ≤ 1 and |M(s ′)| ≤ 1. Thus, if U (s) = U (s ′), then

s and s ′ can differ in at most 2 coordinates; it then follows from Corollary 2.7 that s and s ′

are equivalent, in contradiction to the assertion that they are not.

Springer

J Comb Optim (2006) 11: 321–339 329

(b) Suppose U (s) ⊇ U (s ′). As s ′ �= s, there is a coordinate j ′ with n′
j ′ > n j ′ . We will

show that such a j ′ must be in M(s ′). Indeed, such j ′ cannot be in U (s ′) for the assertion

U (s) ⊇ U (s ′) would imply j ′ ∈ U (s) and n′
j ′ > n j ′ = U j ′ ; such j ′ can neither be in L(s ′)

because n′
j ′ > n j ′ ≥ L j ′ . So, j ′ must be in M(s ′). By Lemma 2.4, there can be at most a

single part in M(s ′). Thus, M(s ′) = { j ′} and j ′ is the single coordinate for which s ′ exceeds

s.

Now, for i ′ in U (s ′), ni ′ ′ = Ui ′ > Li ′ . As n j ′ ′ < U j ′ , the (a) ⇒ (c) part of Lemma 2.4

implies that n′
j ′ < n′

i ′ = Ui ′ , proving (3.1).

Next, assume that i is in U (s) \ U (s ′). As s and s ′ differ by at least 3 coordinates (Corollary

2.7), as j ′ is the single coordinate for which s ′ exceeds s and as ni = Ui > n′
i , we have that

i �= j ′ and

n′
j ′ − n j ′ > ni − n′

i = Ui − ni . (3.3)

Assume that Ui > n′
j ′ and we will establish a contradiction. By summing Ui > n′

j ′ and (3.3),

we get that ni > n j ′ . As i is not in U (s ′), n′
i < Ui . Consider the shape obtained from s ′ by

increasing n′
i to Ui and decreasing n′

j ′ to n′
j ′ − [Ui − n′

i]. As Ui > n′
j ′ , this shape majorizes s ′

(recall Lemma 2.3). Further, (3.3) implies that n′
j ′ − [Ui − n′

i] > n j ′ ≥ L j ′ , assuring that the

new shape is in �(L , U). As s ′ is assumed to be nonmajorized, we have derived a contradiction

which established (3.2). �

Corollary 3.2. Suppose s, s ′ and s ′′ are nonmajorized shapes where no pair consists of two
equivalent shapes, and suppose U (s ′) and U (s ′′) are both included in U (s). Then U (s ′) and
U (s ′′) are ordered by set-inclusion.

Proof: Let s ′ = (n′
1, . . . , n′

p) and s ′′ = (n′′
1, . . . , n′′

p). Part (b) of Lemma 3.1 assures that

M(s ′) and M(s ′′) are nonempty. Let M(s ′) = { j ′} and M(s ′′′) = { j ′′}. Without loss of gener-

ality, assume that n′
j ′ ≤ n′′

j ′′ . By Lemma 3.1(a), U (s ′) �= U (s ′′). Suppose U (s ′) � U (s). Then

there exists k ∈ U (s ′′) ∩ (U (s) \ U (s ′)). By Lemma 3.1(b), n′
j ′ ≥ Uk > n′′

j ′′ , contradicting

our assumption n′
j ′ ≤ n′′

j ′′ . �

We next explore the combinatorial restriction imposed by the conclusion of Corollary 3.2.

For that purpose, for each integer p ≥ 1, let f (p) be the maximal size of a class C of subsets

of {1, . . . , p} which satisfies the conclusion of Corollary 3.2, that is, every pair of subsets

in C that are included in a third subset of C must be comparable by set-inclusion. The next

table lists values of f (p) for p = 0, 1, 2, 3, 4, 5, 6.

We next obtain an upper bound on f (p).

Theorem 3.3. f (p) ≤ 2p−1.

