
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 6, NO. 3, JUNE 1996 287 

Finite State Vector Quantization with Multipath 
Tree Search Strategy for ImageNideo Coding 

Chen-Yi Lee, Member, IEEE, Shih-Chou Juan, and Yen-Juan Chao 

Abstract-This paper presents a new vector quantization (VQ) 
algorithm exploiting the features of tree-search as well as finite 
state VQ’s for imagdvideo coding. In the tree-search VQ, mul- 
tiple candidates are identified for ongoing search to optimally 
determine an index of the minimum distortion. In addition, the 
desired codebook has been reorganized hierarchically to meet 
the concept of multipath search of neighboring trees so that 
picture quality can be improved by 4 dB on the average. In the 
finite state VQ, adaptation to the stqte codebooks is added to 
enhance the hit ratio of the index produced by the tree-search 
VQ. Thus, compressed bits can be further reduced. An identifier 
code is then included to indicate to which output indexes belong. 
Therefore, this modified algorithm not only reaches a higher 
compression ratio, but also achieves better quality compared to 
conventional finite-state and tree-search VQ’s. Finally, suitable 
VLSI architectures for real-time performance are proposed here 
1) to remove the bottleneck of iteration bound in finite-state VQ 
and 2) to provide parallel computing structure for tree-search 
VQ to meet computational requirements. 

I. INTRODUCTION 
ECTOR quantization or VQ is a technique for data V compression. The key concept inherent in this technique 

is to replace an input vector by an index whose codevector 
has the minimum distortion compared to other codevectors of 
a designed codebook. To find such an index, several search 
schemes have been proposed in the literature [l], such as full 
search, tree-search, etc. In general, these schemes are evaluated 
in terms of computation complexity, compression ratio, and 
picture quality. Some minor modifications for storage space 
reduction on these schemes can also be found in the litera- 
ture. For example, in [2], [3], the authors exploit transforms 
and then select key components for comparison. Thus both 
computational complexity and storage space can be reduced. 
However, the picture quality becomes degraded due to the 
selection of fixed transform components. To provide a high- 
quality picture service, a large codebook is often demanded. 
However, the drawback lies in the low compression ratio 
which can be defined by (W x N)/logz M ,  where M ,  N ,  
and W stand for codebook size, input vector size, and input 
word length, respectively. It can be found that the compression 
ratio is very related to the codebook size M .  
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One way to improve the compression ratio while maintain- 
ing high picture quality is to exploit finite state machines for 
state tracing. These finite state vector quantization or FSVQ 
methods have been found to be an efficient technique for 
image compression [4]-[6]. Fig. 1 shows the block diagram of 
typical FSVQ’s. Both encoder and decoder of an FSVQ have 
a finite state machine, which uses previously encoded vectors 
to decide current state and then selects one corresponding state 
codebook, which is a subset of master codebook, to quantize 
input vector. Since the state codebook is smaller than the 
master codebook, FSVQ can achieve both higher compression 
ratio and lower computational complexity than the full search 
VQ. And if the finite state machine can be designed well, 
the quality of this coding method will be better than that 
obtained by the full search VQ. For example, if the state 
codebooks contain 16 codevectors and the master codebook 
has 5 12 codevectors, then the computational complexity and 
the bit rate of FSVQ are 1/32 and 419, respectively, of those 
obtained by the full search VQ. 

However, the state machine of FSVQ often does not produce 
the correct current state. In other words, the selected state 
codebook often does not contain the closest codevector and the 
encoder can only find suboptimal codevectors to encode the 
input vector. This causes larger distortion during the encoding 
process and since the next state is selected according to the 
previously decoded vector, the wrong selection of current state 
will influence the selection of the following state. Therefore, 
error becomes propagated and hence conventional FSVQ’ s 
only get 1-2 dB better coding quality than that obtained 
by the full search VQ at the same bit rate. In addition, 
since the current state codebook highly relies on previously 
decoded vectors, we cannot start to quantize the current input 
vector and select the state codebook from the state machines 
until the previous input vectors have been vector quantized. 
This feedback structure or iterative bound of FSVQ makes 
it difficult to develop real-time cost-effective hardwares for 
practical applications. 

