
Information Processing and Management 42 (2006) 729–750

www.elsevier.com/locate/infoproman
Fast query evaluation through document identifier
assignment for inverted file-based
information retrieval systems

Cher-Sheng Cheng *, Chung-Ping Chung, Jean Jyh-Jiun Shann

Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan, ROC

Received 8 December 2004

Available online 28 June 2005
Abstract

Compressing an inverted file can greatly improve query performance of an information retrieval system (IRS) by

reducing disk I/Os. We observe that a good document identifier assignment (DIA) can make the document identifiers

in the posting lists more clustered, and result in better compression as well as shorter query processing time. In this

paper, we tackle the NP-complete problem of finding an optimal DIA to minimize the average query processing time

in an IRS when the probability distribution of query terms is given. We indicate that the greedy nearest neighbor

(Greedy-NN) algorithm can provide excellent performance for this problem. However, the Greedy-NN algorithm is

inappropriate if used in large-scale IRSs, due to its high complexity O(N2 · n), where N denotes the number of docu-

ments and n denotes the number of distinct terms. In real-world IRSs, the distribution of query terms is skewed. Based

on this fact, we propose a fast O(N · n) heuristic, called partition-based document identifier assignment (PBDIA) algo-

rithm, which can efficiently assign consecutive document identifiers to those documents containing frequently used

query terms, and improve compression efficiency of the posting lists for those terms. This can result in reduced query

processing time. The experimental results show that the PBDIA algorithm can yield a competitive performance versus

the Greedy-NN for the DIA problem, and that this optimization problem has significant advantages for both long

queries and parallel information retrieval (IR).
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1. Introduction

Information retrieval systems (IRSs) that are wildly used in many applications, such as search engines,

digital libraries, genomic sequence analyses, etc. (Kobayashi & Takeda, 2000; Williams & Zobel, 2002),

are overwhelmed by the explosion of data. To efficiently search vast amounts of data, an inverted file is
used to evaluate queries for modern large-scale IRSs due to its quick response time, high compression effi-

ciency, scalability, and support for various search techniques (Witten, Moffat, & Bell, 1999; Zobel, Moffat,

& Ramamohanarao, 1998). An inverted file contains, for each distinct term in the collection, a list (called a

posting list or synonymously an inverted list) of the identifiers of the documents containing that term. A

query consists of keyword terms. To retrieve information, the query evaluation engine reads and decom-

presses the posting lists for the terms involved in the query, and then merges (intersection, union, or differ-

ence) corresponding posting lists to obtain a candidate set of relevant documents.

Compressing an inverted file can greatly increase query throughput (Williams & Zobel, 1999; Zobel &
Moffat, 1995). This is because the total time of transferring a compressed posting list and subsequently

decompressing it is potentially much less than that of transferring an uncompressed posting list. The doc-

ument identifiers in a posting list are usually stored in ascending order. By using the popular d-gap com-

pression approach (Moffat & Zobel, 1992; Witten et al., 1999), efficient compression of an inverted file

can be achieved. In addition, we observe that the d-gap compression approach can result in good compres-

sion if the document identifiers in the posting lists are clustered.

The query processing time in a large-scale IRS is dominated by the time needed to read and decompress

the posting lists for the terms involved in the query (Moffat & Zobel, 1996), and we observe that the query
processing time grows with the total encoded size of the corresponding posting lists. This is because the disk

transfer rate is near constant, and the decoding processes of most encoding methods used in the d-gap com-

pression approach are on a bit-by-bit basis. If we can reduce the total encoded size of the corresponding

posting lists without increasing decompression times, a shorter query processing time can be obtained.

A document identifier assignment (DIA) can make the document identifiers in the posting lists evenly dis-

tributed, or clustered. Clustered document identifiers generally can improve the compression efficiency of

the d-gap compression approach without increasing the complexity of decoding process, hence reduce

the query processing time. In this paper, we consider the problem of finding an optimal DIA to minimize
the average query processing time in an IRS when the probability distribution of query terms is given. The

DIA problem, that is known to be NP-complete via a reduction to the rectilinear traveling salesman problem

(TSP), is a generalization of the problems solved by Olken and Rotem (1986), Shieh, Chen, Shann, and

Chung (2003), and Gelbukh, Han, and Sidorov (2003). Their research results showed that this kind of opti-

mization problem can be effectively solved by the well-known TSP heuristic algorithms. The greedy nearest

neighbor (Greedy-NN) algorithm performs the best on average, but its high complexity discourages its use

in modern large-scale IRSs.

In this paper, we propose a fast heuristic, called partition-based document identifier assignment (PBDIA)
algorithm, to find a good DIA that can make the document identifiers in the posting lists for frequently

used query terms more clustered. This can greatly improve the compression efficiency of the posting lists

for frequently used query terms. Where the probability distribution of query terms is skewed, as is the typ-

ical case in a real-world IRS, the experimental results show that the PBDIA algorithm can yield a compet-

itive performance versus the Greedy-NN for the DIA problem. The experimental results also show that the

DIA problem has significant advantages for both long queries and parallel information retrieval (IR).

The remainder of this paper is organized as follows. Section 2 describes the inverted index and explains

why a DIA can affect the storage space required and change query performance. Section 3 derives a cost
model for the DIA problem, and presents how to use the well-known TSP heuristic algorithms to solve this

optimization problem. In Section 4, we propose a fast PBDIA algorithm. We show the experimental results

in Section 5. Finally, Section 6 presents our conclusion.
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2. General framework

The data structures of an inverted index are depicted in Fig. 1. An inverted index consists of an index file

and an inverted file. An index file is a set of records, each containing a keyword term t and a pointer to the

posting list for term t. An inverted file contains, for each distinct term t in the collection, a posting list of the
form
ILt ¼ hid1; id2; . . . ; idfti;

where idi is the identifier of the document that contains t, and frequency ft is the number of documents in

which t appears. The document identifiers are within the range 1, . . .,N, where N is the number of docu-
ments in the indexed collection. In a large document collection, posting lists are usually compressed, and

decompression of posting lists is hence required during query processing.

Zipf (1949) observed that the set of frequently used terms is small. According to Zipf�s law, 95% of words
in all documents fall in a vocabulary with no more than 8000 distinct terms. This suggests that it is advis-
able to store the index records of frequently used terms in RAM to greatly reduce index search time. Hence,

the significant portion of query processing time is to read and decompress the compressed posting list for

each query term. This paper restricts attention to inverted file side only and investigates the DIA problem to

improve the efficiency of an inverted file and the overall IR performance.

The d-gap compression approach (Moffat & Zobel, 1992; Witten et al., 1999), the most popular ap-

proach for inverted file compression, consists of two steps. It first sorts the document identifiers of each

posting list in increasing order, and then replaces each document identifier (except the first one) with the

distance between itself and its predecessor. For example, the posting list Æ3,8,12,15,32æ can be represented
in d-gaps as Æ3,5,4,3,17æ. And the second step is to encode (compress) these d-gaps using an appropriate
coding method. Many coding methods, such as c coding (Elias, 1975), Golomb coding (Golomb, 1966; Wit-
ten et al., 1999), skewed Golomb coding (Teuhola, 1978), and batched LLRUN coding (Fraenkel & Klein,

1985), have been proposed to compress posting lists through the estimates of d-gap probability distribu-

tions. The more accurately the estimate, the greater the compression can be achieved.

