
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 6, NO. 3, JUNE 1996 287

Finite State Vector Quantization with Multipath
Tree Search Strategy for ImageNideo Coding

Chen-Yi Lee, Member, IEEE, Shih-Chou Juan, and Yen-Juan Chao

Abstract-This paper presents a new vector quantization (VQ)
algorithm exploiting the features of tree-search as well as finite
state VQ’s for imagdvideo coding. In the tree-search VQ, mul-
tiple candidates are identified for ongoing search to optimally
determine an index of the minimum distortion. In addition, the
desired codebook has been reorganized hierarchically to meet
the concept of multipath search of neighboring trees so that
picture quality can be improved by 4 dB on the average. In the
finite state VQ, adaptation to the stqte codebooks is added to
enhance the hit ratio of the index produced by the tree-search
VQ. Thus, compressed bits can be further reduced. An identifier
code is then included to indicate to which output indexes belong.
Therefore, this modified algorithm not only reaches a higher
compression ratio, but also achieves better quality compared to
conventional finite-state and tree-search VQ’s. Finally, suitable
VLSI architectures for real-time performance are proposed here
1) to remove the bottleneck of iteration bound in finite-state VQ
and 2) to provide parallel computing structure for tree-search
VQ to meet computational requirements.

I. INTRODUCTION
ECTOR quantization or VQ is a technique for data V compression. The key concept inherent in this technique

is to replace an input vector by an index whose codevector
has the minimum distortion compared to other codevectors of
a designed codebook. To find such an index, several search
schemes have been proposed in the literature [l], such as full
search, tree-search, etc. In general, these schemes are evaluated
in terms of computation complexity, compression ratio, and
picture quality. Some minor modifications for storage space
reduction on these schemes can also be found in the litera-
ture. For example, in [2], [3], the authors exploit transforms
and then select key components for comparison. Thus both
computational complexity and storage space can be reduced.
However, the picture quality becomes degraded due to the
selection of fixed transform components. To provide a high-
quality picture service, a large codebook is often demanded.
However, the drawback lies in the low compression ratio
which can be defined by (W x N)/logz M , where M , N ,
and W stand for codebook size, input vector size, and input
word length, respectively. It can be found that the compression
ratio is very related to the codebook size M .

Manuscript received September 1, 1993; revised June 15, 1995. This paper
was recommended by Associate Editor P. Pirsch. This work was supported by
the Natlonal Science Council of Taiwan, R.O.C. under Grant NSC82-0404-
E009-113. Also, the MPC support from Chip Implementation Center (CIC)
of NSC for the prototype VQ chips is acknowledged.

The authors are with the Department of Electronics Engineering & Institute
of Electronics, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

Publisher Item Identifier S 1051-8215(96)04110-9.

One way to improve the compression ratio while maintain-
ing high picture quality is to exploit finite state machines for
state tracing. These finite state vector quantization or FSVQ
methods have been found to be an efficient technique for
image compression [4]-[6]. Fig. 1 shows the block diagram of
typical FSVQ’s. Both encoder and decoder of an FSVQ have
a finite state machine, which uses previously encoded vectors
to decide current state and then selects one corresponding state
codebook, which is a subset of master codebook, to quantize
input vector. Since the state codebook is smaller than the
master codebook, FSVQ can achieve both higher compression
ratio and lower computational complexity than the full search
VQ. And if the finite state machine can be designed well,
the quality of this coding method will be better than that
obtained by the full search VQ. For example, if the state
codebooks contain 16 codevectors and the master codebook
has 5 12 codevectors, then the computational complexity and
the bit rate of FSVQ are 1/32 and 419, respectively, of those
obtained by the full search VQ.