To solve the aforementioned problems, we propose a mul- 
tipath tree search FSVQ algorithm and its VLSI architecture. 
In this novel approach, instead of waiting for the quantization 
of previous vectors and then selecting current state codebook 
to quantize input vector, we first use the tree search vector 
quantization or TSVQ method to find the indexes, ITSVQ, of 
the two closest codevectors from the codebook, and then check 
whether the state codebook contains any of these two codevec- 
tors. If yes, the index, Istate, corresponding to one of the two 
closest codevectors in the state codebook will be transmitted, 
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Fig 1 Functional diagram of a typical FSVQ 

otherwise an identifier ID together with the index ITSVQ of 
the closest codevector in the master codebook will be sent out. 
This method overcomes the problem that the state codebook, in 
some cases, does not contain the proper codevector to represent 
the input vector. In Section I1 we will describe this algorithm 
in detail. Also, some simulation results are given to highlight 
distinguished features of this algorithm. We then present a 
VLSI architecture for the proposed algorithm in Section 111, 
where module design and removing iteration bound will be 
emphasized. Section IV outlines design issues of our approach 
and gives some comparisons with current VQ approaches for 
image and video coding. 

11. THE MULTIPATH TREE SEARCH FSVQ ALGORITHM 

The functional diagram of the proposed algorithm is shown 
in Ftg. 2. It contains two VQ phases: one is the TSVQ, 
and the other is the FSVQ. In the first phase of encoder 
design, we first exploit a multipath tree search VQ to find the 
nearly closest codevector. Since the computational complexity 
of TSVQ is almost as low as that of FSVQ, the advantage 
of lower computational complexity inherent in FSVQ is still 
reserved in this proposed algorithm. In the second phase, we 
then exploit a finite state machine to predict the possible index 
produced by the TSVQ. That is, the state machine selects a 
state codebook which may or may not contain the index ITSVQ 
produced by the TSVQ. If the prediction is correct and the 
selected codebook really contains the ITSVQ, the information 
needed to be transmitted to the decoder is the position Istate 
which specifies the position of I ;~SVQ in the selected state 
codebook; otherwise an identifier code ID together with the 
ITSVQ are transmitted to the decoder. This solves the problem 
that sometimes the state codebook does not contain the proper 
codevector to represent the input. 

In the following, we will show how the TSVQ is designed 
to achieve better quality of decoded images and how the finite 
state machine is designed to reach lower bit rate. 

A. Design of Multzpath TSVQ 

The first part of the proposed VQ algorithm is a TSVQ, 
which is exploited to find the nearly closest codevector to rep- 
resent the input vector. The tree search VQ (TSVQ) or known 
as tree-structure VQ [7] is an alternative to full search VQ. In 

Statecodebook 

principle, the TSVQ performs a sequence 

words, In addition, the 
of TSVQ nearly double 

makes the TSVQ more attractive. 

briefly present two kinds of TSVQ’s: balanced and unbalanced 
TSVQ’s. Then we explain why one 
for our TSVQ design. 

I )  Balanced TSVQ: Traditionally, TSV 

the tree is designed and then fixed. Each 
is then designed by splitting each codev 

method results in an unbalanced tree bec 
be at ahy depth. For a binary tree, the 

is that there will be more codevectors av 
distortion events which imply those trees 
of the time. Another approach to design an 
described in [9]. A balanced fixed rate TS 
then optimally pruned back using the ge 

depths, that results in a natural variable tree code. The coder is 
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diagram of the proposed FSVQ system: (a) encoder and (b) decoder. 

called a pruned TSVQ (PTSVQ). The PTSVQ has the ability 
to out-perform the balanced TSVQ by being able to devote 
more bits to high distortion events. 

Although the performance of unbalanced TSVQ is, in 
general, better than the balanced TSVQ, the uncertain search- 
ing depth makes it difficult for hardware implementation, 
which also degrades the advantage of lower computational 
complexity inherent in TSVQ. In addition, our experiment 
results show that sometimes the performance of the unbalanced 
TSVQ is not good enough, especially for images outside the 
training sequences. The reason for this phenomenon is that 
unbalanced TSVQ uses more codevectors to encode commonly 
used clusters while training the codebook, and for the less 
used clusters, fewer codevectors are used to represent them. 
Therefore, for the outside training images, if most input vectors 
belong to the less used clusters, the performance of this 
encoder becomes very bad. Due to this consideration, the 
balanced TSVQ is exploited here in the first phase to reach a 
reasonable computational complexity and make the algorithm 
more suitable for general images. Moreover, some strate- 
gies are added to improve the performance of the balanced 
TSVQ. 

