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Abstract This paper studies maximum likelihood estimates as well as confidence
intervals of an M/M/R queue with heterogeneous servers under steady-state condi-
tions. We derive the maximum likelihood estimates of the mean arrival rate and the
three unequal mean service rates for an M/M/3 queue with heterogeneous servers,
and then extend the results to an M/M/R queue with heterogeneous servers. We
also develop the confidence interval formula for the parameter ρ, the probability
of empty system P0, and the expected number of customers in the system E[N ],
of an M/M/R queue with heterogeneous servers.

Keywords Confidence interval · Heterogeneous servers · Maximum likelihood
estimate · Queue

1 Introduction

In this paper, we study both point estimations and confidence intervals of an M/M/R
queue with ordered heterogeneous servers under steady-state conditions. It is as-
sumed that customers arrive following a Poisson process with rate λ and with
service times according to an exponential distribution with R unequal mean ser-
vice rates µi , (i = 1, 2, . . . R), where µ1 > µ2 > · · · > µR . We assume the
following: (i) Arriving customers at the servers form a single waiting line and are
served in the order of their arrivals; (ii) Each server may serve only one customer
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at a time; (iii) If all servers are idle, the first customer in the waiting line goes to
the fastest server; (iv) If part of the servers are idle, the first customer goes to the
faster server; (v) If all servers are busy, the first customer waits until any one server
becomes free; (vi) The arrival process and the service process are independent.

The statistical analysis of queueing systems are rarely found in the literature and
the work of related systems in the past mainly concentrates on only one server or
two servers. A landmark paper in parameter estimations for queueing models was
first proposed by Clarke (1957), who derived maximum likelihood estimates for the
arrival and service parameters of an M/M/1 queue. Lilliefors (1966) investigated
the confidence intervals for the M/M/1, M/Ek /1 and M/M/2 queues. Basawa and
Prabhu (1981) examined moment estimates as well as maximum likelihood esti-
mates for a G/G/1 queue. An illustration of statistical estimation technique applied
to the queueing problems can be found in Rubin and Robson (1990). Jain (1991)
obtained maximum likelihood estimates of the parameters for an M/Ek /1 queue.
Basawa et al. (1996) studied maximum likelihood estimates of the parameters in
the single-server queue using waiting time data. Rodrigues and Leite (1998) used
Bayesian analysis to investigate the confidence intervals of an M/M/1 queue. Max-
imum likelihood estimates and confidence intervals in an M/M/2 queue with heter-
ogeneous servers were derived by Dave and Shah (1980) and Jain and Templeton
(1991), respectively. Abou-E1-Ata and Hariri (1995) developed point estimations
and confidence intervals of an M/M/2/N queue with balking and heterogeneous
servers. Recently, an overview of literature on the statistical analysis of several
queueing systems was provided by Dshalalow (1997).

The main purpose of this paper is to derive maximum likelihood estimates
and confidence intervals of an M/M/R queue with ordered heterogeneous servers.
In section 2, we derive the maximum likelihood estimates of parameters for an
M/M/3 queue with heterogeneous servers and consider two special cases. Similar
procedure is used and extended to an M/M/R queue with heterogeneous servers
and the results are presented in section 3. Two special cases are also considered.
Finally, section 4 presents the confidence interval formula for the parameter ρ,
the probability of empty system P0, and the expected number of customers in the
system E[N ], of an M/M/R queue with heterogeneous servers.

2 M/M/3 queue with heterogeneous servers

In this section, our objective is to develop the maximum likelihood estimates of
the mean arrival rate λ and the three unequal mean service rates µ1, µ2 and µ3,
where µ1 > µ2 > µ3 of the M/M/3 queue with heterogeneous servers.

In steady-state, the following notations are used.
P0 ≡ probability that there are no customers in the system,
Pn ≡ probability that there are n customers in the system,

where n = 1, 2, 3, . . . .
Steady-state equations for an M/M/3 queue with heterogeneous servers are

given by:

λP0 = µ1 P1, (1)

(λ + µ1)P1 = (µ1 + µ2)P2 + λP0, (2)
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(λ + µ1 + µ2)P2 = (µ1 + µ2 + µ3)P3 + λP1, (3)

(λ + µ1 + µ2 + µ3)Pn = (µ1 + µ2 + µ3)Pn+1 + λPn−1, n ≥ 3. (4)

Solving recursively, analytic solutions Pn are derived in the following:

Pn =






λ
µ1

P0, n = 1
λ2

µ1(µ1+µ2)
P0, n = 2

λ3

µ1(µ1+µ2)(µ1+µ2+µ3)
P0, n ≥ 3

(5)

where

P0 =
[
1 + λ

µ1
+ λ2

µ1(µ1 + µ2)(1 − ρ)

]−1
, (6)

and

ρ = λ

µ1 + µ2 + µ3
.