However, the state machine of FSVQ often does not produce
the correct current state. In other words, the selected state
codebook often does not contain the closest codevector and the
encoder can only find suboptimal codevectors to encode the
input vector. This causes larger distortion during the encoding
process and since the next state is selected according to the
previously decoded vector, the wrong selection of current state
will influence the selection of the following state. Therefore,
error becomes propagated and hence conventional FSVQ’ s
only get 1-2 dB better coding quality than that obtained
by the full search VQ at the same bit rate. In addition,
since the current state codebook highly relies on previously
decoded vectors, we cannot start to quantize the current input
vector and select the state codebook from the state machines
until the previous input vectors have been vector quantized.
This feedback structure or iterative bound of FSVQ makes
it difficult to develop real-time cost-effective hardwares for
practical applications.

To solve the aforementioned problems, we propose a mul-
tipath tree search FSVQ algorithm and its VLSI architecture.
In this novel approach, instead of waiting for the quantization
of previous vectors and then selecting current state codebook
to quantize input vector, we first use the tree search vector
quantization or TSVQ method to find the indexes, ITSVQ, of
the two closest codevectors from the codebook, and then check
whether the state codebook contains any of these two codevec-
tors. If yes, the index, Istate, corresponding to one of the two
closest codevectors in the state codebook will be transmitted,

1051-8215/96$05.00 0 1996 IEEE

288 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL 6, NO 3, JUNE 1996

Encoder Decoder

Inputvector X Closest
~ Codevector TsbkL~k-Up . w

searching Recowred
vector z

4

Statecodebook

Fig 1 Functional diagram of a typical FSVQ

otherwise an identifier ID together with the index ITSVQ of
the closest codevector in the master codebook will be sent out.
This method overcomes the problem that the state codebook, in
some cases, does not contain the proper codevector to represent
the input vector. In Section I1 we will describe this algorithm
in detail. Also, some simulation results are given to highlight
distinguished features of this algorithm. We then present a
VLSI architecture for the proposed algorithm in Section 111,
where module design and removing iteration bound will be
emphasized. Section IV outlines design issues of our approach
and gives some comparisons with current VQ approaches for
image and video coding.

11. THE MULTIPATH TREE SEARCH FSVQ ALGORITHM

The functional diagram of the proposed algorithm is shown
in Ftg. 2. It contains two VQ phases: one is the TSVQ,
and the other is the FSVQ. In the first phase of encoder
design, we first exploit a multipath tree search VQ to find the
nearly closest codevector. Since the computational complexity
of TSVQ is almost as low as that of FSVQ, the advantage
of lower computational complexity inherent in FSVQ is still
reserved in this proposed algorithm. In the second phase, we
then exploit a finite state machine to predict the possible index
produced by the TSVQ. That is, the state machine selects a
state codebook which may or may not contain the index ITSVQ
produced by the TSVQ. If the prediction is correct and the
selected codebook really contains the ITSVQ, the information
needed to be transmitted to the decoder is the position Istate
which specifies the position of I ;~SVQ in the selected state
codebook; otherwise an identifier code ID together with the
ITSVQ are transmitted to the decoder. This solves the problem
that sometimes the state codebook does not contain the proper
codevector to represent the input.

In the following, we will show how the TSVQ is designed
to achieve better quality of decoded images and how the finite
state machine is designed to reach lower bit rate.

A. Design of Multzpath TSVQ

The first part of the proposed VQ algorithm is a TSVQ,
which is exploited to find the nearly closest codevector to rep-
resent the input vector. The tree search VQ (TSVQ) or known
as tree-structure VQ [7] is an alternative to full search VQ. In

Statecodebook

principle, the TSVQ performs a sequence

words, In addition, the
of TSVQ nearly double

makes the TSVQ more attractive.

briefly present two kinds of TSVQ’s: balanced and unbalanced
TSVQ’s. Then we explain why one
for our TSVQ design.