3)  Strategy to Improve TSVQ: The TSVQ is a sequence of 
binary search operations which can be described as follows. 

1) First, identify a searching node as the root. 
2) Calculate the distortion between input vector and two 

children of the searching node. The new searching node 
is the children which is closer to the input vector. 

Recovepl 
Vector X 

3) If the new searching node is the leaf, the searching 
process is over and this leaf is identified as the code- 
vector to represent the input vector: otherwise, go to 
step 2) for ongoing search. 

Sometimes, the TSVQ cannot find the closest codevector 
because the “father” of the closest codevector is not always 
closer than the other nodes in the “ancestor” level. This 
phenomenon becomes more serious when the tree size is 
larger and the codevectors become closer to each other. Then 
the “ancestors” of the closest codevector are not selected 
as the new search node, because sometimes the brothers of 
these “ancestors” are closer to the input vector. If one of the 
“ancestors” is not selected, the obtained codevector will never 
be the closest one and then cause large distortion. This is why 
the performance of TSVQ is always lower than full search VQ. 

To reduce the effect of this problem, we use the following 
strategies. 

Multi-Path TSVQ: Chang et al. [ 111 have proposed a mul- 
tipath TSVQ to improve the performance of TSVQ. Instead 
of finding one nearest node from two searching nodes, the 
multipath TSVQ finds two nearest nodes from the four search- 
ing nodes. The next four search nodes are the children of the 
two found nearest nodes. The computation of the multipath 
TSVQ is the double of that of conventional TSVQ’s. The 
reason that multipath TSVQ searches more nodes than the 
TSVQ is because sometimes the “ancestor” of the closest 
codevector is not closer than other search nodes, then the tree 
search will cause some errors. Therefore, the multipath TSVQ 
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I TSVQ 1 25.837 I 26.732 I 24.732 I 25.428 I 

test images (SNR) 

lena pepper girl jet 

1 multi-path TSVQ l l l l l  29.09 29.619 31.97 29.505 
full-search VQ 29.718 30.296 32.79 30.616 

TABLE I1 
THE EXPERIMENT RESULTS OF SEARCHING THE 

NEIGHBORS OF THE CLOSEST CODEVECTOR 

N1-search VQ 29.718 30.296 30.616 

multi-path TSVQ with 4 neigh. I 29.232 I 29.706 I 31.611 I 29.776 I 

schemes 

multi-path TSVQ with 8 neigh. 

~ 

test images (SNB) 

lena pepper girl jet 

29.311 29.844 31.82 29.929 

searches more nodes to reduce the effect. Table I shows the 
improvement of the multipath TSVQ. This experiment uses a 
codebook of 256 codevectors and four test images. 

Neighbors Searching: After obtsuning the nearly closest 
codevector by the multipath TSVQ, we can search the neigh- 
bors of the obtained codevector. Since the codevector is very 
close to the input vector, the closest codevector must be very 
close to the obtained codevector. In other words, the closest 
code word may be in the neighbors of the obtained codevector. 
This method is done by the following steps. 

1) Find the n neighbors of each code word, the neighbors 
of each codevector is listed in a table. 

2) For each input vector, use multipath TSVQ to find the 
nearly closest codevector. 

3) Then search the neighbors of the obtained codevector; 
if any neighbor is closer to the input vector, the final 
obtained codevector is the closest one. 

Table I1 shows the results of applying this method’ which 
achieves 0.2-0.3 dB higher compared to those without search- 
ing the neighbors. 

Codebook Design: The codebook of traditional balanced 
TSVQ is designed with the splitting method of the GLA [7]. 
But the codebook generated by this method cannot ensure 
that the “ancestor” of the closest codevector will be closer to 
the input vector than its “brothers.” To achieve better coding 
quality, the codebook used in the TSVQ has to be modified. 
In this paper, we propose the following scheme to construct 
the tree structure codebook. 

1) Use the LBG algorithm [12] to produce the codebook 
until the codebook size reaches the desired figure M .  
These M codevectors are the leaves of the tree. 

