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these operations were used to indicate degrees of the
information detailing. With respect to computational effi-Human beings perceived real-world objects in a graded man-

ner, with macroviews providing global information about the ciency, the use of operation parameters might be a good
objects and microviews providing more detailed information. choice for the index of degree of detailing. However,
Consequently, researchers in computer vision have directed using operation parameters does not directly match hu-
their efforts toward building graded representations of objects, man intuition.
especially shapes of objects. Most previous approaches em- To overcome this defect, we devised a graded approach
ployed operations such as smoothing, blurring, or grouping to

to deriving a shape representation with multiple degreesgradually obtain representations with different degrees of de-
of detail. Our approach is based on a similarity ratio thattail. Parameters of these operations are used to indicate the
measures the similarity between an approximation and andegree of detail. One objection to using operator parameters
original contour segment. First, a numerical value repre-is that these parameters are difficult for viewers to interpret
senting the similarity requirement is stated. Guided by thisintuitively. To overcome this objection, we propose using a

graded approach guided by a given similarity requirement to value, our approach constructs an approximation of the
construct a more concise shape description. Our shape represen- shape that satisfies the stated requirement. In our terminol-
tation matches human intuition about detailing degree and ogy, an approximation of a shape consists of a set of tokens.
suits machine requirement for concise description.  1996 Aca- A token is a line segment fitted to a partial contour of
demic Press, Inc. a shape. Our approach initially uses only two tokens to

approximate the given shape. When an optimal result is
obtained, we compare the similarity ratio of these tokens

1. INTRODUCTION
to our requirement. If the value obtained is less than our
requirement, more tokens are involved to approximate theHuman beings perceive real-world objects in a graded
given shape. This process is iteratively performed until themanner, with macroviews providing global information
requirement is achieved. Finally, the most concise repre-about the objects and microviews providing more detailed
sentation (least number of tokens) that satisfies the giveninformation. Consequently, researchers in computer vision
requirement is generated. The result is that our shapehave directed their efforts toward building graded repre-
representation matches human intuition about detailingsentations of objects, especially shapes of objects. Good
degree and also satisfies the requirement to describe shapesshape representation can present flexible and useful per-
concisely. Our results indicate that our approach yields aceptions of objects and also support a wide range of com-
more human-intuitive and natural description than othersputer vision tasks such as recognition, categorization, rea-
based on operator’s parameters. In this paper, we showsoning about, and image understanding.
examples of several shape representations generated byMost previous work used operations such as smoothing,
our approach.blurring, or grouping to gradually obtain different degrees

of detail representation. These efforts included using a
2. OVERVIEW OF THE APPROACHnumber of lines to approximate an original curve [8],

using parameters of the smoothing operator [7, 2, 10],
In this paper, we assume a shape is a closed contour

using parameters of the symbolic grouping operator [12],
that can be described by a list of vectors. Our general

and using internal areas and external areas as criteria
approach is illustrated by the flow chart in Fig. 1. There

for multiple information extraction [15]. Parameters of
are four execution blocks in our approach. The first block
executes starting-vector detection that is devised to con-
struct an initial condition for computations that follow. In1 Research supported by the National Science Council, Republic of

China under Grant NSC82-0408-E-009-367. this block, we construct a skeleton for the input shape

105
1047-3203/96 $18.00

Copyright  1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



106 CHEN, TSAI, AND HWANG

similarity ratio remains unchanged as the total number of
tokens is reduced.

3. PRELIMINARY

In our approach, we use a cluster to denote a part of
the input contour which is to be approximated by a token.
A token is information which describes part of the shape.
One token corresponds to one principle cluster and is
mainly devised from that cluster. However, vectors in the
neighboring clusters may also affect that token. To con-
sider the effects of neighboring vectors, we introduce the
concept of membership degree. We assume that each token
is affected by three clusters, one main cluster and two
neighboring clusters. This means each token is supported
by three clusters of vectors, and each cluster can be said
to support three tokens. One token is called the main
support token of the cluster and the other two are called
neighboring supporting tokens. The membership degree
referred to above denotes the degree of support each clus-
ter gives to the three tokens. When a token is formed, we
measure how similar it is to its main cluster. This measure
is called the token similarity ratio. In our approach, we
find a representation that agrees with human requirement
on perception similarity. Therefore, the minimum token
similarity ratio can be taken as the similarity ratio of the