One common characteristic of coding methods used in the d-gap compression approach is that small d-

gap values can be coded more economically than large ones. If we can shrink the d-gap values, the com-

pression ratio and query performance can be improved. Consider a document collection of six documents
Fig. 1. Inverted index and document collection.
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Fig. 2. An example to show different DIAs result in different compression results: (a) Example documents, (b) DIA I result, and

(c) DIA II result.
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shown in Fig. 2(a). Each document contains one or more terms. For example, the document d1 contains

terms 1 and 2, document d2 contains term 2, etc. In Fig. 2(b) and (c), the notation di ! j in DIAs I and
II denotes that the document identifier j is assigned to the document di. According to the documents in

Fig. 2(a) and the DIAs I and II, the obtained posting lists and d-gap lists are shown in Fig. 2(b) and (c).

For DIA I, the d-gap values have nine 1s, two 2s, two 3s and one 4; whereas for DIA II, the d-gap values

have eleven 1s, one 2 and two 3s. With c coding in Table 1, the compressed inverted file requires 26 bits for
DIA I, whereas it requires 20 bits for DIA II. If every term is queried with equal probability, the query pro-

cessing costs for DIA II will be much lower than that of DIA I. This is because DIA II can result in better

compression for the given coding method without increasing the complexity of decoding process, hence
Table 1

Some example codes for c coding

d-gap value x c code

1 0

2 10 0

3 10 1

4 110 00
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improve query throughput by reducing both the retrieval and decompression times of posting lists. This

example shows that different DIAs can result in different compression results and different query through-

puts for a given coding method. In next section, we will introduce a query cost function for the DIA prob-

lem, and then derive a method to find a good DIA to shorten average query processing time when the
probability distribution of query terms is given.
3. Document identifier assignment problem and its algorithm

The DIA problem is the problem of assigning document identifiers to a set of documents in an inverted

file-based IRS in order to minimize the average query processing time when the probability distribution of

query terms is given. In this section, we first formalize the problem, and then show how to use the well-
known greedy nearest neighbor (Greedy-NN) algorithm to solve this problem.
3.1. Problem mathematical formulation

Let D = {d1,d2, . . .,dN} be a collection of N documents to be indexed, and p : {d1,d2, . . .,dN}!
{1,2, . . .,N} be a DIA that assigns a unique identifier within the range 1, . . .,N to each document in D.

Let ft be the total number of documents in which term t appears and dtð1Þ; dtð2Þ; . . . ; dtðftÞ be documents con-

taining term t, then the posting list of the term t can be represented as ILt ¼
�
pðdtð1ÞÞ; pðdtð2ÞÞ; . . . ;pðdtðftÞÞ

�
.

Without loss of generality, we assume that pðdtð1ÞÞ < pðdtð2ÞÞ < � � � < pðdtðftÞÞ. Assume a coding method
C which requires C(x) bits to encode a d-gap x. The size of a posting list ILt for term t can then be

expressed as
Xft
i¼1

C
�
pðdtðiÞÞ � pðdtði�1ÞÞ

�
; ð1Þ
where we let dt(0) = 0 and p(dt(0)) = 0 to simplify the expression of Eq. (1). Assume that the probability of a
term t appearing in a query is pt. Let Xt be a random Boolean variable representing whether term t appears

in a query: Xt = 1 if term t appears in a query and Xt = 0 otherwise. The query processing time TimeQP of
posting list processing includes (1) retrieval time TimeR of posting list ILt for each query term t, (2) decom-

pression time TimeD of posting list ILt for each query term t, and (3) document identifier comparison time

TimeComp. Since the document identifier comparison time is relatively small (about 10% of query processing

time) and does not change with different DIAs, the query processing time in this paper is defined only

as
TimeQP ¼
X
t

X t 	 TimeRðILtÞ þ TimeDðILtÞð Þ. ð2Þ
The average query processing time AvgTimeQP is the expected value of TimeQP. That is,
AvgTimeQP ¼
X
t

pt 	 TimeRðILtÞ þ TimeDðILtÞð Þ. ð3Þ
Since the disk transfer rate is near constant and the decoding processes of most coding methods used in d-

gap compression approach are on a bit-by-bit basis, the retrieval and decompression times of a posting list

ILt for the term t appearing in a query grows with the size of the posting list ILt. So
TimeRðILtÞ þ TimeDðILtÞ ¼ constant	
Xft
i¼1

C pðdtðiÞÞ � pðdtði�1ÞÞ
� �

. ð4Þ
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Substituting Eq. (4) into Eq. (3), we obtain
AvgTimeQP ¼ constant 	
X
t

pt 	
Xft
i¼1

C pðdtðiÞÞ � pðdtði�1ÞÞ
� �

. ð5Þ
We thus define the objective function Cost(p) to reflect the average query processing time AvgTimeQP:
CostðpÞ ¼
X
t

pt 	
Xft
i¼1

C pðdtðiÞÞ � pðdtði�1ÞÞ
� �

. ð6Þ
The objective of this research is to find a DIA p :D ! {1,2,3, . . .,N} such that Cost(p) is minimal. This opti-
mization problem is called the DIA problem, and it is reduced to the simple DIA (SDIA) problem if the

value of pt for each term t is set to 1. The SDIA problem is the problem of finding a DIA to minimize

the size of inverted file, and it is known to be NP-complete via a reduction to the rectilinear traveling sales-

man problem (Olken & Rotem, 1986). Since the DIA problem is a generalization of the SDIA problem, the

DIA problem is also a NP-complete problem.

3.2. Solving DIA problem via the well-known Greedy-NN algorithm

The research works of Shieh et al. (2003) and Gelbukh et al. (2003) indicated that finding the near-opti-

mal solution for the SDIA problem can be recast as the traveling salesman problem (TSP), and also showed

that heuristic algorithms for the TSP can be applied to the SDIA problem to find a near-optimal DIA.

Compared with those well-known TSP heuristic algorithms, such as insertion heuristic algorithm and span-

ning tree based algorithm, Shieh et al. (2003) showed that the Greedy-NN algorithm performs better for the

SDIA problem on average. In Section 3.2.1, we show how to solve the SDIA problem using the Greedy-NN

algorithm. Then, in Section 3.2.2, we show how to transform the DIA problem into the SDIA problem, and
explain why the Greedy-NN algorithm can provide better performance than the other TSP heuristic algo-

rithms for the DIA problem.

3.2.1. Solving SDIA problem via Greedy-NN algorithm

Shieh et al. (2003) showed that the SDIA problem can be solved by using TSP heuristic algorithms.