Proof: Consider any p ∈ {1, 2, . . .} and let F(p) realize f (p). Also, let F0(p) = {U ∈
F(p) : p �∈ U } and F1(p) = {U ∈ F(p) : p ∈ U }. As F0(p) and {U\{p} : U ∈ F1(p)} are

classes of subsets of {1, . . . , p − 1} with the property that every pair of sets in class

that are included in a third set in the class must be comparable by set-inclusion, we

have that |F0(p)| ≤ f (p − 1) and |F1(p)| ≤ f (p − 1), implying that f (p) = |F(p)| =
|F0(p)| + |F1(p)| ≤ 2 f (p − 1). As f (4) = 8 = 23, we conclude that f (p) ≤ 2p−1 for each

p ≥ 4. �

Springer

330 J Comb Optim (2006) 11: 321–339

Table 1 f (p) for 0 ≤ p ≤ 6

p f (p) A realizing class for f (p)

0 1 ∅
1 2 {1}, ∅
2 3 {1, 2}, {1}, ∅
3 5 {1, 2}, {1 3}, {2, 3}, {1}, ∅
4 8 {1, 2}, {1 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1}, ∅
5 14 {1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1}, ∅
6 23 All subsets of {1,. . . , 6} of size 3, {1, 2}, {1}, ∅

Table 2 The set of nonmajorized
shapes n1 n2 n3 n4 n5

20 19 3 4 5

20 2 18 4 7

20 2 3 17 9

1 19 18 4 9

1 19 3 17 11

1 2 18 17 13

Corollary 3.4. For p ≥ 4, there are at most 2p−1 nonmajorized shape-types.

Proof: Corollary 3.2 and Lemma 3.1 show that f (p) bounds the number of nonmajorized

shape-types and Theorem 3.3 shows that f (p) ≤ 2p−1. �

The proof of Corollary 3.4 relies on the facts that 2p−1 is an upper bound on f (p) (for

p ≥ 4) and that f (p) is an upper bound on the number of unmajorized shape-types. Table

1 demonstrates that 2p−1 is not a tight bound on f (p) and we believe that neither is the

second bound. In fact, we conjecture that the number of nonmajorized shape-types can be

bounded by (p−1
�(p−1)/2�), a smaller expression than 2p−1. (By the Sperner’s lemma (Sperner,

1928)), (p−1
�(p−1)/2�) is the maximum number of independent subsets in the lattice of subsets of

{1, . . . , p − 1} with set-inclusion as the partial order.) The following example achieves this

(conjectured) bound.

Example 3.2. Let U = (20, 19, 18, 17, 16), L = (1, 2, 3, 4, 5), n = 51. Using the algorithms

of Section 4 (see Example 4.1), one can show that the set of all nonmajorized shapes contains

6 shapes that are listed below in Table 2.

4. Identifying all nonmajorized shapes and shape-types

In the current section, we provide two algorithms for enumerating all nonmajorized shapes.

The first algorithm relies on condition (d) of Lemma 2.4. We consider only bound vectors L
and U with L � U , as indices i with Li = Ui can be eliminated by setting ni = Li = Ui

and updating n correspondingly.

Springer

J Comb Optim (2006) 11: 321–339 331

Algorithm 1 (For enumerating all nonmajorized shapes in Γ(L,U)).:
The input for the algorithm consists of integer p-vectors L and U that satisfy (1.6) and

L � U .

(a) For u = 1, . . . , p and A ⊆ {1, . . . , p}\{u} do:

(i) Set B = {1, . . . , p}\A\{u}, UA = ∑
i∈A Ui , L B = ∑

i∈B Li and Mu = n − UA − L B .

(ii) If Lu ≤ Mu ≤ Uu , set

n j =

⎧⎪⎨⎪⎩
U j for j ∈ A,

L j for j ∈ B,

Mu for j = u,

and include (n1, . . . , n p) in a temporary list that we denote TEMP.

(b) Test each shape in TEMP for being nonmajorized by testing if it is majorized by any

shape in TEMP.

The next lemma analyzes Algorithm 1. For the complexity analysis, computational effort

counts arithmetic operations and comparisons.