I) Balanced TSVQ: Traditionally, TSV

the tree is designed and then fixed. Each
is then designed by splitting each codev

method results in an unbalanced tree bec
be at ahy depth. For a binary tree, the

is that there will be more codevectors av
distortion events which imply those trees
of the time. Another approach to design an
described in [9]. A balanced fixed rate TS
then optimally pruned back using the ge

depths, that results in a natural variable tree code. The coder is

289 LEE et al.: FINITE STATE VECTOR QUANTIZATION WITH MULTIPATH TREE SEARCH STRATEGY FOR IMAGENIDEO CODING

I I I
State codebook

Input
vector ~

d t i path tree search

Fig. 2. Functional

Channel
Table Look-y
from master
codebook

a *

1
-

(b)

diagram of the proposed FSVQ system: (a) encoder and (b) decoder.

called a pruned TSVQ (PTSVQ). The PTSVQ has the ability
to out-perform the balanced TSVQ by being able to devote
more bits to high distortion events.

Although the performance of unbalanced TSVQ is, in
general, better than the balanced TSVQ, the uncertain search-
ing depth makes it difficult for hardware implementation,
which also degrades the advantage of lower computational
complexity inherent in TSVQ. In addition, our experiment
results show that sometimes the performance of the unbalanced
TSVQ is not good enough, especially for images outside the
training sequences. The reason for this phenomenon is that
unbalanced TSVQ uses more codevectors to encode commonly
used clusters while training the codebook, and for the less
used clusters, fewer codevectors are used to represent them.
Therefore, for the outside training images, if most input vectors
belong to the less used clusters, the performance of this
encoder becomes very bad. Due to this consideration, the
balanced TSVQ is exploited here in the first phase to reach a
reasonable computational complexity and make the algorithm
more suitable for general images. Moreover, some strate-
gies are added to improve the performance of the balanced
TSVQ.

3) Strategy to Improve TSVQ: The TSVQ is a sequence of
binary search operations which can be described as follows.

1) First, identify a searching node as the root.
2) Calculate the distortion between input vector and two

children of the searching node. The new searching node
is the children which is closer to the input vector.

Recovepl
Vector X

3) If the new searching node is the leaf, the searching
process is over and this leaf is identified as the code-
vector to represent the input vector: otherwise, go to
step 2) for ongoing search.

Sometimes, the TSVQ cannot find the closest codevector
because the “father” of the closest codevector is not always
closer than the other nodes in the “ancestor” level. This
phenomenon becomes more serious when the tree size is
larger and the codevectors become closer to each other. Then
the “ancestors” of the closest codevector are not selected
as the new search node, because sometimes the brothers of
these “ancestors” are closer to the input vector. If one of the
“ancestors” is not selected, the obtained codevector will never
be the closest one and then cause large distortion. This is why
the performance of TSVQ is always lower than full search VQ.

To reduce the effect of this problem, we use the following
strategies.

Multi-Path TSVQ: Chang et al. [111 have proposed a mul-
tipath TSVQ to improve the performance of TSVQ. Instead
of finding one nearest node from two searching nodes, the
multipath TSVQ finds two nearest nodes from the four search-
ing nodes. The next four search nodes are the children of the
two found nearest nodes. The computation of the multipath
TSVQ is the double of that of conventional TSVQ’s. The
reason that multipath TSVQ searches more nodes than the
TSVQ is because sometimes the “ancestor” of the closest
codevector is not closer than other search nodes, then the tree
search will cause some errors. Therefore, the multipath TSVQ

schemes

I TSVQ 1 25.837 I 26.732 I 24.732 I 25.428 I

test images (SNR)

lena pepper girl jet

1 multi-path TSVQ l l l l l 29.09 29.619 31.97 29.505
full-search VQ 29.718 30.296 32.79 30.616

TABLE I1
THE EXPERIMENT RESULTS OF SEARCHING THE

NEIGHBORS OF THE CLOSEST CODEVECTOR

N1-search VQ 29.718 30.296 30.616

multi-path TSVQ with 4 neigh. I 29.232 I 29.706 I 31.611 I 29.776 I

schemes

multi-path TSVQ with 8 neigh.

~

test images (SNB)

lena pepper girl jet

29.311 29.844 31.82 29.929

searches more nodes to reduce the effect. Table I shows the
improvement of the multipath TSVQ. This experiment uses a
codebook of 256 codevectors and four test images.