Given a collection of N documents, a document similarity graph (DSG) can be constructed. In a DSG, each

vertex represents a document, and the weight on an edge between two vertices represents the similarity of

these two corresponding documents. The similarity Sim(di,dj) between two documents di and dj is defined as
Simðdi; djÞ ¼
X

t2ðT ðdiÞ\T ðdjÞÞ
1; ð7Þ
where T(di) and T(dj) denote the set of terms appearing in di and dj, respectively, and \ denotes the inter-
section operator. Hence, the similarity between two documents is the number of common terms appearing

in both documents. The DSG for the example documents in Fig. 2(a) is shown in Fig. 3. A TSP heuristic

algorithm can then be used to find a path of the DSG visiting each vertex exactly once with maximal sum of

similarities. If we follow the visiting order of vertices on the path to assign document identifiers, the sum of

d-gap values for an inverted file can be decreased, and the size of inverted file compressed via the d-gap

compression approach can be reduced. Shieh et al. (2003) showed that the Greedy-NN algorithm (Fig.

4) can provide excellent performance for the SDIA problem.
We now show how to obtain a DIA for the DSG described in Fig. 3 using the Greedy-NN algorithm,

where V = {d1,d2,d3,d4,d5,d6}. In Step 1, we pick d4 as v1 since the sum of similarity values associated with

its adjacent edges is maximal (=10). In Step 2, we have V 0 = {d1,d2,d3,d5,d6}. In Step 3, we pick d6 as v2
since d6 is the vertex v in V 0 such that the edge (v,v1) has the maximal similarity value. In Step 4, we have

V 0 = {d1,d2,d3,d5}. Repeat Steps 3 and 4 as needed, we can then sequentially pick d1 as v3, d3 as v4, d2 as v5,



Fig. 3. DSG for the example documents in Fig. 2(a).

Fig. 4. The Greedy-NN algorithm for the SDIA problem.
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and d5 as v6. Hence, we have a TSP path: {d4,d6,d1,d3,d2,d5}, and a DIA p = {d1! 3, d2! 5,

d3! 4, d4! 1, d5! 6, d6! 2}.
3.2.2. Transforming DIA problem into SDIA problem

We use a matrix A to represent the input document collection, in which a row corresponds to a term and

a column corresponds to a document. The entry Ai,j is a 1 if term i appears in document dj, and 0 otherwise.

The SDIA problem is to determine whether there exists a permutation of the columns of A that results in a

matrix B such that
Xn Xfi
C zði; jÞ � zði; j� 1Þð Þ þ Cðzði; 1ÞÞ

 !
6 k; ð8Þ
i¼1 j¼2
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where C is a coding method which requires C(x) bits to encode a d-gap x, n is the number of terms, fi is the

total number of documents in which term i appears, z(i, j) is a function that returns the column index of the

jth nonzero entry at row i, and k is a given integer used to determine whether there exists a permutation of

columns of A such that the total encoded size of an inverted file is less than k. The DIA problem is to deter-

mine whether there exists a permutation of the columns of A that results in a matrix B such that
Fig. 5.

examp

appear

proble

of mat
Xn
i¼1

pi 	
Xfi
j¼2

C zði; jÞ � zði; j� 1Þð Þ þ Cðzði; 1ÞÞ
 !

6 k0; ð9Þ
where pi is the probability of a term i appearing in a query and k 0 is a given integer used to determine

whether there exists a permutation of columns of A such that the mean encoded size needed to read and

decompress a posting list during query processing is less than k 0.

To show how to transform the DIA problem into the SDIA problem, we use the document collection in
Fig. 2(a) as an example instance of the DIA problem, and assume that the probabilities of terms being que-

ried are p1 = 0.2, p2 = 0.3, p3 = 0.1, and p4 = 0.4. Fig. 5(a) shows the matrix A of Fig. 2(a). Then we con-

struct a new matrix A 0 for the SDIA problem by duplicating each row of matrix A in a certain number

of times based on the given probabilities of terms appearing in a query, as shown in Fig. 5(b). In matrix

A 0, the row of matrix A corresponding to term i is duplicated mi times, where mi = rows(A
0) · pi and

rows(A 0) denotes the number of rows of matrix A 0. The rows(A 0) can be any positive integer such that

mi = rows(A
0) · pi is an integer for every i. In this example, we let rows(A

0) be 10. One can easily show that

the optimal solution of matrix A 0 for the SDIA problem is also the optimal solution of matrix A for the
DIA problem when the probabilities p1 = 0.2, p2 = 0.3, p3 = 0.1, and p4 = 0.4 are given.
(a)

(b)

An example to illustrate how to transform an instance of the DIA problem into an instance of the SDIA problem. (a) An

le instance for the DIA problem: Matrix A corresponds to the document collection in Fig. 2(a), and the probabilities of terms

ing in a query are p1 = 0.2, p2 = 0.3, p3 = 0.1, and p4 = 0.4. (b) (b) Matrix A
0 is the corresponding instance of (a) for the SDIA

m. In matrix A 0, Rowterm i of matrix A is duplicated mi times, where mi = rows(A
0) · pi and rows(A

0) denotes the number of rows

rix A 0.
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Using the same approach, it is obvious that one can transform any instance A of the DIA problem into

an instance A 0 of the SDIA problem such that the optimal solution of matrix A 0 for the SDIA problem is

also the optimal solution of matrix A for the DIA problem when the probabilities pi for 1 6 i 6 n are given,

where n denotes the number of distinct terms. Since the research work of Shieh et al. (2003) showed that the
Greedy-NN algorithm performs the best for the SDIA problem on average, one can show that the Greedy-

NN algorithm can provide better performance than the other TSP heuristic algorithms for the DIA prob-

lem. Therefore, the DIA problem can be solved using the Greedy-NN algorithm described in Fig. 4, if the

similarity Sim(di,dj) between two documents di and dj in a DSG is redefined as
Simðdi; djÞ ¼
X

t2ðT ðdiÞ\T ðdjÞÞ
pt; ð10Þ
where the probability of a term t appearing in a query is known to be pt.

Although the Greedy-NN algorithm is very simple to implement, it is not very applicable to large-scale

IRSs due to its high complexity. Given a collection of N documents and n distinct terms, the number of

comparisons for calculating Sim(di,dj) given fixed i and j is O(n), hence the total number of comparisons

to construct a DSG for the Greedy-NN algorithm is O(N2 · n). An algorithm with lower complexity yet
still generates satisfactory results should be developed.
4. Partition-based document identifier assignment algorithm

Since the DIA problem is an NP-complete problem, the effort in search for an effective low-complexity

method is needed. Although the Greedy-NN algorithm can be used to solve the DIA problem, its complex-

ity is too high. In this section, we first present an optimal DIA algorithm for a single query term, and then
propose an efficient partition-based document identifier assignment (PBDIA) algorithm for the DIA

problem.