Lemma 4.1.
(a) At the end of step (a), TEMP contains all nonmajorized shapes.
(b) The output of Algorithm 1 consists of all nonmajorized shapes in �(L , U).
(c) The computational time in executing step (a) of Algorithm 1 is bounded by O(p2p−1),

and the computational time in executing the complete algorithm is bounded by O(p322p).

Proof:

(a) Lemma 2.4 (part (b)) assures that at the completion of step (a), TEMP contains all

nonmajorized shapes.

(b) As transitivity of the majorization relation assures that a majorized shape is majorized by

some nonmajorized shape, a test for a shape to be nonmajorized is to compare it with all

the shapes in TEMP.

(c) The number of iterations within step (a) is p2p−1. The initial calculation of the quantity

UA, L B and Mu requires p − 1 addition/subtraction and the updates within each iteration

requires O(1) computational time. Hence, the total time to execute step (a) is O(p2p−1)

and the output may contain up to p2p−1 shapes.

In step (b), each output shape of step (a) is tested against all others. The test re-

quires determining the order statistics of the shapes, creating their partial sums, and

executing p comparisons for each pair of shapes. The total time is then bounded by

O[(p + p lg p)p2p−1 + (p2p−1)2 p] = O[p322p] . �

Remark 1. One can thin TEMP (and save on computational time in executing Step (b) of

Algorithm 1) by using sufficient conditions for nonmajorized shapes and avoiding repetitions.

For example, consider a shape s = (n1, . . . , n p) generated in Step (a) corresponding to u ∈
{1,p} and A ⊆ {1, . . . , p}\{u}. With B = {1, . . . , p}\A\{u}, it is possible to exclude s
from TEMP if either nu ≤ mini∈A Ui or nu ≥ maxi∈B Li . Indeed, if either condition holds

and Lu < nu < Uu , then Lemma 2.5 assures that s is majorized. Alternatively, if Uu = nu >

Springer

332 J Comb Optim (2006) 11: 321–339

mini∈A Ui = Uv or Lu = nu < maxi∈B Li = Lv , then s will be reproduced and kept when

executing Step (a) corresponding to v and (A\{v}) ∪ {u}.

Given integer p-vectors L and U satisfying (1.6)–(1.7), the set of floating indices of (L , U)

is defined as {i = 1, . . . , p : Li < Ui }. Also, if G is the set of indices of (L , U) which are

not floating, we refer to n − ∑
i∈G Li (= n − ∑

i∈G Ui) as the availability under (L , U). We

say that the upper bound of index i is effective for (L , U) if

Ui +
∑
j �=i

L j ≤ n; (4.1)

when the upper bound of index i is not effective, we refer to the replacement of Ui by

n − ∑
j �=i L j ≥ Li as the adjustment of the upper bound of i . Similarly, we say that the

lower bound of index i is effective for (L , U) if

Li +
∑
j �=i

U j ≥ n, (4.2)

and if the lower bound of index i is not effective, we refer to the replacement of Li by

n − ∑
j �=i U j ≤ Ui as the adjustment of the upper bound of i . Evidently, (1.6) and (1.7) stay

in effect when an upper bound or a lower bound is adjusted.

Lemma 4.2. Consecutive adjustment of bounds results in a pair of vectors for which all
bounds are effective, and this outcome is independent of the order in which bounds are
adjusted.

Proof: Trivially, consecutive adjustment of bounds must terminate with a pair of vectors for

which all bounds are effective.

Evidently, (1.6) and (1.7) stay in effect when a bound is adjusted. Further, if the upper

bound of i needs adjustment, all the lower bounds of indices j �= i are effective throughout

any sequence of adjustments; this is the case because a decrease in an upper bound does

not invalidate the effectiveness of a lower bound and an increase in a lower bound does not

invalidate effectiveness of an upper bound. We conclude that if an upper/lower bound of i is

adjusted, no lower/upper bound of another j �= i will require adjustment. Further, the order

of consecutive adjustment of upper bounds or of lower bounds has no effect on the outcome.