2) For the obtained N-size codebook, we first identify 
the pairs whose leaves are closest to each other. This 
location process begins at looking for the furthest pair 
(i.e., pair distance is the longest). The codevectors in 

multi-path TSVQ without neigh. 

TABLE III 

29.09 29.619 31.57 29.505 

THE IMPROVEMENT OF MULTIPATH TSVQ WITH 
THE “AVERAGE TREE CONSTRUCTION” METHOD 

schemes test images (SNR) 

TSVQ with LGB codebook I 29.09 I 29.619 I 29.505 1 
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compared to codebook generated by LGB. Tliis improvement 
results from the fact that the father is the “denter” of the two 
children, therefore the “ancestor” of the closest code word 
will be closer to the input vector than the conventional TSVQ 
whose codebook is generated the GLA. 

B. The Second Phase-Finite State Machine 

The second part of the proposed algorithm is a state machine 

may contain the newly generated 

complexity. If the selected state c 

is the same as that of the encoder, 
Istate to recover the corresponding ITSV 
images from the closest codevectors. 
the state codebook is smaller than th 

ITWQ are needed for 
state codebook does not c 
ITSVQ, an identifier code 
be transmitted to the decoder. 

recently used index on the top of state CO 

in an adaptive version of multipath tree 
algorithm whose output is a variable rate. 
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is designed well, and selected state codebooks usually hit the 
I T s ~ ~ ,  then the average bit rate becomes lower than that 
obtained from FSVQ without adaptation. 

C. Experiment Results 
We have used this scheme to implement the side match VQ 

(SMVQ) [5 ] ,  which is one of the FSVQ’s, to observe the cod- 
ing quality. Simulation results are obtained from two different 
approaches: one is the multipath tree search FSVQ or called 
the modified SMVQ, and the other is the adaptive version 
which is called the adaptive modified SMVQ. The adaptive 
modified SMVQ adaptively updates the state codebook by 
exploiting the least recently used (LRU) strategy. This LRU 
is implemented by placing the most recently used element 
on the top of selected state codebooks. Here, the codebook 
of the TSVQ is generated by the “average tree construction” 
technique mentioned earlier, where a four-path TSVQ is used. 
We have changed both sizes of the codebook of the TSVQ 
and the state codebook of the state machine. The larger the 
codebook size of TSVQ is, the higher will be the signal-to- 
noise ratio (SNR) coding results obtained. For a given TSVQ 
codebook size, there is an optimal state codebook size to reach 
a minimum bit rate. The more complex the encoded image 
is, the larger the optimal state codebook size is. Fig. 3 shows 
the comparison of the SNF versus bit-rate of this proposed 
algorithm with that obtained from the original SMVQ. Note 
that each point is derived at an optimal state codebook size for 
different TSVQ codebook sizes. Simulation results show that 
the modified SMVQ implemented by our proposed approach 
does achieve higher SNR than that obtained from the original 
SMVQ. The reason why this modified SMVQ improves the 
coding quality is because our proposed algorithm eliminates 
the disadvantage that the nearest codevector is not in the 
state codebook as found in conventional FSVQ’s. And the 
reason the adaptive modified SMVQ out-perfoms the others 
is because the state codebook of the adaptive modified SMVQ 
can trace the local statistics of input imagehide0 sequences 
so that the prediction of the I T ~ V Q  is more accurate and the 
average output bit rate becomes lower. 

Fig. 4 shows the results of our algorithm for two test images. 
Output bit-rates for “Lena” and “Pepper” are 0.321 and 0.305 
b/pixel, respectively. Picture quality obtained from this method 
is very close to that from full-search VQ, as shown in Table 111. 
However, the output bit-rate becomes less than 65% of that 
from full-search VQ. 