4.1. Generating an optimal DIA for a single query term

Consider a posting list ILt for term t with ft document identifiers in a collection of N documents. Using

the d-gap technique, we can obtain ft d-gap values: d-gap1; d-gap2; . . . ; d-gapft . Assume a coding method C

which requires C(x) bits to encode a d-gap x. We want to know which d-gap probability distribution
can minimize the size of posting list ILt after compression using method C. That is, we want to know which

d-gap probability distribution can minimize
Xft
i¼1

Cðd-gapiÞ ð11Þ
subject to
ft 6
Xft
i¼1

d-gapi 6 k ð12Þ
and
1 6 d-gapi 6 k for all i; 1 6 i 6 k; ð13Þ

where k is the largest document identifier in the posting list ILt. It is known that C(x) is approximately pro-

portional to log2(x) for many popular coding methods, such as c coding, skewed Golomb coding, and bat-
ched LLRUN coding. For these coding methods, we can use dynamic programming technique (Bellman &
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Dreyfus, 1962) and find that minimizing Eq. (11) should meet two requirements: (1) maximize the number

of d-gap values of 1; and (2) minimize the largest document identifier, i.e., k, in the posting list ILt. If a DIA

for term t can satisfy the above two requirements, the best compression and the fastest query speed for the

posting list ILt can be achieved.

According to the above observation, we propose the simple partition-based document identifier assign-

ment (SPBDIA) algorithm to generate optimal DIAs for a given query term t. The SPBDIA algorithm con-

sists of a partitioning procedure, an ordering procedure, and a document identifier assignment procedure.

The partitioning procedure divides the given documents into two partitions in terms of query term t: one

partition P(t) consists of documents containing query term t; the other partition P(t 0) is made up of the

documents without t. Then, the ordering procedure sets the order of partitions as P(t) followed by P(t 0).

Finally, the document identifier assignment procedure generates an appropriate DIA for the ordered par-

titions according to query term t: the documents in partition P(t) are assigned smaller consecutive docu-

ment identifiers, while the documents in partition P(t 0) assigned larger consecutive document identifiers.
The SPBDIA algorithm is illustrated in the following example.

Example. There is a collection of 500 documents, among which 300 documents contain query term t. After

partitioning, P(t) has 300 documents and P(t 0) has 200 documents. Then, the ordering procedure sets the
order of partitions P(t) followed by P(t 0). Finally, the document identifier assignment procedure assigns
the document identifiers 1–300 to the 300 documents in partition P(t) and assigns the document identifiers

301–500 to the 200 documents in partition P(t 0).

Documents in a partition can be arbitrarily assigned identifiers within the given range, hence the number
of possible DIAs for the above Example is 300! · 200!. Each of the 300! · 200! DIAs satisfies the two
requirements for minimizing Eq. (11), and hence gives both the best posting list compression and fastest

query speed for query term t. The SPBDIA algorithm is simple, and its complexity is O(N).

4.2. Efficient partition-based document identifier assignment algorithm for DIA problem

In a real-world IRS, a few frequently used query terms constitute a large portion of all term occurrences

in queries (Janson, Spink, Bateman, & Saracevic, 1998). This fact indicates that a DIA algorithm that al-
lows those frequently used query terms to have better posting list compression can result in reduced average

query processing time. Based on the SPBDIA algorithm, an efficient partition-based document identifier

assignment (PBDIA) algorithm for the DIA problem can be developed.

Like the SPBDIA algorithm, the PBDIA algorithm also partitions the document set, orders these par-

titions, and then assigns document identifiers. The flowchart of the PBDIA algorithm is shown in Fig. 6.

The partitioning and ordering procedures of the PBDIA algorithm iterate n times given that there are n

query terms. Then, the document identifier assignment procedure is performed as the last step of the

PBDIA algorithm. Terms that are queried more frequently should take higher priority in document parti-
tioning and partition ordering. Let the most frequently queried term be assigned rank 1, the second most

frequently queried term rank 2, and so on. We use trank i to represent the ith ranked query term. The par-

titioning and ordering procedures of the PBDIA algorithm should proceed by considering trank 1 first, then

trank 2, and so on.

Both the PBDIA partitioning and ordering procedures are invoked once per iteration. The PBDIA par-

titioning procedure first divides each partition generated in the previous iteration into two partitions using

the SPBDIA partitioning procedure. The PBDIA ordering procedure then assigns each newly generated

partition a partition order. Each partition P in the PBDIA algorithm hence can be uniquely identified
by an iteration number i and a partition order j, and we use the notation Pi,j to represent the jth ordered

partition of the ith iteration. For example, the notation P2,3 represents the third ordered partition of the

second iteration. Initially, we use the notation P0,1 to represent the partition that contains all documents



Fig. 6. The flowchart for the PBDIA algorithm.
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in an input document collection. In the following, we describe in detail the partitioning, ordering, and

document identifier assignment procedures of the PBDIA algorithm.

4.2.1. PBDIA partition procedure

Let Pi�1,1, Pi�1,2, . . ., and Pi�1,k be nonempty partitions generated in iteration i � 1. The PBDIA parti-
tioning procedure invoked in the ith iteration divides each partition Pi�1,j into a partition pair

fP i�1;jðtrank iÞ; P i�1;jðt0rank iÞg for j = 1,2, . . .,k, where the partition Pi�1,j(trank i) consists of the documents in
Pi�1,j containing the query term trank i, and P i�1;jðt0rank iÞ consists of the documents in Pi�1,j without the query

term trank i. Since Pi�1,j is nonempty, at least one of the two partitions Pi�1,j(trank i) and P i�1;jðt0rank iÞ is non-
empty for j = 1,2, . . .,k.
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4.2.2. PBDIA ordering procedure

Let fP i�1;1ðtrank iÞ; P i�1;1ðt0rank iÞg, fP i�1;2ðtrank iÞ; P i�1;2ðt0rank iÞg, . . ., and fP i�1;kðtrank iÞ; P i�1;kðt0rank iÞg be the
partition pairs generated by PBDIA partitioning procedure in iteration i. Let jPij denote the number of
nonempty partitions of the above partitions. The PBDIA ordering procedure invoked in the ith iteration

assigns a unique partition order, from jPij to 1 and in descending order, to each nonempty partition, start-
ing from fP i�1;kðtrank iÞ; P i�1;kðt0rank iÞg, then fP i�1;k�1ðtrank iÞ; P i�1;k�1ðt0rank iÞg, and so on.
Now let us consider the ordering of partition pair fP i�1;kðtrank iÞ; P i�1;kðt0rank iÞg. Three cases exist.

Case 1: Both Pi�1,k(trank i) and P i�1;kðt0rank iÞ are nonempty
The ordering procedure assigns jPij to P i�1;kðt0rank iÞ, and jPij � 1 to Pi�1,k(trank i). P i�1;kðt0rank iÞ is
hereafter denoted as P i;jP ij, and Pi�1,k(trank i) as P i;jP ij�1.

Case 2: Pi�1,k(trank i) is empty, and P i�1;kðt0rank iÞ is nonempty
The ordering procedure assigns jPij to P i�1;kðt0rank iÞ, and ignores Pi�1,k(trank i). P i�1;kðt0rank iÞ is
hereafter denoted as P i;jP ij.