Since the queue is in steady-state, so ρ must be less than 1 or equivalently
λ < µ1 + µ2 + µ3.

2.1 Likelihood function and maximum likelihood estimates

At time t = 0, the queue has just started operation with m0 customers present. Let
T denote a fixed sufficiently large interval of time during which the queue is being
observed. During T , we assume that there are Na number of arrivals to the queue
and Nd number of departures from the queue. Following Dave and Shah (1980),
we observe during T that:

Te ≡ amount of time during which three servers are idle;
TB1 ≡ amount of time during which only the fastest server is busy;
TB2 ≡ amount of time during which both the fastest server and faster server

are busy;
TB3 ≡ amount of time during which three servers are busy;
Ne ≡ number of arrivals to an empty queue when three servers are idle

(transitions E0 to E1);
NB1 ≡ number of arrivals to a partially busy queue when the fastest server is

busy (transitions E1 to E2);
NB2 ≡ number of arrivals to a partially busy queue time when the fastest server

and faster server are busy (transitions E2 to E3);
NB3 ≡ number of arrivals to a completely busy queue when three servers are

busy (transitions Ei to Ei+1, i ≥ 3);
ND1 ≡ number of departures from a partially busy queue when the fastest

server is busy (transitions E1 to E0);
ND2 ≡ number of departures from a partially busy queue when the fastest

server and faster server are busy (transitions E2 to E1);
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ND3 ≡ number of departures from a completely busy queue when three servers
are busy (transitions Ei to Ei−1, i ≥ 3).

Obviously,

T = Te + TB1 + TB2 + TB3,

Na = Ne + NB1 + NB2 + NB3,

Nd = ND1 + ND2 + ND3 .

Following Abou-E1-Ata and Hariri (1995), the corresponding likelihood func-
tion can be broken down into the following five basic components:

(i) The probability that there are initial m0 customers in the system can be ob-
tained from (6) yielding Pm0 = λ3

µ1(µ1+µ2)(µ1+µ2+µ3)
ρm0−3 P0, m0 ≥ 3;

(ii) The probability density function of Ne transitions (E0 to E1) occurring
during time Te is given by f1 = λNe e−λTe ;

(iii) The probability density function of NB1 transitions (E1 to E2) occurring
and ND1 transitions (E1 to E0) occurring during time TB1 is given by

f2 =
(
λNB1 e−λTB1

)(
µ

ND1
1 e−µ1TB1

)
;

(iv) The probability density function of NB2 transitions (E2 to E3) occurring
and ND2 transitions (E2 to E1) occurring during time TB2 is given by

f3 =
(
λNB2 e−λTB2

)[
(µ1 + µ2)

ND2 e−(µ1+µ2)TB2

]
;

(v) The probability density function of NB3 transitions (Ei to Ei+1, i ≥ 3)
occurring and ND3 transitions (Ei to Ei−1, i ≥ 3) occurring during time

TB3 is given by f4 =
(
λNB3 e−λTB3

)(
µND3 e−µTB3

)
, where µ = µ1 +

µ2 + µ3.

Since the random variables m0, TBi , NBi and NDi (i = 1, 2, 3) are mutually
independent, the likelihood function is given by

L1(λ, µ1, µ2, µ3) = λm0+Na e−λT µND3−m0+3µ
ND1
1

×(µ1 + µ2)
ND2 e−µ1TB1−(µ1+µ2)TB2 −µTB3

×
[ P0

µ1(µ1 + µ2)µ

]
. (7)

Since the queue is in steady-state, the probability Pm0 can be neglected. Taking
the logarithm of (7), it implies that

lnL1 = lnL1(λ, µ1, µ2, µ3) = Nalnλ − λT + ND1 lnµ1 + ND2 ln(µ1 + µ2)

+ND3 lnµ − µ1TB1 − (µ1 + µ2)TB2 − µTB3 .