The only remaining case is the adjustment of the upper bound and the lower bound of a

particular i—it is easy to verify that here, too, the order of executing these adjustments does

not influence the outcome. �

We refer to the operation that is described in Lemma 4.2 as an adjustment of the bounds. We

observe that (1.6) assures that the bounds of indices that are not floating, are always effective

and will therefore not be affected by an adjustment of the bounds. But, bound-adjusting can

reduce the set of floating indices.

Algorithm 2 (For enumerating all nonmajorized shape-types in Γ(L,U)).:
The input for the algorithm consists of integer p-vectors L and U that satisfy (1.6). Set r = 1.

Iteration r :

Springer

J Comb Optim (2006) 11: 321–339 333

(a) Adjust the bounds (L , U). Let F and v be the set of floating indices and the availability

with respect to the adjusted bounds and set ni = Li = Ui for each i ∈ {1, . . . , p}\F .

If F = ∅, set r = p and go to step (c). Otherwise, set α ≡ maxk∈F Uk and β ≡
mink∈F Lk .

(b) Execute, in parallel and record separately the outcome of the following three steps:

(i) Select i as any index that maximizes the lower bound among those whose upper bound

is α. Set ni ← Ui and Li ← Ui .

(ii) Select i as any index that minimizes the upper bound among those whose lower bound

is β. Set ni ← Li and Ui ← Li .

(iii) This option is executed only if one identifies an index i that satisfies Ui = α > U j for

each j �= i , Li = β < L j for each j �= i and F \{i} can be partitioned into two sets A
and B such that

|A| ≥ 2 , |B| ≥ 2 , (4.3)

max
k∈B

Uk ≤ n −
∑
j∈A

U j −
∑
k∈B

Lk ≤ min
j∈A

L j (4.4)

and

Li < n −
∑
j∈A

U j −
∑
k∈B

Lk < Ui . (4.5)

When the above holds with (4.4) in strict inequalities, do for each such pair A, B the

following: Set nt ← Ut and Lt ← Ut for t ∈ A, ns ← Ls and Us ← Ls for s ∈ B, and

ni ← μ ≡ n − ∑
j∈A U j − ∑

k∈B Lk , Ui ← μ and Li ← μ.

Let ni denote the middle part of (4.4). Suppose ni = maxk∈B Uk ≡ Ux . Check the

existence of a part y in B\{x} such that |(Lx , Ux) ∩ (L y, Uy)| ≥ 2. If no such y exists,

then output this shape-type as in the (4.4) in strict inequalities case.

Similarly, suppose ni = min j∈A L j = Lz . Check the existence of a part w in A \ {z}
such that |(Lz, Uz) ∩ (Lw, Uw)| ≥ 2. If no such w exists, then output this shape-type.

(c) If r = p, output the shape-types of all generated shapes in step (b)(i) and (b)(ii). Other-

wise, replace r with r + 1 and go to step (a) with each outcome of step (b)(i) and of step

(b)(ii).

Remarks.

(1) Step (b) of Algorithm 2 allows a selection between 3 options. Option (iii) can be executed

only if one identifies an index i with Ui > U j and Li < L j for each j �= i . When such

an index i is identified, options (i) and (ii) will be executed with this particular selection

of i . Option (iii) will then be followed for each partition of F \{i} into sets A and B
that satisfy (4.3)–(4.5). It is possible to have no such pair A, B, or alternatively, to have

multiple pairs.

(2) Ambiguity can occur in Algorithm 2 only in steps (b)(i) and (b)(ii) when there is more

than one index i with Ui = α and Li = max{Lk : Uk = α} or, respectively, with Li = B
and Ui = min{Uk : Lk = β}. In these cases, the corresponding outputs of the algorithm

will obviously generate the same shape-types.

(3) Whenever option (b)(iii) is completed with a particular selection of A, B, there will be

no free variables in the next iteration and the algorithm will stop.

Springer

334 J Comb Optim (2006) 11: 321–339

(4) If in a given iteration, option (b)(i)/(b)(ii) selects index i whose upper/lower bound was

adjusted in that iteration, then the next iteration will have F = ∅ and the algorithm will

stop.