FIG. 1. Block diagram of the graded approach. whole set of tokens. For convenience, we will first introduce
these concepts: tokens, clusters, membership degree, and
similarity ratio.

which intersets the shape contour at a set of vectors (Fig. 2).
3.1. Cluster and TokenA proper starting vector is selected from the set according

to some criterion. This procedure also ensures that our As mentioned, our approach is performed by clustering
approach is rotation-free. the contour vectors, finding the corresponding tokens, cal-

After starting-vector detection, there is a loop that con- culating the tokens’ attributes, and calculating the similar-
sists of two blocks. The first block of the loop, split, breaks ity ratios until a satisfactory result is obtained. A cluster
one token in two so that the procedure that follows can here is a connected group of neighboring vectors. It can
devise a finer approximation. The second block in the loop, also be viewed as one element in a partition of the input
token detection (the kernel of our approach), finds an opti- contour. The entire set of clusters is called cluster record.
mal clustering of the vectors along the shape contour under For convenience, we use X to denote the input shape
the constraint that a fixed number of clusters must be contour and use hx1, x2 , ...j for the vectors in X. The nota-
found. Each cluster will correspond to a token that contains tion NX denotes the number of vectors of X. Also, we use
necessary information about the cluster, and some infor- C to denote the cluster record and hc1, c2 , ...j for the clusters
mation about the two neighboring clusters. The similarity in it. We use NC to denote the number of clusters in C. A
ratio between a token and its corresponding cluster of
vectors can be computed using their geometrical informa-
tion. The similarity ratio between the entire approximation
and the original shape can then be derived. If the ratio
obtained is less than the stated requirement, the loop is
executed again. When the requirement is satisfied, the pro-
gram exits the loop and enters the final block token merge.

The purpose of the last block is to obtain a more concise
representation while retaining the required quality. This
is done by merging neighboring tokens that have close FIG. 2. The skeleton (inside contour) and its intersection with

the contour (black squares).orientations. Because the tokens are so close, the overall
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token usually corresponds to a cluster. We use ti to denote
5 O

xk[Vt
i

(u(xk, ti)2(dki)2)
(6)the token corresponding to ci . We use T to denote the

entire set of tokens corresponding to the entire set of
clusters C. There are three attributes associated with each 5 O

xk[Vt
i

u(xk, ti)2(ixk i2 2 (kxk , õti
l)2)

token: center vector, orientation, and scale. These attri-
butes are defined below.

5 O
xk[Vt

i

u(xk, ti)2ixk i2 2 O
xk[Vt

i

u(xk, ti)2(kxk, õti
l)2,Center Vector. The center vector of a token is a position

which can represent the token. We use c̃ti
to denote this

attribute for token ti ; it is calculated by the locations of
where dki is a straight distance from xk to ti. Because theits formative vectors, as
membership degrees of vectors are fixed, the first term is
constant relative to õti

. Since Ci is minimized if and only
if the second term is maximized, we now try to maximizec̃ti

5
oxk[Vt

i

u(xk , ti )2xk

oxk[Vt
i

u(xk , ti)2 , (1)
the second term which can be rewritten as

O
xk[Vi

u(xk, ti)2(kxk, õti
l)2where Vti

denotes a set of vectors that support the proper-
ties of ti, i.e., Vti

5 hci21 < ci < ci11j. The notation u(xk , ti )
used in the definition above is the membership degree of 5 O

xk[Vi

u(xk, ti)2õ T
ti
(xkx T

k )õti
(7)

xk in the token ti and is described in next section.

Orientation. The second attribute is the orientation,
5 õ T

ti H O
xk[Vt

i

u(xk, ti)2xkx T
kJ õti

.which is denoted by õti
. The orientation of a token is defined

as an optimally fitting direction such that the sum of
weighted distance squares is minimized. This sum is de-
noted by Ci and can be calculated as The solution is well known: the matrix M̂i is [oxk[Vt

i

u(xk, ti)2xkx T
k] and ei is the unit eigenvector of the matrix

Ci(õti
) 5 O

xk[Vi

(u(xk, ti)dki)2, (2)
M̂i corresponding to its largest eigenvalue.