Neighbors Searching: After obtsuning the nearly closest
codevector by the multipath TSVQ, we can search the neigh-
bors of the obtained codevector. Since the codevector is very
close to the input vector, the closest codevector must be very
close to the obtained codevector. In other words, the closest
code word may be in the neighbors of the obtained codevector.
This method is done by the following steps.

1) Find the n neighbors of each code word, the neighbors
of each codevector is listed in a table.

2) For each input vector, use multipath TSVQ to find the
nearly closest codevector.

3) Then search the neighbors of the obtained codevector;
if any neighbor is closer to the input vector, the final
obtained codevector is the closest one.

Table I1 shows the results of applying this method’ which
achieves 0.2-0.3 dB higher compared to those without search-
ing the neighbors.

Codebook Design: The codebook of traditional balanced
TSVQ is designed with the splitting method of the GLA [7].
But the codebook generated by this method cannot ensure
that the “ancestor” of the closest codevector will be closer to
the input vector than its “brothers.” To achieve better coding
quality, the codebook used in the TSVQ has to be modified.
In this paper, we propose the following scheme to construct
the tree structure codebook.

1) Use the LBG algorithm [12] to produce the codebook
until the codebook size reaches the desired figure M .
These M codevectors are the leaves of the tree.

2) For the obtained N-size codebook, we first identify
the pairs whose leaves are closest to each other. This
location process begins at looking for the furthest pair
(i.e., pair distance is the longest). The codevectors in

multi-path TSVQ without neigh.

TABLE III

29.09 29.619 31.57 29.505

THE IMPROVEMENT OF MULTIPATH TSVQ WITH
THE “AVERAGE TREE CONSTRUCTION” METHOD

schemes test images (SNR)

TSVQ with LGB codebook I 29.09 I 29.619 I 29.505 1

290 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL 6, NO 3, JUNE 1996

,

compared to codebook generated by LGB. Tliis improvement
results from the fact that the father is the “denter” of the two
children, therefore the “ancestor” of the closest code word
will be closer to the input vector than the conventional TSVQ
whose codebook is generated the GLA.

B. The Second Phase-Finite State Machine

The second part of the proposed algorithm is a state machine

may contain the newly generated

complexity. If the selected state c

is the same as that of the encoder,
Istate to recover the corresponding ITSV
images from the closest codevectors.
the state codebook is smaller than th

ITWQ are needed for
state codebook does not c
ITSVQ, an identifier code
be transmitted to the decoder.

recently used index on the top of state CO

in an adaptive version of multipath tree
algorithm whose output is a variable rate.

LEE et al. : FINITE STATE VECTOR QUANTIZATION WITH MULTIPATH TREE SEARCH STRATEGY FOR IMAGENIDEO CODING 29 1

is designed well, and selected state codebooks usually hit the
I T s ~ ~ , then the average bit rate becomes lower than that
obtained from FSVQ without adaptation.

C. Experiment Results
We have used this scheme to implement the side match VQ

(SMVQ) [5] , which is one of the FSVQ’s, to observe the cod-
ing quality. Simulation results are obtained from two different
approaches: one is the multipath tree search FSVQ or called
the modified SMVQ, and the other is the adaptive version
which is called the adaptive modified SMVQ. The adaptive
modified SMVQ adaptively updates the state codebook by
exploiting the least recently used (LRU) strategy. This LRU
is implemented by placing the most recently used element
on the top of selected state codebooks. Here, the codebook
of the TSVQ is generated by the “average tree construction”
technique mentioned earlier, where a four-path TSVQ is used.
We have changed both sizes of the codebook of the TSVQ
and the state codebook of the state machine. The larger the
codebook size of TSVQ is, the higher will be the signal-to-
noise ratio (SNR) coding results obtained. For a given TSVQ
codebook size, there is an optimal state codebook size to reach
a minimum bit rate. The more complex the encoded image
is, the larger the optimal state codebook size is. Fig. 3 shows
the comparison of the SNF versus bit-rate of this proposed
algorithm with that obtained from the original SMVQ. Note
that each point is derived at an optimal state codebook size for
different TSVQ codebook sizes. Simulation results show that
the modified SMVQ implemented by our proposed approach
does achieve higher SNR than that obtained from the original
SMVQ. The reason why this modified SMVQ improves the
coding quality is because our proposed algorithm eliminates
the disadvantage that the nearest codevector is not in the
state codebook as found in conventional FSVQ’s. And the
reason the adaptive modified SMVQ out-perfoms the others
is because the state codebook of the adaptive modified SMVQ
can trace the local statistics of input imagehide0 sequences
so that the prediction of the I T ~ V Q is more accurate and the
average output bit rate becomes lower.