(8)
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Differentiating (8) with respect to the parameters λ,µ1, µ2 and µ3, respec-
tively, we finally obtain

∂lnL1

∂λ
|
λ=λ̂

= Na

λ̂
− T = 0, (9)

∂lnL1

∂µ1
|µi =µ̂i = ND1

µ̂1
+ ND2

µ̂1 + µ̂2
+ ND3

µ̂
− (TB1 + TB2 + TB3) = 0, (10)

∂lnL1

∂µ2
|µi =µ̂i = ND2

µ̂1 + µ̂2
+ ND3

µ̂
− (TB2 + TB3) = 0, (11)

∂lnL1

∂µ3
|µi =µ̂i = ND3

µ̂
− TB3 = 0. (12)

From (9), we have

λ̂ = Na

T
. (13)

Subtracting (11) from (10), we get

µ̂1 = ND1

TB1

. (14)

Subtracting (12) from (11) and using (14), we get

µ̂2 = ND2

TB2

− ND1

TB1

. (15)

We obtain from (12)

µ̂ = µ̂1 + µ̂2 + µ̂3 = ND3

TB3

. (16)

It implies from (14)–(16)

µ̂3 = ND3

TB3

− ND2

TB2

. (17)

Thus, the maximum likelihood estimates of λ , µ1, µ2 and µ3 are given in (13),
(14), (15), and (17), respectively.
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2.2 Special cases

We consider the following two special cases:
Case 1:
Let µi − µi+1 = δi , (i = 1, 2), we have

µ1 = µ2 + δ1 = µ3 + δ1 + δ2, (18)

µ2 = µ3 + δ2. (19)

Substituting (18)–(19) into (8) and using � = TB1 +2TB2 +3TB3 , �1 = δ1+δ2
and �2 = δ1 + 2δ2, yields the following log-likelihood function:

lnL2 = lnL2(λ, µ3) = Nalnλ−λT +ND1 ln(µ3+�1)+ND2 ln(2µ3+�2) +
+ND3 ln(3µ3+�2) − µ3TB1 −2µ3TB2 −3µ3TB3 (20)

Using a derivation analogous to that of the previous section, we get the estimates
of λ and µ3 as follows:

λ̂ = Na

T
, (21)

and

µ̂3
3 +

(6�1 + 5�2

6
− Nd

�

)
µ̂2

3

+
(5�1�2 + �2

2

6
− 5�2 ND1 + 2(3�1 + �2)ND2 + 3(2�1 + �2)ND3

6�

)
µ̂3

+�1�
2
2

6
− �2

2 ND1 + 2�1�2 ND2 + 3�1�2 ND3

6�
= 0. (22)

It should be noted that the positive real value of µ̂3 should be taken in order
to give the maximum log-likelihood function, and then µ̂1 and µ̂2 can be obtained
from the expressions (18)–(19).

If δ1 = δ2 = 0, the estimates of µ1, µ2 and µ3 are given by

µ̂1 = µ̂2 = µ̂3 = Nd

TB1 + 2TB2 + 3TB3

. (23)

If δ1 = 0 and δ2 �= 0, we have

µ̂3
3 +

(8δ2

3
− Nd

�

)
µ̂2

3 + δ2

(7δ2

3
− 2Nd

�
+ ND1 + ND2

3�

)
µ̂3 +

δ2
2

(2δ2

3
− Nd

�
+ ND1 + ND2

3�

)
= 0. (24)

The positive real value of µ̂3 should be taken in order to give the maximum
log-likelihood function, and then µ̂1 and µ̂2 can be obtained from the expressions
(18)–(19).
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If δ1 �= 0 and δ2 = 0, we get

µ̂3
3 +

(11δ1

6
− Nd

�

)
µ̂2

3 + δ1

(
δ1− 3Nd

2�
+ 4ND1 + ND2

6�

)
µ̂3 +

δ2
1

(δ1

6
− Nd

2�
+ 2ND1 + ND2

6�

)
= 0. (25)

The positive real value of µ̂3 should be taken in order to give the maximum
log-likelihood function, and then µ̂1 and µ̂2 can be obtained from the expressions
(18)–(19).

If δ1 = δ2 = δ �= 0, we obtain

µ̂3
3 +

(9δ

2
− Nd

�

)
µ̂2

3 + δ
(13δ

2
− 7Nd

2�
+ 2ND1 + ND2

2�

)
µ̂3

+δ2
(

3δ − 3Nd

�
+ 3ND1 + 2ND2

2�

)
= 0. (26)

The positive real value of µ̂3 should be taken in order to give the maximum
log-likelihood function, and then µ̂1 and µ̂2 can be obtained from the expressions
(18)–(19).