(5) If at the beginning of an iteration there is only one index i with Li < Ui , then the

adjustment of the bounds will result in F = ∅ and the algorithm will stop. In particular,

as each iteration eliminates at least one free index, one will never enter step (b) in

iteration p.

We refer to option (i), (ii) and (iii) in Algorithm 2 as, respectively, a U -step, an L-step
and an E-step. We refer to an E-shape as one that is determined when an E-step is executed.

The next example shows now Algorithm 2 is executed without the need for an E-step.

Example 4.1 (Continuing Example 3.2). Applying Algorithm 2 to Example 3.2 is summa-

rized in the following figure.

18

17

17

13

17

11

9

4

17

9

7

4

5

4

4

3

17

18

13

17

11

17

4

9

9

17

4

7

4

5

3

4

13

18

3

18

3

18

3

5

2

19

2

19

1

20

The corresponding nonmajorized shapes are listed in Table 1. �

The following examples demonstrate that there may be more than one option in executing

step (b)(iii) of Algorithm 2 and that step (b)(i) (or (b)(ii)) may be followed even when step

(b)(iii) is possible.

Example 4.2. U = (13, 12, 12, 8, 8, 4, 4), L = (1, 10, 10, 6, 6, 2, 2) and n = 49. Then the

nonmajorized shapes (13, 10, 10, 6, 6, 2, 2) and (1, 12, 12, 8, 8, 4, 4) are determined by fol-

lowing a U -step and an L-step, respectively, in the first iteration. We also find two shapes

(5, 12, 12, 8, 8, 2, 2) and (9, 12, 12, 6, 6, 2, 2), by initial use of E-steps, corresponding re-

spectively to the partitions A = {2, 3, 4, 5}, B = {6, 7} and A′ = {2, 3}, B ′ = {4, 5, 6, 7}.

There are two groups {2, 3}, {4, 5}, {6, 7} of parts in Example 4.2 having, respectively, the

same bounds. In general, g groups would yield up to g − 1 partitions.

Springer

J Comb Optim (2006) 11: 321–339 335

Example 4.3. U = (11, 10, 10, 10, 7, 7, 7, 5, 3, 3, 3), L = (1, 9, 9, 9, 6, 6, 6, 4, 2, 2, 2) and

n = 66. Then the nonmajorized shapes are: s1 = (11, 9, 9, 9, 6, 6, 6, 4, 2, 2, 2), s2 =
(8, 10, 10, 10, 6, 6, 6, 4, 2, 2, 2), s3 = (5, 10, 10, 10, 7, 7, 7, 4, 2, 2, 2), s4 = (4, 10, 10, 10,

7, 7, 7, 5, 2, 2, 2) and s5 = (1, 10, 10, 10, 7, 7, 7, 5, 3, 3, 3). Then s2 is an example of an

E-shape with strict inequalities in (4.4), and s3 and s4 are examples of an E-shape with

nonstrict inequalities in (4.4).

Example 4.4. U = (11, 9, 8, 10, 4, 4, 4, 4, 4), L = (3, 6, 6, 0, 2, 2, 2, 2, 2) and n = 43. If

one starts with a U -step, an output can be determined in the next iteration by an

E-step, or a U -step resulting, respectively, in the output (11, 9, 8, 5, 2, 2, 2, 2, 2) and

(11, 6, 6, 10, 2, 2, 2, 2, 2). Alternatively, one may start with an L-step, which will elimi-

nate the option of an E-step with i = 4; then L1 will be adjusted to 6, and the output

(11, 9, 8, 0, 4, 4, 4, 3, 2) can be generated.

The next lemma refers to sensitivity of being nonmajorized.

Lemma 4.3. Let {(L j , U j) | j = 1, . . . , p} and {(L j
′, U j

′) | j = 1, . . . , p} be two sets of
bounds which differ only in one bound corresponding to part j where either L j = L j

′ and
U j < U j

′, or L j > L j
′ and U j = U j

′. Then, for a given n, every shape in �(L , U) is majorized
by a nonmajorized shape in �(L ′, U ′).