Fig. 4 shows the results of our algorithm for two test images.
Output bit-rates for “Lena” and “Pepper” are 0.321 and 0.305
b/pixel, respectively. Picture quality obtained from this method
is very close to that from full-search VQ, as shown in Table 111.
However, the output bit-rate becomes less than 65% of that
from full-search VQ.

111. VLSI DESIGN FOR REAL-TIME PERFORMANCE

It can be seen from the algorithm description that the
recursive part is only in the finite state machine. Therefore, to
speed up coding performance, we have to break this bottleneck
in order to meet real-time requirements. In this section, we first
deal with a pipeline structure for implementing the TSVQ. We
then show a parallel structure for removing the iteration bound
of the FSVQ. Thus, the complete architecture, which is also
named “multipath tree-search based architecture” here [131,
can be pipelined to implement the proposed algorithm.

average PSNR

0 0.00.10.1 0.20.2 0.30.3 0.40.4
5 5 5 5 5

BIT RATE

+ Adaptive M o d i SMVQ

+ M o d i S M V Q

A OriginalSMVQ

Fig. 3. SNR versus different bit rates. Simulation results on Claire sequence
are obtained, respectively from original SMVQ and our modified SMVQ
implemented by the proposed architecture. The adaptive one modifies state
codebook by using LRU strategy. The master codebook is generated by using
LBG algorithm from the luminance of four JPEG test images: “balloons,”
“Barbara,” “boats,” and “chairlady.”

@)

Fig. 4. Simulation results for two test images-Lena and Pepper-(a) shows
the original images and @) shows the decoded images with output bit-rates
at 0.321 and 0.305 b/pixel, respectively.

A. Architecture for the TSVQ

The required operations in different levels of the tree
structure are very related because only when the upper level is
determined can the next level be performed. However, there is
no feedback loop between two adjacent levels. Therefore, each
level can be performed independently if its upper is already
determined. Thus, the structure of tree search VQ is inherently
pipelined. An overall hardware organization of the encoder is
shown in Fig. 5. The TSVQ contains several stages, each of
which has different sizes of codebook depending on its depth
in the complete tree structure. The indexes of the two nearest
codevectors are transmitted to the address generator which

292

State Codeboo

Address Generator and Master Codebook

Fig 5 Block diagram of the encoder

Fig. 7.
can be reahzed on PLA and RAM, respectively.

Overall hardware organization of the FSVQ’ t SFU and LRU

Fig. 6. Block diagram of the first three stages for address generator and
master codebook

function, For other FSVQ’S, we Only
state function of state machine and the

produces the address ‘for the codevectors needed at the next
level. Fig. 6 shows the architecture of the first three stages
of the address generator. Each stage of the address generator
uses the indexes produced by the previous stage of TSVQ to
determine the searching node of current stage. The two indexes
produced by the last stage of the TSVQ are the indexes of the
two identified nearly closest codevector IT~VQ’S which will
be passed to the FSVQ.

From this architecture description, it can be found that only
(0-2) levels are needed for tree searching, where D is tree
depth. This is because four nodes are required simultaneously
at each level, implying the first two stages, i.e., Do and D1,
are never used. The TSVQ architecture mainly consists of two
parts, one is the storage and address generation for codevectors
and the other is the distortion estimation and index selection.
It is clear that for tree depth of D , [z (~+ ‘) - 41 codevectors are
needed to be stored. Also the addresses for four different code-
vectors have to be provided by the address generators whose
part of the MSB’s are determined by its previous stage. As for
the distortion estimation and index selection, it can be easily
realized on a few adders, registers, and multiplexers [13].