Case 2:
Let µi+1

µi
= θi < 1, (i = 1, 2), we have

µ2 = θ1µ1,

µ3 = θ2µ2 = θ1θ2µ1.

Using a derivation similar to that of Case 1, the estimates of µ1, µ2 and µ3 are
given by

µ̂1 = Nd

TB1 + (1 + θ1)TB2 + (1 + θ1 + θ1θ2)TB3

, (27)

µ̂2 = θ1 Nd

TB1 + (1 + θ1)TB2 + (1 + θ1 + θ1θ2)TB3

, (28)

µ̂3 = θ1θ2 Nd

TB1 + (1 + θ1)TB2 + (1 + θ1 + θ1θ2)TB3

. (29)

If θ1 = θ2 = 1, we have

µ̂i = Nd

TB1 + 2TB2 + 3TB3

, i = 1, 2, 3. (30)

If θ1 = θ2 = θ < 1, we obtain

µ̂i = θ i−1 Nd

TB1 + (1 + θ)TB2 + (1 + θ + θ2)TB3

, i = 1, 2, 3. (31)
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3 M/M/R queue with heterogeneous servers

In this section, we will derive the maximum likelihood estimates of the mean
arrival rate λ and the R unequal mean service rates µi , (i = 1, 2, . . . R), where
µ1 > µ2 > · · · > µR of the M/M/R queue with heterogeneous servers.

As in the M/M/3 queue, the steady-state equations for an M/M/R queue with
heterogeneous servers are as follows:

λP0 = µ1 P1, (32)

(λ +
n∑

j=1

µ j )Pn =
n+1∑

j=1

µ j Pn+1 + λPn−1, 1 ≤ n ≤ R − 1 (33)

(λ + µ)Pn = µPn+1 + λPn−1, n ≥ R (34)

where µ = ∑R
j=1 µ j .

Solving recursively for this set of linear equations, we have

Pn =





λn
∏n

k=1
∑k

j=1 µ j
P0, 1 ≤ n ≤ R − 1

λR
∏R

k=1
∑k

j=1 µ j
ρn−R P0, n ≥ R

(35)

and

P0 =
[

1 +
R−1∑

n=1

λn

∏n
k=1

∑k
j=1 µ j

+ λR

(1 − ρ)
∏R

k=1
∑k

j=1 µ j

]−1

. (36)

Let E[N ] denote the expected number of customers in the system. From (34),
we finally obtain

E[N ]=
∞∑

n=1

nPn =
[

R−1∑

n=1

nλn

∏n
k=1

∑k
j=1 µ j

+ λR

∏R
k=1

∑k
j=1 µ j

R − Rρ + ρ

(1 − ρ)2

]

P0,

(37)

where ρ = λ/
∑R

j=1 µ j .

3.1 Likelihood function and maximum likelihood estimates

At time t = 0, the queue has just started operation with m0 customers present. Let
T denote a fixed sufficiently large interval of time during which the queue is being
observed. During T , we assume that there are Na number of arrivals to the queue
and Nd number of departures from the queue. During T , we observe the following:

Te ≡ amount of time during which all servers are idle;
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TB1 ≡ amount of time during which only the fastest server is busy;

TBi ≡ amount of time during which i faster servers are busy where i =
2, 3, . . . , R − 1;

TBR ≡ amount of time during which all servers are busy;
Ne ≡ number of arrivals to an empty queue when all servers are idle (transitions

E0 to E1);

NB1 ≡ number of arrivals to a partially busy queue when only the fastest server
is busy (transitions E1 to E2);

NBi ≡ number of arrivals to a partially busy queue time when i servers are
busy (transitions Ei to Ei+1) where i = 2, 3, . . . , R − 1;

NBR ≡ number of arrivals to a completely busy queue when all servers are
busy (transitions Ei to Ei+1, i ≥ R);

ND1 ≡ number of departures from a partially busy queue when only the fastest
server is busy (transitions E1 to E0);

NDi ≡ number of departures from a partially busy queue when i faster servers
are busy (transitions Ei to Ei−1) where i = 2, 3, . . . , R − 1;

NDR ≡ number of departures from a completely busy queue when all servers
are busy (transitions Ei to Ei−1, i ≥ R).

It is clear that

T = Te +
R∑

j=1

TB j ,

Na = Ne +
R∑

j=1

NB j ,

Nd =
R∑

j=1

ND j .