Case 3: Pi�1,k(trank i) is nonempty, and P i�1;kðt0rank iÞ is empty
The ordering procedure assigns jPij to Pi�1,k(trank i), and ignores P i�1;kðt0rank iÞ. Pi�1,k(trank i) is

hereafter denoted as P i;jP ij.

Next we consider the ordering of partition pairs fP i�1;jðtrank iÞ; P i�1;jðt0rank iÞg, where j = 1,2, . . .,k � 1. Let
the next largest partition order to be assigned be s. Since PBDIA ordering procedure orders

fP i�1;jþ1ðtrank iÞ; P i�1;jþ1ðt0rank iÞg before fP i�1;jðtrank iÞ; P i�1;jðt0rank iÞg, Pi,s+1 is hence used to denote either
Pi�1,j+1(trank i) or P i�1;jþ1ðt0rank iÞ. Again, three cases exist for fP i�1;jðtrank iÞ; P i�1;jðt0rank iÞg:

Case 1: Both Pi�1,j(trank i) and P i�1;jðt0rank iÞ are nonempty
There exist two subcases.

SubCase 1.a: Pi,s+1 is used to denote Pi�1,j+1(trank i)

The ordering procedure assigns s to Pi�1,j(trank i), and s � 1 to P i�1;jðt0rank iÞ. Pi�1,j·
(trank i) is hereafter denoted as Pi,s, and P i�1;jðt0rank iÞ as Pi,s�1.

SubCase 1.b: Pi,s+1 is used to denote P i�1;jþ1ðt0rank iÞ
The ordering procedure assigns s to P i�1;jðt0rank iÞ, and s � 1 to Pi�1,j(trank i).

P i�1;jðt0rank iÞ is hereafter denoted as Pi,s, and Pi�1,j(trank i) as Pi,s�1.

Case 2: Pi�1,j(trank i) is empty, and P i�1;jðt0rank iÞ is nonempty
The ordering procedure assigns s to P i�1;jðt0rank iÞ, and ignores Pi�1,j(trank i). P i�1;jðt0rank iÞ is hereafter
denoted as Pi,s.

Case 3: Pi�1,j(trank i) is nonempty, and P i�1;jðt0rank iÞ is empty
The ordering procedure assigns s to Pi�1,j(trank i), and ignores P i�1;jðt0rank iÞ. Pi�1,j(trank i) is hereafter
denoted as Pi,s.
4.2.3. PBDIA document identifier assignment procedure

The document identifier assignment procedure, the last step of PBDIA algorithm, is straightforward. Let

Pn,1, Pn,2, . . ., and Pn,k be the generated ordered partitions of the iteration n. This procedure assigns con-

secutive document identifiers to documents in the same partition, and consecutive identifier groups to con-

secutive ordered partitions. The first (smallest) document identifier is assigned to a document in the first

ordered partition (Pn,1). And the ordering of documents in a partition is irrelevant and can be arbitrary.

To obtain a good DIA, the partitions must be properly ordered. We explain why the PBDIA ordering

procedure is proper: Note that the PBDIA ordering procedure always assigns consecutive partition orders

to two nonempty partitions of a partition pair. This makes documents in the same partition in iteration i

remain in the same or neighboring partitions in iteration i + 1. According to the PBDIA document



Fig. 7. The PBDIA algorithm for the DIA problem.
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identifier assignment procedure, documents in the same partition in iteration i will eventually be assigned

consecutive or at least adjacent document identifiers. That is, once the order of partitions is generated at the

end of iteration i, the compression performance for the posting list of trank i is determined. Hence, the post-

ing list of trank 1 has the best compression, then that of trank 2, and so on. This is because the PBDIA algo-
rithm considers the trank 1 first, then trank 2, and so on, in its iterations.



742 C.-S. Cheng et al. / Information Processing and Management 42 (2006) 729–750
The PBDIA algorithm is given in Fig. 7. A doubly linked list is used to store the partitions, and the two

links of a partition maintain the ordering among these partitions. Given a collection of N documents and n

distinct query terms, the number of comparisons for assigning documents to partitions in each iteration is

O(N). Since the PBDIA algorithm iterates for n times, the total number of comparisons for the PBDIA
algorithm is O(N · n). Compared with the Greedy-NN algorithm, this complexity of PBDIA algorithm

is distinctively low. This advantage brings the PBDIA algorithm a dark side, of course. Although the

PBDIA algorithm targets on improving the compression efficiency for the frequently used query terms,

it unavoidably decreases that for the other query terms. In reality, it is often the case that the popularities

of the assorted query terms are very unbalanced. And this imbalance nature makes the PBDIA algorithm

achieve very good query performance. In Section 5, we compare the search performance of the Greedy-NN

and PBDIA algorithms for real-life document collections.
5. Experiments

This section describes our experiments for evaluating the different DIA algorithms. Experiments were

conducted on real-life document collections, and the average query processing time and the stor-

age requirement for each DIA algorithm were measured. We also investigated the DIA problem in

parallel IR.

5.1. Document collections and queries

Three document collections were used in the experiments. Their statistics are listed in Table 2. In this

table, N denotes the number of documents; n is the number of distinct terms; F is the total number of terms

in the collection; and f indicates the number of document identifiers that appear in an inverted file. The

collections FBIS (Foreign Broadcast Information Service) and LAT (LA Times) are disk 5 of the

TREC-6 collection that is used internationally as a test bed for research in IR techniques (Voorhees & Har-

man, 1997). The collection TREC includes the FBIS and LAT.
We followed the method (Moffat & Zobel, 1996) to evaluate performance with random queries. For each

document collection, 300 documents were randomly selected to generate a query set. A query was generated

by selecting words from the word list of a specific document. To form the word list of a document, words in

the document were folded to lower case, and stop words such as ‘‘the’’ and ‘‘this’’ were eliminated. The

number of terms per query ranged from 1 to 65. For example, a query containing 5 terms may be ‘‘inverted

file document collection built’’. For each query, there existed at least one document in the document col-

lection that was relevant to the query. We also made the generated query set for each document collection

have the following characteristics: (1) Query repetition frequencies followed a Zipf distribution PrðqÞ � 1
q0.6,

where Pr(q) is the probability of query q appearing in generated query set, and q is the popularity rank of
query q; (2) The terms per query distribution followed the shifted negative binomial distribution

f ðxÞ ¼ x�0.8
x�2
� �

ð0.85Þ1.2ð0.15Þx�1, where f(x) is the probability of a query containing x words. This made

the distribution of generated queries closely resemble the distribution of real queries (Wolfram, 1992;

Xie & O�Hallaron, 2002).

5.2. Experimental results

In Section 5.2.1, we first present the actual times taken by the Greedy-NN and the PBDIA algorithms. In

Section 5.2.2, we then present the query performance of different DIA algorithms. In Section 5.2.3, we pres-

ent the compression performance of different DIA algorithms. Finally, we study the DIA problem in par-

allel IR in Section 5.2.4.