Scale. The third attribute is the scale which is denoted
where dki denotes the distance between xk and ti . The by s̃ti

. The scale we refer to here means the scope of the
distance between a vector to a token means a vertical token. In general, we can use the number of vectors that
distance between them. Equation (2) needs to be mini- support the token as the scale value. However, because
mized to derive the orientation. Without loss of generality, each vector is weighted, we need to take such weights into
we assume that c̃ti

is (0, 0) and uõti
u is 1. Let u be the angle consideration. The scale is obtained from the weighted

between xk and õti
, then the following equations will hold. count of the support vectors. We normalize this weighted

count by dividing it by the number of total vectors NX , as

cos2(u) 5 Skxk, õti
l

ixk i D2

s̃ti
5 3oxi[Vt

i

u(xk, ti)

NX 4 . (8)
5 1 2 sin2(u). (3)

3.2. Membership Degreesin2(u) 5 1 2 Skxk, õti
l

ixk i D2

. (4)

As mentioned, each vector supports three tokens. There-
d 2

ki 5 ixk i2 sin2(u) fore, for each vector xk, we define three membership de-
grees, one for the main token, say ti, and two for the

5 ixk i2 2 (kxk , õti
l)2. (5) neighboring tokens, say ti21 and ti11 . In this paper, we

consider three factors concerning the membership degree:
kx, yl denotes the dot product of vectors x and y. Equation

1. ordinal interval between vector xk and the middle(2) can then be rewritten as
vector of ci ,

2. distance between vector xk and the center of ti , andCi(õti
) 5 O

xk[Vi

(u(xk, ti)dki)2

3. distance between vector xk and ti .
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In the first factor, the cluster ci is the cluster corresponding For consistency, we assume that the value range of simi-
larity ratio is between 0 and 1. We also assume that thisto the main token. The middle vector of ci is the vector

whose ordinal number refers to the middle vector in the similar ratio value will decrease as the distance squared
error increases. As a result, the similarity ratio is a decreas-cluster. This factor reflects the relationship of a vector to

the cluster it is in. The second factor is the distance from ing function of d̃ti
, with s̃ti

5 1 when d̃ti
5 0, and s̃ti

5 0
when d̃ti

R 1y. In this paper, we use a sigmoid functionthe center of the token ti to the vector xk . Unlike the
second factor, the third factor refers to the vertical distance that satisfies this requirement as our similarity ratio. Thus

we define the similarity ratio of token ti, s̃ti
, asbetween one vector and one token. In considering these

three factors, we devised the following formula to repre-
sent their total effect to membership degree s̃ti

5 exp[2l(d̃ti
)], (15)

r̂i,k 5 aik 2 eci
i2 1 bixk 2 c̃ti

i2 1 cidkii2, (9) where l represents the equation 10 3 K 2/N 2
X and K is a

constant. The variable l contains the length of the contour
where the sum of a, b, and c is 1 and c # b # a. NX . Both the square of NX and the distance square error

Member degree can be defined as d̃ti
are influenced by uniform scaling. The influence of uni-

form scaling in the calculation of similarity ratio is balanced
by dividing the distance square error d̃ti

by N 2
X . Only spatialu(xk, ti)21 5 F O

j5i21,i,i11

r̂i21,k

r̂j,k
G21

(10)
attributes are changed by uniform scaling (other attributes
are not affected). Therefore the approximation satisfies
the requirement of uniform scaling free.u(xk, ti)0 5 F O

j5i21,i,i11

r̂i,k

r̂j,k
G21

(11)
The similarity ratio of the whole set of tokens is the

weighted sum of its member tokens. The weight attached
to each token is its scale. The whole similarity ratio canu(xk, ti)11 5 F O

j5i21,i,i11

r̂i11,k

r̂j,k
G21

, (12)
be defined as

where u(xk, ti)0 represents the main support token of xk

sT 5 ONT

i51
s̃ti

3 s̃ti
(16)is ti. The notations u(xk, ti)21 and u(xk, ti)11 denote the

membership degrees of xk with respect to neighboring
tokens.

where s̃ti
is the scale of the token. This is defined in theTo simplify succeeding operations, we define u(xk, ti) as

following section.