Since the queue is in steady-state, the probability Pm0 can be neglected. As in
the M/M/3 queue, the corresponding likelihood function can be broken down into
the following three basic components:

(i) The probability density function of Ne transitions (E0 to E1) occurring
during time Te is given by λNe e−λTe ;

(ii) The probability density function of NBi transitions (Ei to Ei+1, 1 ≤ i ≤
R−1) occurring and NDi transitions (Ei to Ei−1, 1 ≤ i ≤ R−1) occurring

during time TBi is given by
(
λNBi e−λTBi

)[(∑i
j=1 µ j

)NDi
e−

(∑i
j=1 µ j

)
TBi

]
;
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(iii) The probability density function of NBR transitions (Ei to Ei+1, i ≥ R)
occurring and NDR transitions (Ei to Ei−1, i ≥ R) occurring during time

TBR is given by
(
λNBR e−λTBR

)(
µNDR e−µTBR

)
.

Using a derivation similar to that of the previous section, the log-likelihood
function is given by

lnL3 = lnL3(λ, µ1, µ2, . . . , µR) = Nalnλ − λT +
R−1∑

k=1

NDk ln
(

k∑

j=1

µ j
)

+NDR lnµ −
R−1∑

k=1

k∑

j=1

µ j TBk − µTBR . (38)

Using (38) and after some algebraic manipulations, we obtain the maximum
likelihood estimates of λ and µi (i = 1, 2, . . . , R)

λ̂ = Na

T
, (39)

µ̂1 = ND1

TB1

, (40)

and

µ̂i = NDi

TBi

− NDi−1

TBi−1

, for 2 ≤ i ≤ R. (41)

From (40)–(41), we get

µ̂ =
R∑

i=1

µ̂i = NDR

TBR

. (42)

Thus, we get the maximum likelihood estimate of ρ

ρ̂ = NaTBR

NDR T
. (43)

3.2 Special cases

Let µi+1
µi

= θi , (i = 1, 2, . . . , R − 1), we have

µi+1 = µ1

i∏

k=1

θk, i = 1, 2, . . . , R − 1.
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Using the procedure in section 2.2, we get the estimates of µi

µ̂i = Nd
∏i−1

k=1 θk
∑R−1

k=1

(
1 + ∑k

j=2
∏k−1

l=1 θl
)
TBk + (

1 + ∑R
j=2

∏ j−1
l=1 θl

)
TBR

, 1 ≤ i ≤ R

(44)

where the
∑b

n=a notation indicates the term is 0 when a > b and the
∏b

n=a notation
indicates the term is 1 when a > b.

Two special cases are considered in the following:
Case 1:
θi = 1, (i = 1, 2, . . . , R − 1), (44) can be simplified to

µ̂1 = µ̂2 = . . . = µ̂R = Nd
∑R

k=1 kTBk

. (45)

Case 2:
θi = θ < 1, (i = 1, 2, . . . , R − 1), (44) can be simplified to

µ̂i = (1 − θ)θ i−1 Nd
∑R

k=1(1 − θk)TBk

, 1 ≤ i ≤ R. (46)

4 Confidence interval formula for ρ, P0 and E[N]
In this section, we will develop the confidence interval formula for ρ, P0 and
E[N ] of an M/M/R queue with heterogeneous servers. To achieve our aim, we first
establish the following results.

For a simple birth–death process to an M/M/R queueing system with hetero-
geneous servers, it follows from Appendix that

E[N ] = −ρ
∂lnP0

∂ρ
≥ 0, (47)

and the variance

Var[N ] = ρ
∂ E[N ]

∂ρ
≥ 0. (48)

Next, applying the approach by Lilliefors (1966), we have the (1 −α)× 100%
lower and upper confidence limits Lρ and Uρ of ρ as follows;

Lρ = ρ̂F1−α/2(2Na, 2Nd), (49)

and

Uρ = ρ̂Fα/2(2Na, 2Nd), (50)

where ρ̂ is given by (43).
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One observes from (47) that P0 is a monotonic decreasing function of ρ. Hence,
the (1 − α) × 100% lower and upper confidence limits, L P0 and UP0 of P0 can be
obtained through (36) and (49)–(50). That is,

L P0 = P0|ρ=Uρ , (51)

and

UP0 = P0|ρ=Lρ . (52)

From (48), we observe that E[N ] is a monotonic increasing function of ρ.
Thus, the (1 − α) × 100% lower and upper confidence limits, L E[N ] and UE[N ] of
E[N ], can be obtained through (37) and (49)–(50). That is,