Proof: Let s be a nonmajorized shape in �(L , U). Then s is also a shape in �(L ′, U ′). Thus,

it is either a nonmajorized shape, or is majorized by a nonmajorized shape in �(L ′, U ′). �

By Lemma 4.3, we order the upper bounds such that Ui � U j either if Ui > U j or Ui = U j

but Li > L j . Similarly, Li ≺ L j either if Li < L j or Li = L j but Ui < U j . Obviously, if

Ui = U j and Li = L j , then the order between i and j does not matter. Under ≺, we have a

linear order for the upper(lower) bounds.

Lemma 4.4. Let s be a shape output by Algorithm 2. Suppose Nk, consisting of j upper
bounds and k − j lower bounds, is the set of values obtained before an E-step in s (if no
E-step occurs, then k = p). Let s ′ be any other shape. If s ′ majorizes s, then the j th largest
n′

i and the (k − j)th smallest n′
i must be equivalent to Nk.

Proof: We prove Lemma 4.4 by induction on k. The case k = 1 is trivial. Consider a general

k. Without loss of generality, assume the first step of s is taking the largest upper bound U[1].

If the largest n′
i < U[1], then s ′ cannot majorize s. If they are equal, then by Lemma 4.3 we

may assume s ′ takes the same part as s. Delete this part from the problem and k is reduced

to k − 1. Use induction. �

Corollary 4.5. A regular shape output by Algorithm 2 is nonmajorized.

Theorem 4.6.

(a) Every shape that is constructed by Algorithm 2 is nonmajorized.
(b) For every nonmajorized shape, there is an equivalent shape that is constructed by Algo-

rithm 2.
(c) The number of outputs of the algorithm is bounded by 2p+1 (duplications are possible).

Springer

336 J Comb Optim (2006) 11: 321–339

(d) The computational time of all executions of Algorithm 2 is bounded by O(2p +
p2p−5 log p).

Proof: (a) By Corollary 4.5, we only need to consider an E-shape s. Suppose to the contrary

that s ′ majorizes s. By Lemma 4.4, s ′ majorizes s in the remaining p − k parts. But this is

impossible by our construction of an E-shape whose largest k-sum, 1 ≤ k ≤ |A|, is ≥ the

largest k-sum of s ′, and whose smallest k-sum, 1 ≤ k ≤ |B|, ≤ the smallest |B|-sum of s ′.
This proves that for the remaining parts, s either majorize s ′ or they are equivalent.

(b) Now, suppose at a given iteration, there exists a nonmajorized shape s which contains

neither the maximum upper bound Ui nor the minimum lower bound L j . Suppose i �= j . Let s
choose ni < Ui and n j > L j . Since Ui > n j and ni > L j , we can choose n′

i = max{ni , n j } +
1 and n j

′ = min{ni , n j } − 1 to obtain a shape majorizing s, contradicting the assumption

that s is nonmajorized.

Assume i = j but s takes ni such that Li < ni < Ui . By the comment after Lemma 4.3,

Ui � U j and Li ≺ L j for any remaining part j .

Suppose there exists a part j such that L j < ni < U j . Without loss of generality, assume

n j = U j . Then s is majorized by s ′ with n′
i = U j + 1 and n′

j = ni − 1.

Next suppose L j = ni , which implies n j = U j , i.e., j ∈ A. Suppose that there exists

another part x in A such that (L j , U j) ∩ (Lx , Ux) �= ∅. Then s is majorized by s ′ with

n′
i = max{U j , Ux } + 1, n′

j = L j , n′
x = Ux − (n′

i − U j). Note that if n′
i = Ux + 1, then

n′
x = U j − 1 ≥ Lx implies the part- j range and the part-x range must overlap by at least 2.

We have shown that s can be a nonmajorized shape only if condition (4.4) is satisfied.