4. THE GRADED APPROACH

This section describes our approach in detail. The algo-u(xk, ti) 5 5
u(xk, ti)21, if xk [ ci11,

u(xk, ti)0, if xk [ ci,

u(xk, ti)11, if xk [ ci21,

0, otherwise.

(13)
rithm of our main procedure is illustrated in Fig. 3. The
input to the procedure is a shape contour X and a stated
similarity ratio value s. The output is a set of tokens T
which approximates X.

3.3. Similarity Ratio In step 1, the starting-vector-detection procedure finds
the starting vector and the index of the best vector to split.Two kinds of similarity ratios are used in our approach:
Using the starting vector to represent the contour with aone for individual token and one for th entire set of tokens.
one-cluster cluster record C and the index q, later proce-The token similarity ratio for the token ti is denoted by
dures will split this cluster into two clusters for furthers̃ti

, which can be derived from the distance between ti and
processing. In step 2, p indicates which cluster will be splitxk. For convenience, we use an average square to reflect
in the next pass. Initially of course, there is only one clusteran aggregation of the distances between ti and all vectors
in the cluster record and p is 1.in a cluster. This square, denoted by d̃ti

, is called distance
Steps 3 to 10 form a do loop where the main operationssquare error and can be defined as

are performed. In step 3, the procedure split splits the pth
cluster into two at the qth vector. The following procedure
token detection is the principal step in the loop. This proce-d̃ti

5Foxk[ci
dki

Nci
G2

, (14)
dure finds an optimal cluster record C and its correspond-
ing set of tokens T. The number of the clusters in C does
not change during the execution of the procedure. Afterwhere Nci

is the number of vectors in ci.
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FIG. 3. The algorithm of our graded approach.

token detection is executed, steps 6 and 7 find the weakest orientations are very similar. The goal of merging is to
obtain a more human-intuitive approximation. To deter-token—the one with the lowest similairty ratio, tw. The

similarity ratio is denoted by s̃w. This weakest token and mine how similar the orientations of two adjacent tokens
have to be before they are merged, we design a parameter-its associated cluster are then indicated for the next itera-

tion loop if its s̃w value is less than the required value. In ized formula which takes s and « into consideration. The
parameter « is used to define the degree of improvementeach case, we increase the number of clusters by one and

repeat the loop. that is required. In this formula, r1 and r2 are variables
and are dependent on the domain of application. Formally,It is obvious that the do loop will terminate. At line 5,

we always select the weakest token to split. The weakest the value of Y for merge procedure is defined as
token is the token with least similarity to its corresponding

Y 5 r1« 1 r2(1 2 s), (17)curve. If a curve cannot be properly approximated by one
line, it must be approximated by two lines. Therefore, the where r1 and r2 are prefixed constants.
sw is continually decreasing and the do loop will terminate.

4.1. Starting-Vector Detection
When the do loop is terminated, i.e., the s̃ti

of each
token ti is larger than the required value s, a merger proce- The procedure starting-vector detection is illustrated in

Fig. 4. In this procedure, we first construct the skeletondure is invoked to merge any two adjacent tokens whose

FIG. 4. The procedure for starting-vector detection.
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FIG. 5. The token-detection procedure.

of the input contour X. This is done by a one-pass two- vector according to the pair of segments which most equally
partition the contour. If sq1 and sq2 are selected then weoperation method first proposed by Arcelli and Baja [1].

The obtained skeleton then intersects the contour with a let the start index of the cluster c1 be q1 and the index of
the vector recommended for splitting be q2 .set of vectors S.

Given the set of intersection vectors S, we select the In Fig. 2, we show an example illustrating the skeleton
(the curve in the contour) and its intersection with thestarting vector which will best suit the following computa-

tions. The for loop (steps 1 to 5) is to check all pairs of contour (black squares).
intersection and calculate the ratios of the lengths of the
cut subcontours. In step 6, we select two vectors si and sj 4.2. Token Detection
whose corresponding ratio is larger than and closest to 1.
The following computation begins at the starting vector The token-detection procedure is illustrated in Fig. 5.