L E[N ] = E[N ]|ρ=Lρ , (53)

and

UE[N ] = E[N ]|ρ=Uρ . (54)

5 Conclusions

In this paper, we have developed the maximum likelihood estimates for the arrival
and service parameters of the M/M/3 queue and M/M/R queue with heterogeneous
servers, respectively. We also have demonstrated that both results for the maxi-
mum likelihood estimates of the parameters are the functions of the observations
only which are consistent with the results of Dave and Shah (1980). The estimates
of λ and µi (i = 1, 2, . . . , R) can be easily computed, due to the fact that these
observations can easily be made for an M/M/R queue with heterogeneous servers.
Next, we have derived the confidence interval formula for ρ, P0 and E[N ] of an
M/M/R queue with heterogeneous servers.

Appendix

Derivations of (47) and (48)

Taking the logarithm of (36) and differentiating it with respect to λ, we finally get

∂lnP0

∂λ
= −

[R−1∑

n=1

nλn−1

∏n
k=1

∑k
j=1 µ j

+ λR−1

∏R
k=1

∑k
j=1 µ j

· R − Rρ + ρ

(1 − ρ)2

]
P0.

(A–1)

Multiplying (A–1) by −λ and using (37), we obtain

E[N ] = −λ
∂lnP0

∂λ
. (A–2)
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Since ∂lnP0
∂ρ

= ∂lnP0
∂λ

/
∂ρ
∂λ

, we have ∂lnP0
∂ρ

= µ∂lnP0
∂λ

. We obviously get

ρ
∂lnP0

∂ρ
= λ

∂lnP0

∂λ
. (A–3)

It follows from (A–2) and (A–3) that

E[N ] = −ρ
∂lnP0

∂ρ
≥ 0, (A–4)

which is the result given in (47).
Since ∂ln P0

∂λ
= ∂ P0

∂λ
∂ln P0
∂ P0

= ∂ P0
∂λ

1
P0

, we have ∂ P0
∂λ

= P0
∂ln P0

∂λ
. It yields from (A–2)

that

∂ P0

∂λ
= − P0

λ
E[N ]. (A–5)

Let

Q =
R−1∑

n=1

nλn

∏n
k=1

∑k
j=1 µ j

+ λR

∏R
k=1

∑k
j=1 µ j

[ R − Rρ + ρ

(1 − ρ)2

]
.

Thus

Q = − λ

P0

∂ln P0

∂λ
= − λ

P2
0

∂ P0

∂λ
. (A–6)

From (A–5) and (A–6), we obtain E[N ] = Q P0. Differentiating E[N ] with respect
to λ yields

∂ E[N ]
∂λ

= P0
∂ Q

∂λ
+ Q

∂ P0

∂λ
, (A–7)

where

∂ Q

∂λ
=

R−1∑

n=1

n2λn−1

∏n
k=1

∑k
j=1 µ j

+ λR−1

∏R
k=1

∑k
j=1 µ j

[ R2

1 − ρ
+ (2R + 1)ρ

(1 − ρ)2 + 2ρ2

(1 − ρ)3

]
.

After doing some algebraic manipulations in (35), we obtain

E[N 2]=
∞∑

n=1

n2 Pn

=
[R−1∑

n=1

n2λn

∏n
k=1

∑k
j=1 µ j

+ λRρ−R

∏R
k=1

∑k
j=1 µ j

( ∞∑

n=R

n2ρn
)]

P0

=
[R−1∑

n=1

n2λn

∏n
k=1

∑k
j=1 µ j

+ λR

∏R
k=1

∑k
j=1 µ j

( R2

1 − ρ
+ (2R+1)ρ

(1−ρ)2 + 2ρ2

(1−ρ)3

)
]

P0

=λP0
∂ Q

∂λ
. (A–8)
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Since ∂ E[N ]
∂ρ

= ∂ E[N ]
∂λ

∂λ
∂ρ

, we have ∂ E[N ]
∂ρ

= µ∂ E[N ]
∂λ

.
From (A–7), we get

ρ
∂ E[N ]

∂ρ
= λ

∂ E[N ]
∂λ

= λP0
∂ Q

∂λ
+ λQ

∂ P0

∂λ
. (A–9)

It follows from (A–5) and (A–8) that

ρ
∂ E[N ]

∂ρ
= E[N 2] − (E[N ])2 = V ar [N ] ≥ 0, (A–10)

which is the result given in (48).
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