Table 2

Statistics of document collection

Collection

FBIS LAT TREC

# of documents N 130,471 131,896 262,367

# of terms F 72,922,893 72,087,460 145,010,353

# of distinct terms n 214,310 168,251 317,393

# of document identifier count f 28,628,698 32,483,656 61,112,354

Total size (Mbytes) 470 475 945
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The inverted files of the three test collections were constructed according to the DIAs generated by dif-

ferent DIA algorithms. We tested four different DIA algorithms: ‘‘Random’’, ‘‘Default’’, ‘‘Greedy-NN’’,

and ‘‘PBDIA’’. The Random algorithm means that the document in a collection is randomly assigned doc-

ument identifier. The Default algorithm means that the document in a collection is assigned document iden-

tifier in chronological order. The Greedy-NN and PBDIA algorithms were described in Sections 3.2 and

4.2, respectively. For each DIA algorithm, we also tested five coding methods: c coding (Elias, 1975), Go-
lomb coding (Golomb, 1966; Witten et al., 1999), skewed Golomb coding (Teuhola, 1978), batched

LLRUN coding (Fraenkel & Klein, 1985), and unique-order interpolative coding method (Cheng, Shann,
& Chung, 2004). For the following experiments, the parameter b for each posting list in Golomb coding was

calculated using Witten�s approximation (Witten et al., 1999), and the parameter g for unique-order inter-
polative coding was set to 4 (Cheng et al., 2004).

All experiments were run on an Intel P4 2.4 GHz PC with 512 MB DDR memory running Linux

operating system 2.4.12. The hard disk was 40 GB, and the data transfer rate was 25 MB/s. Intervening

processes and disk activities were minimized during experimentation.

5.2.1. Time taken by Greedy-NN and PBDIA algorithms

In Table 3, the performance in terms of completion time is shown. The times reported are the actual

times taken by the algorithms to generate a DIA for the given document collection that has been inverted.

Please note that the times presented in Table 3 consider neither the time spent in preliminary inversion of

the document collection, nor the time needed to rebuild an inverted file with a new DIA.

Table 3 shows that the PBDIA algorithm is much faster than the Greedy-NN algorithm. This fact makes

the PBDIA algorithm viable for use in large-scale IRSs. Such a fast DIA algorithm can be very useful for

situations such as

1. Dynamically changing probability distribution of query terms, and

2. Dynamically changing document collection.
5.2.2. Query performance of different DIA algorithms

In Table 4, the average query processing time (AvgTimeQP) and the speedup relative to the Default algo-

rithm (SP) were measured according to Eq. (3). In Table 5, the average number of bits required to retrieve
Table 3

Time consumed by the Greedy-NN and the PBDIA algorithms

DIA algorithm Collection

FBIS LAT TREC

Greedy-NN 23 h 59 min 24 h 37 min 198 h 2 min

PBDIA 9 s 10 s 18 s



Table 4

Query performance of different DIA algorithms (AvgTimeQP is the average query processing time, and SP is the speedup relative to the

Default algorithm)

Collection DIA

algorithm

Coding methods

c coding Golomb coding Skewed

Golomb coding

Batched

LLRUN coding

Unique-order

interpolative coding

AvgTimeQP
(ls)

SP AvgTimeQP
(ls)

SP AvgTimeQP
(ls)

SP AvgTimeQP
(ls)

SP AvgTimeQP
(ls)

SP

(a) Short queries

FBIS Random 2989 0.93 2858 0.98 3894 0.96 3748 0.97 2746 0.95

Default 2789 1.00 2802 1.00 3754 1.00 3636 1.00 2614 1.00

Greedy-NN 2431 1.15 2790 1.00 3348 1.12 3275 1.11 2315 1.13

PBDIA 2529 1.10 2808 1.00 3427 1.10 3320 1.10 2333 1.12

LAT Random 2829 0.96 2704 0.99 3737 0.98 3654 0.97 2564 0.97

Default 2724 1.00 2688 1.00 3645 1.00 3542 1.00 2476 1.00

Greedy-NN 2268 1.20 2653 1.01 3137 1.16 3143 1.13 2085 1.19

PBDIA 2379 1.15 2644 1.02 3234 1.13 3231 1.10 2150 1.15

TREC Random 5822 0.90 5573 0.97 7556 0.93 7217 0.94 5448 0.91

Default 5244 1.00 5380 1.00 7026 1.00 6781 1.00 4942 1.00

Greedy-NN 4431 1.18 5353 1.01 6139 1.14 6032 1.12 4256 1.16

PBDIA 4606 1.14 5292 1.02 6254 1.12 6171 1.10 4313 1.15

(b) Medium-length queries

FBIS Random 9388 0.93 8972 0.98 12,222 0.97 11,749 0.97 8613 0.95

Default 8758 1.00 8795 1.00 11,795 1.00 11,402 1.00 8201 1.00

Greedy-NN 7563 1.16 8746 1.01 10,426 1.13 10,225 1.12 7205 1.14

PBDIA 7838 1.12 8798 1.00 10,650 1.11 10,387 1.10 7223 1.14

LAT Random 8997 0.97 8605 1.00 11,842 0.98 11,562 0.97 8192 0.97

Default 8684 1.00 8564 1.00 11,580 1.00 11,229 1.00 7932 1.00

Greedy-NN 7126 1.22 8407 1.02 9851 1.18 9852 1.14 6607 1.20

PBDIA 7434 1.17 8359 1.02 10,098 1.15 9982 1.12 6755 1.17

TREC Random 18,475 0.92 17,689 0.97 23,936 0.94 22,724 0.95 17,273 0.93

Default 16,935 1.00 17,153 1.00 22,594 1.00 21,666 1.00 16,004 1.00

Greedy-NN 14,069 1.20 16,942 1.01 19,493 1.16 19,058 1.14 13,598 1.18

PBDIA 14,611 1.16 16,713 1.03 19,809 1.14 19,280 1.12 13,722 1.17

(c) Long queries

FBIS Random 20,210 0.92 19,399 0.98 26,526 0.95 26,049 0.96 18,423 0.94

Default 18,594 1.00 18,939 1.00 25,316 1.00 24,984 1.00 17,269 1.00

Greedy-NN 15,882 1.17 18,971 1.00 22,131 1.14 21,957 1.14 14,979 1.15

PBDIA 15,871 1.17 18,953 1.00 21,972 1.15 22,143 1.13 14,377 1.20

LAT Random 18,029 0.96 17,116 1.00 23,591 0.98 22,646 0.97 16,477 0.97

Default 17,392 1.00 17,035 1.00 23,011 1.00 22,033 1.00 15,964 1.00

Greedy-NN 13,875 1.25 16,624 1.02 19,173 1.20 18,984 1.16 13,046 1.22

PBDIA 13,996 1.24 16,298 1.05 19,023 1.21 19,212 1.15 12,817 1.25

TREC Random 37,881 0.93 36,023 0.98 49,012 0.95 46,584 0.96 35,266 0.94

Default 35,096 1.00 35,231 1.00 46,547 1.00 44,588 1.00 33,008 1.00

Greedy-NN 28,372 1.24 34,469 1.02 39,489 1.18 38,592 1.16 27,523 1.20

PBDIA 29,152 1.20 33,809 1.04 39,766 1.17 39,089 1.14 27,401 1.20
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Table 5