Finally, we justify (4.3). Suppose that there exists an E-shape s with |A| = 1. Without

loss of generality, assume U1 = max{Ui }, L1 = min{Li }, A = {2}, B = {3, 4, . . . , p}, L2 >

n1 > Ui for all i ∈ B, and n = n1 + U2 + (L3 + L4 + · · · + L p). Then U1 is adjusted to U ′
1

such that U ′
1 < U2 because U1 + (L2 + L3 + · · · + L p) > n. Then s, as an non-E-shape,

will be generated by selecting the largest upper bound U2. Therefore we can restrict our

construction of E-shape under the conditions |A| ≥ 2 and |B| ≥ 2.

(c) The underlying graph of the part of Algorithm 2 yielding regular shapes is a complete

binary tree with depth p − 1 (ni of the last part is determined by the previous p − 1 choices).

Hence there are at most 2p−1 terminal points yielding 2p−1 regular shapes. At every path and

every stage i , 1 ≤ i ≤ p − 4, an E-step may occur. The reason for the upper bound of i is

due to (4.3), which specifies that at lest 5 parts remain for an E-shape to exist. The maximum

number of E-shapes at stage i is 1 + (n − i − 4), since the first A-set and the last B-set must

contain at lest two parts, while the other A(B)-set can increase by 1. Summing over i , we

obtain 2p−1 + ∑p−4
i=1 2i (n − i − 3) = (3

2
) × 2p−1 + 1.

(d) For easier analysis of time complexity, we write the subroutine which separates the

remaining parts into A and B in pseudo code. Suppose the inputs are U = (U1, . . . , Up),

L = (L1, . . . , L p), and n. The outputs are all possible combinations of A and B.

1: Obtain U1 ≥ U2 ≥ · · · ≥ Up by sorting U .

2: sep := L1

3: Determine the order statistic, say r , of sep in U .

4: for i = 2 to p do
5: if i=r then
6: sep := Lr

7: else if i = r − 1 then
8: Output A = {1, 2, . . . , i}, B = {i + 1, i + 2, . . . , p}
9: else if Li < sep then

Springer

J Comb Optim (2006) 11: 321–339 337

10: sep := Li

11: Determine the order statistic, say r , of sep in U .

12: end if
13: end for

The running time in Line 1 needs O(p log p) to sort. Line 3 needs O(log p) by using

binary search. The loop from Line 5 to 13 runs p − 1 times. Inside loop body, every line runs

constant time except Line 12 which needs O(log p) by using binary search. The total time is

p log p + log p + (p − 1) log p = O(p log p).

Furthermore, back to Algorithm 2, for every output of A and B from above, we need

to check whether (4.4) and (4.5) hold. We count
∑

Li before the algorithm starts. Then

count
∑

j∈A U j and
∑

j∈A L j in every loop. Once Line 8 is executed, count
∑

j∈B L j =∑
Li − ∑

j∈A L j . Thus we save the checking time to constant time.

Therefore, an E-step takes O(p log p) time. There are O(2p) steps in Algorithm 2 with at

most O(2p−5) of them containing an E-step. The generation of regular shapes takes constant

time at every step. Therefore the total time is

O(2p) + O(2p−5)O(p log p) = O(2p + p2p−5 log p).

�

5. Determine the existence of a majorizing shape

In some problems, the goal is to find a majorizing shape, or to determine if one exists. If

Algorithm 2 given in Section 3 yields a single shape, then it is the majorizing shape. However,

there is a much faster way of finding out whether a majorizing shape exists, and identifying

it if it exists. Even if our goal is to find all nonmajorized shapes, we can still use the faster

algorithm as preprocessing. In case it finds a majorizing shape, then there is no need to go

through Algorithm 2.

This procedure constructs two nonmajorized shapes in �(L , U), i.e., the one which goes

the upper bound route as much as possible in Algorithm 2 and the one which goes the lower

bound route as much as possible. We will refer to them as the top shape and the bottom
shape. Note that in constructing the top shape sT , we need only to adjust upper bounds; and

in constructing the bottom shape sB , only to adjust lower bounds.

Theorem 5.1. If sT and sB are equivalent, then either of them is a majorizing shape; if not,
then no majorizing shape exists.