This procedure is the kernel of our approach. The inputsi . In a clockwise direction, Qi is the segment from si to sj

and Qj is the segment from sj to si . We select the first is X, C, and « where X is a shape contour, C is a cluster

FIG. 6. The reassignment procedure.
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record, and « is a predefined constant which is used to
prevent endless looping. The output includes a cluster re-
cord C 9 and a corresponding set of tokens T. Note that
the number of clusters in the output cluster record C 9 is
same as that of input cluster record C.

In many multiscale line approximation methods, the
computation must be taken across lower level approxima-
tions, and needs to pursue the redundant coarser scale
tokens [4, 14]. However, no efficient pruning technique
exists. To solve this problem, we employ a fuzzy concept
from Bezdek’s fuzzy c-elliptotypes (FCE) algorithm [3]
for the membership of a vector xk to a cluster ci. In our
procedure, every vector xk is assigned to one and only one
cluster, say ci. In this case, every vector supports three
tokens ti21, ti, and ti11 which correspond to ci21, ci, and ci11,
respectively. Each support has a weight which is called its
membership and denoted by u21

k , u0
k, and u11

k . Initially, let
u21

k be 0, u0
k be 1, and u11

k be 0 if the vector xk is in ci. The
value may be iteratively modified during the token-detec-
tion procedure.

FIG. 8. Fish: a 5 0.032, b 5 0.068, c 5 0.9, K 5 90.

Instead of an optimal result, the token-detection proce-
dure obtains a set of tokens with distortion smaller than
a predefined «. The total distortion d can be calculated by
the difference between these membership degrees. Three
new membership degrees u21(new)

k , u0(new)
k , and u11(new)

k are
calculated via Eqs. (10), (11), and (12), respectively. The
superscript (new) is used to distinguish the new degree
from the old degree. The function u(new)(xk, tj ) is defined
similarly to the function u(xk, tj ), but the values of
u(new)(xk, tj ) are derived from the new membership de-
grees. The total distortion d is defined by

d 5 ONc

i51
O

xk[ci

O
j5i21,i,i11

iu(new)(xk, tj ) 2 u(xk, tj )i. (18)

Reassignment. When the cluster record has been modi-
fied, the new corresponding set of tokens is then found.
As mentioned, every vector supports three tokens; when
the tokens are changed the membership degree of every

FIG. 7. Car: a 5 0, b 5 0.1, c 5 0.9, K 5 70. vector must be updated accordingly. This update may also
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mum, then xk is assigned to ci21 . Otherwise, the assignment
is not changed.

5. EXPERIMENTAL RESULTS

We have applied the approach to several images and
obtained sound results. Some are shown in Figs. 7, 8, and
9. In each figure we show a primary shape and its approxi-
mation with required similarity ratios of 0.1, 0.3, 0.4, 0.5,
0.7, and 0.9. We found that the desired degree of detailing
can be obtained with our simple approach. Using a parame-
ter based on multiple-degree method, we can only give the
parameter of the operator but it may not directly reflect
the desired degree of detailing. Instead of that, we use a
similarity ratio that represents both the desire similarity
stated by human viewers and the guiding parameter of
the procedure.

6. CONCLUDING REMARKS

In the concluding section, we list several frequently used
criteria for shape representation [5, 9, 11] and evaluate our
approach according to these criteria.

• Ability to derive general shape properties: Our graded
representation can be used to derive general shape proper-
ties. For example, we can decompose a shape into several
meaningful parts at different degrees of detailing based on
the tokens obtained by our approach. We have detailed
this decomposition method [13]. The properties of parts
such as center, orientation, weight, similarity ratio, protru-

FIG. 9. Plane: a 5 0.02, b 5 0.08, c 5 0.9, K 5 110. sion rate, and width contraction rate can be obtained with-
out much extra effort. In Fig. 10, we illustrate an example
of such decomposition. We can see that our result shows
the symmetric structure of the object, and several parts ofaffect the clustering. These operations are performed in

the procedure reassignment. The algorithm of the reassign- the object such as wings and tail rudders. Related informa-
tion is shown in Table 1.ment procedure is illustrated in Fig. 6.