AvgBPIQP of different DIA algorithms (AvgBPIQP is the average number of bits required to retrieve and decode an identifier during

query processing, and Imp is the improvement over the Default algorithm)

Collection DIA

algorithm

Coding methods

c coding Golomb coding Skewed

Golomb coding

Batched

LLRUN coding

Unique-order

interpolative coding

AvgBPIQP Imp

(%)

AvgBPIQP Imp

(%)

AvgBPIQP Imp

(%)

AvgBPIQP Imp

(%)

AvgBPIQP Imp

(%)

(a) Short queries

FBIS Random 3.56 �10.6 3.21 0.3 3.31 �7.1 3.25 �5.5 3.15 �7.9
Default 3.22 – 3.22 – 3.09 – 3.08 – 2.92 –

Greedy-NN 2.78 13.7 3.24 �0.6 2.73 11.7 2.69 12.7 2.63 9.9

PBDIA 2.95 8.4 3.23 �0.3 2.84 8.1 2.76 10.4 2.69 7.9

LAT Random 3.32 �6.8 2.98 0.0 3.05 �4.8 3.00 �3.8 2.87 �4.7
Default 3.11 – 2.98 – 2.91 – 2.89 – 2.74 –

Greedy-NN 2.56 17.7 3.00 �0.7 2.48 14.8 2.47 14.5 2.35 14.2

PBDIA 2.73 12.2 2.97 0.3 2.59 11.0 2.59 10.4 2.42 11.7

TREC Random 3.75 �13.3 3.38 0.3 3.46 �9.5 3.40 �8.2 3.34 �10.6
Default 3.31 – 3.39 – 3.16 – 3.14 – 3.02 –

Greedy-NN 2.78 16.0 3.41 �0.6 2.72 13.9 2.69 14.3 2.65 12.3

PBDIA 2.94 11.2 3.37 0.6 2.81 11.1 2.81 10.5 2.70 10.6

(b) Medium-length queries

FBIS Random 3.57 �10.9 3.21 0.3 3.31 �6.8 3.25 �5.5 3.15 �7.9
Default 3.22 – 3.22 – 3.10 – 3.08 – 2.92 –

Greedy-NN 2.75 14.6 3.24 �0.6 2.70 12.9 2.66 13.6 2.61 10.6

PBDIA 2.92 9.3 3.24 �0.6 2.81 9.4 2.75 10.7 2.66 8.9

LAT Random 3.37 �6.3 3.03 0.3 3.11 �4.4 3.06 �3.7 2.94 �4.6
Default 3.17 – 3.04 – 2.98 – 2.95 – 2.81 –

Greedy-NN 2.58 18.6 3.06 �0.7 2.50 16.1 2.48 15.9 2.39 14.9

PBDIA 2.73 13.9 3.02 0.7 2.59 13.1 2.60 11.9 2.44 13.1

TREC Random 3.83 �12.0 3.42 0.3 3.53 �8.3 3.47 �7.1 3.40 �9.0
Default 3.42 – 3.43 – 3.26 – 3.24 – 3.12 –

Greedy-NN 2.82 17.5 3.45 �0.6 2.76 15.3 2.74 15.4 2.71 13.1

PBDIA 2.99 12.6 3.41 0.6 2.85 12.6 2.86 11.7 2.75 11.9

(c) Long queries

FBIS Random 3.31 �12.2 3.02 0.3 3.09 �8.4 3.03 �6.7 2.90 �9.0
Default 2.95 – 3.03 – 2.85 – 2.84 – 2.66 –

Greedy-NN 2.50 15.3 3.06 �1.0 2.47 13.3 2.43 14.4 2.37 10.9

PBDIA 2.57 12.9 3.05 �0.7 2.47 13.3 2.48 12.7 2.34 12.0

LAT Random 3.58 �6.2 3.21 0.3 3.28 �4.1 3.23 �3.5 3.13 �4.3
Default 3.37 – 3.22 – 3.15 – 3.12 – 3.00 –

Greedy-NN 2.66 21.1 3.24 �0.6 2.58 18.1 2.55 18.2 2.50 16.7

PBDIA 2.73 19.0 3.19 0.9 2.58 18.1 2.63 15.7 2.48 17.3

TREC Random 3.85 �10.6 3.43 0.3 3.54 �7.3 3.47 �6.1 3.41 �7.9
Default 3.48 – 3.44 – 3.30 – 3.27 – 3.16 –

Greedy-NN 2.78 20.1 3.46 �0.6 2.73 17.3 2.70 17.4 2.69 14.9

PBDIA 2.92 16.1 3.41 0.9 2.79 15.5 2.81 14.1 2.71 14.2
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and decode an identifier during query processing (AvgBPIQP) and the improvement over the Default algo-

rithm (Imp) were measured according to Eq. (6). For each document collection, the generated query set was

divided into three subsets: the short query set, the medium-length query set, and the long query set. The

number of terms per query for the short, medium-length, and long query sets range from 1 to 8, 9 to
20, and 21 to 65, respectively.

All decoding mechanisms were optimized, including:

1. Replaced subroutines with macros.

2. Replaced calls to the log function with fast bit shifts.

3. Careful choice for compiler optimization flags.

4. Implementation used 32-bit integers, as that is the internal register size of the Intel P4 CPU.

Furthermore, the Huffman code of batched LLRUN coding was implemented with canonical prefix

codes that can be decoded via a fast table look-up (Turpin, 1998). With these optimizations, decoding of

a document identifier only required tens of nanoseconds.

The experimental results are shown in Tables 4 and 5. Key findings are:

1. Table 4 shows that the query performance of the Default algorithm can be 10% faster than the Random

algorithm. This indicates that the Default algorithm already captures some clustering nature, thus can

serve as a rigid baseline in comparison with other fine-tuned algorithms.
2. Comparing Tables 4 and 5, one should observe that AvgTimeQP is proportional to AvgBPIQP. This ver-

ifies Eq. (4) in Section 3.1, and explains why a good DIA can result in better compression and reduced

query processing time.

3. From Table 5, one should observe that both the Greedy-NN and PBDIA algorithms can result in better

compression of posting lists for all tested coding methods except Golomb coding. This indicates that the

Greedy-NN and PBDIA algorithms can improve the cache efficiency if a posting list cache is

implemented.

4. Table 4 shows that both the Greedy-NN and PBDIA algorithms can reduce average query processing
time for all tested coding methods except Golomb coding. And the query speedup differences between

the Greedy-NN and PBDIA algorithms were only 3% on average. Considering the algorithm complex-

ity, the PBDIA algorithm is a good choice for the DIA problem.