B. Architecture for the FSVQ

From the algorithm description, we know that the only
calculation in the finite state machine is to check whether

function, and an Isu for selection of ind

index &ate accompanied by an ID 1s sent

C. WS’I Imphaentation
A prototype VLSI chip (as show

algorithm has been fabricated and

1024 pixels be handled by
to allow the use of different code

Algorithm: multipath tree-search (seve

Throughput: 1 pixel per cycle;
gorithm;

LEE et al.: FINITE STATE VECTOR QUANTIZATION WITH MULTIPATH TREE SEARCH STRATEGY FOR IMAGENIDEO CODING

-

293

address to
state codebook

Fig. 8. Block diagram of index matching and selection units.

Maximum clock rate: 35 MHz;
Transistor-count: 420K;
Internal memory size: 40 Kb (22.8 mm2);
Die size: 95 mm2;
Power consumption: 0.95 W at (33 MHz, 5 V);
Process: TSMC 0.8 pm CMOS SPDM process;
Package: 84-pin CLCC;
Design style: full-custom + cell-based approach.

Iv . EVALUATION AND DISCUSSIONS

Compared to other FSVQ algorithms [5] , [6], our approach
offers higher picture quality at the same bit-rate. In the
meantime, the iteration bound is now removed in our algorithm
because only one input data has to be compared instead
of an input vector. Although the multipath TSVQ is added
and, hence, computational requirements become higher, we
can exploit the pipelining inherent in the TSVQ to improve
speed. Unlike other available VQ solutions [1414 171 which
are dedicated to tree-search or full-search algorithms, our
approach does reach a more optimal solution in terms of
picture quality, bit-rate, and hardware complexity.

From both algorithm and architecture descriptions, we know
that pipelining can be applied to this new algorithm where
computational complexity can be reduced and compression
ratio can be enhanced. Below, we highlight some practical
design issues for real-life applications.

1) The required memory space can be estimated by (2M-
4)NW + 1024 W, where the first term is for TSVQ and
the second term is for FSVQ.

2) Input sample rates for TSVQ and FSVQ are different.
Since the TSVQ deals with block image data while the
FSVQ deals with index data, data rate of the latter is only
1/N of the former. Thus, the TSVQ is more computation
intensive.

3) Parallel computation or shared hardware data-path can
be considered by trading off area and performance at
the multipath TSVQ. For example, if only one 8-b data
bus is available, at least 4 N cycles are needed for each
stage. On the other hand, if the bus number increases,
parallel datapaths are needed and, hence, cycle-count
can be reduced.

(b)

Fig. 9.
microphoto of the chip.

(a) Shows floor plan of the VQ encoder chip, and (b) shows

V. CONCLUSION

In this paper, we have proposed a new VQ algorithm and a-
chitecture which combines the advantages of both tree-search
and finite-state VQ’s. This so-called multipath tree-search
FSVQ architecture does solve the problem that sometimes the
selected state codevector does not contain the better codevector
to represent the input vector. Simulation results have shown
that good picture quality can be achieved at lower output

294 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL 6, NO 3, JUNE 1996

bit-rate. Moreover, we have also presented a VLSI solution
for the proposed algorithm, where tested results show that 30
imagehideo frames per second (1024 x 1024 pixels) can be
handled‘ at 33 MHz.

In summary, this fully pipelinable multipath wee-search
based architecture not only suits the implemention of various
FSVQ’s for real-time imagehide0 coding, but also achieves
higher SNR than conventional FSVQ’s in terms of bit-rate
and picture quality.

ACKNOWLEDGMENT
The authors would like to thank their colleagues within

the SI2 group of NCTU for many discussions-and fruitful
suggestions.