A vector supports three neighboring tokens. In other • Transformation free: Normally, three kinds of trans-
formation are considered, rotation, shift, and scaling. Ourwords, a vector possesses three membership degrees for

these three tokens. Each vector supports only one main method is free from all three kinds. Our starting-vector
detection uses the relative positions of intersections of thetoken. Without loss of generality, we assume that the main

token a vector xk supports is ti. Also, we assume that skeleton with the input shape, therefore rotation of the
shape does not affect the result. Shift concerns are minimalthe corresponding cluster of token ti is ci. In the algorithm,

we use the subscript k to denote that the membership since coordinate offsets can easily be removed. Our similar-
ity ratio definition addresses the question of uniform scal-degree is of vector xk and token ti for convenience. The

superscript (new) is used to denote that the membership ing by rendering all attributes of the tokens, except their
spatial locations, independent of uniform scaling.degree is newly obtained. The superscript 0 is for the

main supporting token and 21 and 11 are for the neigh- • Uniqueness and invariance: Uniqueness demands that
two different objects have different representations. Ourboring tokens.

This reassignment algorithm is quite straightforward. A approach satisfies this criterion because the given similarity
ratio can be as large as one. In this case the representationvector is assigned to a cluster according to the membership

degrees with respect to its main supporting token and those is the same as input. However, in multidetailing cases,
uniqueness is not strongly maintained because at lowerwith respect to its two neighboring tokens. If u11(new)

k is at
maximum, then xk is assigned to ci11. If u21(new)

k is at maxi- similarity ratios, different but similar shapes have the same
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TABLE 1
Part Information of the Decomposed Shape in Fig. 10

representation. Actually, the uniqueness aspect we concen- difficult issue in computer vision. In our opinion, whether
trated most on was that of making certain shapes with an input is noise or a charactersitic should not be deter-
different characteristics have different representations, mined arbitrarily. Therefore, the problem of noise is re-
and based on our discussion of transformation free, we can solved in our approach by the similairty ratio which indexes
say that our approach also meets the invariance criterion. different degrees of abstraction.

• Stability: The token-detection procedure is a least- • Simplicity: In general, our graded representation is a
squared-error line fitting method whose stability, in com- set of approximations with different degrees of detailing.
puter vision, is considered under noise. Noise is the most The complexity of each approximation is different, for

example, a smaller similarity ratio requirement corre-
sponds to lower complexity, and a higher similarity ratio
to higher complexity. This means different visual tasks can
specify different values of the given similarity ratio.

• Ease of implementation: Our approach is conceptually
straightforward and simple. In traditional techniques, large
numbers of complex differential or integral operators are
employed. These mathematical operators will increase the
programming and debugging load. Instead of these differ-
ential or integral operators, our approach uses only simple
operators such as add and average.

• Efficiency: The required computational time and stor-
age capacity of our approach do not satisfy the efficiency
criterion at first glance. In our approach, an object is de-
scribed by a set of approximation representations. In gen-
eral, four or five approximation representations with differ-

FIG. 10. An example of shape decomposition. ent similarity ratios are derived for an object. Our approach
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T an approximation of a shape, i.e., a set of 14. R. Weiss and M. Boldt, Geometric grouping applied to straight

lines, in IEEE Conf. CVPR, 1986, pp. 489–495.tokens.
ti the token that corresponds to ci. 15. J.-S. Wu and J.-J. Leou, New polygonal approximation schemes for

object shape representation, Pattern Recognition 26(4), 1993,c̃ti
an attribute, center vector of token ti.

471–484.õti
an attribute, orientation of token ti.

s̃ti
an attribute, scale of token ti.

d̃ti
the distance square error of token ti.

s̃ti
the similarity ratio of token ti.

u(xk, ti) the membership degree function of a vector xk

with respect to token ti.
« a given distortion threshold in token-detection

procedure.
r1, r2 parameters used in calculating Y.
X the input shape, i.e., a set of vectors.
xk the kth vector in the set X.
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