5. From Table 4, one should observe that Golomb coding cannot benefit much from the Greedy-NN and

PBDIA algorithms in terms of query performance. This is because Golomb coding assumes that the d-

gap values in a posting list following a Bernoulli model (Witten et al., 1999), hence both the compression

result and the query processing time of Golomb coding are independent of d-gap distribution.

6. From Table 4, one should observe that the query speedup obtained by the PBDIA algorithm becomes
higher as the query length increases. This is because that, as the number of query terms increases, more

frequently used query terms are likely to be included, resulting in more advantage due to the PBDIA

algorithm.

7. Table 4 shows that both c coding and unique-order interpolative coding are recommended for real-world
IRSs due to their fast query throughputs. In addition, compared with the other tested coding methods,

these two coding methods benefit more from the PBDIA algorithm. We conclude that the PBDIA algo-

rithm is viable for use in real-world IRSs.

8. Table 4 shows that the PBDIA algorithm can reduce average query processing time by up to 20% for an
inverted file in which the document identifiers in a posting list are sorted in ascending order. To allow

extremely fast processing of conjunctive queries and ranked queries using the same index, most IRSs

in use today adopt the skipped inverted files (Moffat & Zobel, 1996) or the blocked inverted files (Moffat,

Zobel, & Klein, 1995). Both the skipped and blocked inverted files are identifier-ordered arrangement.



Table 6

Compression performance of different DIA algorithms (BPI is the average bits per identifier of the inverted file for the test collection,

and Imp is the improvement over the Default algorithm)

Collection DIA algorithm Coding methods

c coding Golomb coding Skewed

Golomb coding

Batched

LLRUN coding

Unique-order

interpolative coding

BPI Imp (%) BPI Imp (%) BPI Imp (%) BPI Imp (%) BPI Imp (%)

FBIS Random 7.06 �19.7 5.28 0.0 5.75 �10.6 5.38 �8.5 5.36 �10.3
Default 5.90 – 5.28 – 5.20 – 4.96 – 4.86 –

Greedy-NN 5.86 0.7 5.28 0.0 5.33 �2.5 4.88 1.6 4.85 0.2

PBDIA 6.17 �4.6 5.28 0.0 5.42 �4.2 5.06 �2.0 4.95 �1.9

LAT Random 7.12 �6.6 5.33 0.0 5.73 �3.2 5.43 �2.8 5.42 �3.8
Default 6.68 – 5.33 – 5.55 – 5.28 – 5.22 –

Greedy-NN 6.06 9.3 5.32 0.2 5.26 5.2 5.00 5.3 4.91 5.9

PBDIA 6.35 4.9 5.32 0.2 5.33 4.0 5.12 3.0 5.01 4.0

TREC Random 7.39 �16.7 5.50 �0.4 5.92 �9.2 5.59 �7.5 5.59 �9.6
Default 6.33 – 5.48 – 5.42 – 5.20 – 5.10 –

Greedy-NN 6.08 3.95 5.49 �0.2 5.39 0.6 5.03 3.3 4.99 2.2

PBDIA 6.36 �0.5 5.49 �0.2 5.45 �0.6 5.18 0.4 5.08 0.4
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Therefore, the PBDIA algorithm can also be applied to those inverted files, and reduce the time needed

to process a query against those inverted files. Since skipped inverted files and blocked inverted files are

widely used in modern large-scale IRSs, we believe that the PBDIA algorithm can contribute in real-

world IRSs.

5.2.3. Compression performance of different DIA algorithms

The compression results are shown in Table 6, and the metric used is the average number of bits per iden-

tifier (BPI), defined as follows:
BPI ¼ The size of the compressed inverted file
number of document identfiers f

.

To reduce average query processing time, both the Greedy-NN and PBDIA algorithms target on

improving the compression efficiency for the frequently used query terms. However, this is at the cost of
sacrificing the compression efficiency for the less frequently used query terms. We need to know how much

space overhead is needed to trade for this speed advantage. Results in Table 6 shows that the Greedy-NN

and PBDIA algorithms can speed up query processing with very little or no storage overhead.
5.2.4. DIA in parallel IR

This subsection investigates the DIA problem in an IRS that runs on a cluster of workstations. Assum-

ing k workstations, the inverted file is generally partitioned into k disjoint sub-files, each for one worksta-

tion. When processing a query, all workstations have to consult only their own sub-files in parallel, and the
query processing time is shortened. Ma, Chen, and Chung (2002) indicated that near-ideal speedup on

query processing can be obtained if an inverted file is partitioned using the interleaving partitioning scheme.

For such a partitioning, DIA plays a crucial role in load balancing. The PDBIA algorithm can be applied to

the inverted file to enhance the clustering property of posting lists for frequently used query terms, and can

aid the interleaving partitioning scheme to yield better load balancing.



Table 7

Speedup of parallel query processing

Method The number of workstations

1a 2 4 6 8 10

Default algorithm + Interleaving partitioning 1.00 1.90 3.75 5.61 7.44 9.35

PBDIA algorithm + Interleaving partitioning 1.17 2.23 4.41 6.57 8.70 10.93

a Without interleaving partitioning.
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Table 7 shows the performance of parallel query processing using interleaving partitioning scheme with

either the Default algorithm or the PBDIA algorithm. The metric is the speedup relative to sequential query

processing with Default algorithm. Experiments were conducted on the TREC collection. The sub-file on

each workstation was compressed using the unique-order interpolative coding method. The parallel query
processing time was defined as max[T1,T2, . . .,Tk], where Ti (1 6 i 6 k) was the time needed to retrieve and

decompress the (partial) posting lists for the query terms on the ith workstation. Note that Ti did not

include the document identifier comparison time (the reason being the same as described in Section 3.1).

The experimental results show that the interleaving partitioning scheme can yield near-ideal speedups, as

reported in Ma et al. (2002). In addition, using the PBDIA algorithm to enhance the clustering property

of posting lists for frequently used query terms, the interleaving partitioning scheme yields super-linear

speedups. Hence the DIA problem should deserve much attention in parallel IR.
6. Conclusion

In this paper, we study the DIA-based query optimization techniques for an IRS in which the inverted

file is used to evaluate queries. We first define a cost model for query evaluation. Based on this model, we

propose an efficient heuristic, called partition-based document identifier assignment (PBDIA) algorithm, for

generating a good DIA to reduce average query processing time.

The PBDIA algorithm can efficiently assign consecutive document identifiers to the documents contain-
ing frequently used query terms. This makes the d-gaps of posting lists for frequently used query terms very

small, and results in better compression for popular coding methods without increasing the complexity of

decoding processes. This can result in reduced query processing time.

Experimental results show that the PBDIA algorithm can reduce the average query processing time by

up to 20%. We also point out that the DIA problem has vital effects on the performance of long queries and

parallel IR. Compared with the well-known Greedy-NN algorithm, the PBDIA algorithm is much faster

and yields very competitive performance for the DIA problem. This fact should make the PBDIA algo-

rithm viable for use in modern large-scale inverted file-based IRSs.
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