REFERENCES

[I] R M Gray and A Gersho, Vector Quantization and Signal Processing.
Norwell, MA Kluwer, 1991

[2] C Y Lee and S C Juan, “An ASIC architectwe for real-time im-
ageivideo coding based on fixed-basis &stomon vector quantization,”
in Proc ISCAS’92, San Diego, CA, May 10-13, 1992.

[3] -, “VLSI implementation of a modified-VQ encoder suitable for
imageivideo applications,” in Proc EURSIPC0’92, Brussels, Belgium,

[4] J Foster, R M. Gray, and M. 0. Dunham, “Finite state vector quanid-
zation for waveform coding,” IEEE Trans. Info. Theory, vol IT-31, pp.
348-355, May 1985

[5] T G m , “Side match and overlap match vector quantizers for image,”
IEEE Trans Image Processing, vol 1, no 2, Apr 1992

[6] W T Chen, R F Chang, and J. S Wang, “Image sequence coding
using adaptive finite-state vector quantizahon,” IEEE Trans Czrcuzts
Syst Video Technol, vol 2, no 1, Mar 1992

[7] A. Buzo, A H Gray, J r , R M Gray, and J Markel, “Speed coding
based upon vector quantization,” IEEE Tran Acoust , Speech, Signal

ASSP-28, pp 562-574, Oct. 1980.
Roucos, and H. Gish, ‘‘Vector quantization in speech
Trans Commun, vol COM-36, no. 8, pp. 957-971,

Aug 1988.
[9] P A Chou, T Lookabaugh, and R M Gray, “Ophmal pmmng with

applications to tree-structured source coding and modehng,” IEEE
Trans Inform Theory, vol 35, no 2, pp 299-315, Mar 1989

[lo] L Breiman, .I H Friedman, R. A Olshen, and C. J Stone, Classlficatzon
and Regression Trees Belmont, CA. Wadsworth, 1984.

[I l l F Chang, W T Chen, and J S Wang, “Image sequence coding using
adaptive tree-stmcture vector quantlzation with multipath searching,”
in IEEE Int Conf Acoust , Speech, and Signal Processzng, 1991, pp.
2281-2284

[12] Y Y Linde, A Buzo, and R M. Gray, “An algonthm for vector
quantizer design,” IEEE Trans Commun, vol COM-28, no 1, pp.
84-95, 1980

[13] Y J Chao and C Y Lee, “A new multipath tree-search FSVQ
architecture for imageivideo sequence coding,” in Proc ISCAS’95,
Seattle, WA, Apr 29-May 3, 1995, pp 1628-1631

[14] G A Davidson, P R. Cappello, and A Gersho, “Systolic archtectures
for vector quantization,” IEEE Trans Acoust., Speech, Signal Process-
m g , vol 36, pp 1651-1664, Oct 1988

Aug 26-28, 1992

\

I

[15] P. A. Ramamoo~thy, B Potu, and T Tran,
mentation of vector quantlzer for real-time i
Czrcuits Systems, vol. 36, pp. ’1281-1290, 0

[16] H. Park and V. K. Prasanna, “Modular VLSI
full-search-based vector quantization,” IEEE
TechnoL, vol. 3, pp. 309-317, Aug. 1993

[17] W. C. Fang, C Y Chang, B J Sheu, 0
Curlander, “VLSI systolic binary tree-searc
image compression,” IEEE Trans VLSI Syst ,
Mar. 1994.

Chen-Yi Lee (S’89-M’90) received the B.S. from
National Chao Tung University, Taiwan, in 1982,
the M S and Ph D degrees from the Katholieke
Umversity Leuven (KUL), Belgium, ’in 1986 and
1990, respectively, all in electrical engineering

From 1986 to 1990, h
worhng in the area of
DSP Since February 1
sociate Professor in the
Engineenng at the Nation
Hsinchu. Tawan His r

clude videohmage coding, high-speed networhng
system-level synthesis.

Shin-Chou Juan received the B S and M S de
grees from the Department of Electronics Engi-
neering from the National
(NCTU), Hsinchu, Taw

HIS research interests i

cuits.

March 18, 1971, and mo

high speed architecture

,