Proof: (i) sT = sB . Suppose Ui = max1≤ j≤p U j . Consider the reduced problem where part

i is deleted and n changes to n − Ui . Let sT
′, sB

′ be the two shapes identified by our procedure

in the reduced problem. Clearly, sT
′ = sT\{Ui }. We prove sB

′ = sB\{Ui } (here we refer to

shape-types as multisets).

A lower bound Lv will be adjusted in the reduced problem only if

Lv +
∑
j �=i,v

U j < n − Ui

Springer

338 J Comb Optim (2006) 11: 321–339

or equivalently,

Lv +
∑
j �=v

U j < n,

which is the criterion of adjusting Lv in the original problem. Therefore, the adjustment of

lower bounds in choosing sB
′ is the same as sB , which implies sB

′ = sB\{Ui }.
Next we prove by induction on p that all regular shapes generated by Algorithm 2 are

equivalent to sT . It is trivially true for p = 1. Assume that it holds for general p − 1 ≥ 1, we

prove it for p.

Suppose to the contrary, that s ′ �= sT is also a nonmajorized regular shape. Then s ′ chooses

Ui or Lk . Without loss of generality, assume s ′ chooses Ui . By induction, s\{Ui } majorizes

s ′ \{Ui }. Hence, s majorizes s ′.
Finally, we prove that no E-shape can exist. Let the common regular shape contains r

upper bounds and t lower bounds where r + t = p − 1 or p. Suppose to the contrary that an

E-step occurs at stage j + k after j upper bounds and k lower bounds are selected. Among

the remaining parts, the largest (in the ≺ ordering) effective upper bound is U[j+1] and the

smallest effective lower bounds is L [k+1]. Necessarily, j < r + 1 and k < t + 1, or s(s ′)
would not agree with the common regular shape. If U[j+1] and L [k+1] are from the same part,

then selecting one means not selecting the other in a shape. In particular, L [k+1] would not

be in s and U[j+1] not in s ′, contradicting the common regular shape.

(ii) If sT �= sB , then Theorem 5.1 assures that both sT and sB are nonmajorized shapes; in

particular no majorizing shape exists. �

If we calculate
∑

Li at the beginning, then Ui
′ = min{Ui , n − (

∑
Li − Li) can be com-

puted with one subtraction. Therefore, adjusting each Ui takes a constant time. It takes O(p)

time to adjust all Ui in each calling of the algorithm and O(p) time to select maximum of

{Ui
′}. The algorithm is called p times to obtain sT , so the total time is O(p(p + p)) = O(p2).

The time complexity of constructing sB is the same. Finally, checking sT = sB takes O(p)

time.

An improvement of this algorithm is to sort {Ui }, and to sort {L j } among those parts with

the same upper bound at the beginning, so that we don’t have to do it at every stage. But the

running time is still O(p2).

Example 5.1. In Example 4.1, sT = (20, 19, 3, 4, 5) and sB = (1, 2, 18, 17, 13). Hence no

majorizing shape exists.

Example 5.2. U = (100, 90, 60, 50, 17), L = (10, 70, 10, 48, 10). If n = 228, we obtain

sT = sB = {90, 70, 10, 48, 10} which is a majorizing shape. But, if 219 ≤ n ≤ 226, then

there is no majorizing shape.

References

Barnes ER, Hoffman AJ, Rothblum UG (1992) Optimal partitions having disjoint convex and conic hulls.
Math Program 54:69–86

Hwang FK, Onn S, Rothblum UG (1998) Representations and characterizations of the vertices of bounded-
shape partition polytopes. Lin Alg Appl 278:263–284

Hwang FK, Rothblum UG (to appear) Partition-optimization with Schur-convex sum objective functions.
SIAM J Disc Math

Springer

J Comb Optim (2006) 11: 321–339 339

Hwang FK, Rothblum UG (1994) Optimality of monotone assemblies for coberant systems composed of
series modules. Oper Res 42:709–720

Marshall AW, Olkin I (1979) Inequalties. Theory of majorization and its applications. Academic Press, New
York

Sperner E (1928) Ein Satz über Untermengen einer endlichen Menge. Math Z 27:544–548

Springer