111. VLSI DESIGN FOR REAL-TIME PERFORMANCE 

It can be seen from the algorithm description that the 
recursive part is only in the finite state machine. Therefore, to 
speed up coding performance, we have to break this bottleneck 
in order to meet real-time requirements. In this section, we first 
deal with a pipeline structure for implementing the TSVQ. We 
then show a parallel structure for removing the iteration bound 
of the FSVQ. Thus, the complete architecture, which is also 
named “multipath tree-search based architecture” here [ 131, 
can be pipelined to implement the proposed algorithm. 

average PSNR 

0 0.00.10.1 0.20.2 0.30.3 0.40.4 
5 5 5 5 5  

BIT RATE 

+ Adaptive M o d i  SMVQ 

+ M o d i S M V Q  

A OriginalSMVQ 

Fig. 3. SNR versus different bit rates. Simulation results on Claire sequence 
are obtained, respectively from original SMVQ and our modified SMVQ 
implemented by the proposed architecture. The adaptive one modifies state 
codebook by using LRU strategy. The master codebook is generated by using 
LBG algorithm from the luminance of four JPEG test images: “balloons,” 
“Barbara,” “boats,” and “chairlady.” 

@) 

Fig. 4. Simulation results for two test images-Lena and Pepper-(a) shows 
the original images and @) shows the decoded images with output bit-rates 
at 0.321 and 0.305 b/pixel, respectively. 

A. Architecture for the TSVQ 

The required operations in different levels of the tree 
structure are very related because only when the upper level is 
determined can the next level be performed. However, there is 
no feedback loop between two adjacent levels. Therefore, each 
level can be performed independently if its upper is already 
determined. Thus, the structure of tree search VQ is inherently 
pipelined. An overall hardware organization of the encoder is 
shown in Fig. 5. The TSVQ contains several stages, each of 
which has different sizes of codebook depending on its depth 
in the complete tree structure. The indexes of the two nearest 
codevectors are transmitted to the address generator which 
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Fig. 6.  Block diagram of the first three stages for address generator and 
master codebook 

function, For other FSVQ’S, we Only 
state function of state machine and the 

produces the address ‘for the codevectors needed at the next 
level. Fig. 6 shows the architecture of the first three stages 
of the address generator. Each stage of the address generator 
uses the indexes produced by the previous stage of TSVQ to 
determine the searching node of current stage. The two indexes 
produced by the last stage of the TSVQ are the indexes of the 
two identified nearly closest codevector IT~VQ’S which will 
be passed to the FSVQ. 

From this architecture description, it can be found that only 
(0-2) levels are needed for tree searching, where D is tree 
depth. This is because four nodes are required simultaneously 
at each level, implying the first two stages, i.e., Do and D1, 
are never used. The TSVQ architecture mainly consists of two 
parts, one is the storage and address generation for codevectors 
and the other is the distortion estimation and index selection. 
It is clear that for tree depth of D ,  [ z (~+ ‘ )  - 41 codevectors are 
needed to be stored. Also the addresses for four different code- 
vectors have to be provided by the address generators whose 
part of the MSB’s are determined by its previous stage. As for 
the distortion estimation and index selection, it can be easily 
realized on a few adders, registers, and multiplexers [13]. 

B. Architecture for the FSVQ 

From the algorithm description, we know that the only 
calculation in the finite state machine is to check whether 

function, and an Isu for selection of ind 

index &ate accompanied by an ID 1s sent 

C. WS’I Imphaentation 
A prototype VLSI chip (as show 

algorithm has been fabricated and 

1024 pixels be handled by 
to allow the use of different code 

Algorithm: multipath tree-search (seve 

Throughput: 1 pixel per cycle; 
gorithm; 
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address to 
state codebook 

Fig. 8. Block diagram of index matching and selection units. 

Maximum clock rate: 35 MHz; 
Transistor-count: 420K; 
Internal memory size: 40 Kb (22.8 mm2); 
Die size: 95 mm2; 
Power consumption: 0.95 W at (33 MHz, 5 V); 
Process: TSMC 0.8 pm CMOS SPDM process; 
Package: 84-pin CLCC; 
Design style: full-custom + cell-based approach. 

Iv .  EVALUATION AND DISCUSSIONS 

Compared to other FSVQ algorithms [ 5 ] ,  [6], our approach 
offers higher picture quality at the same bit-rate. In the 
meantime, the iteration bound is now removed in our algorithm 
because only one input data has to be compared instead 
of an input vector. Although the multipath TSVQ is added 
and, hence, computational requirements become higher, we 
can exploit the pipelining inherent in the TSVQ to improve 
speed. Unlike other available VQ solutions [ 1414 171 which 
are dedicated to tree-search or full-search algorithms, our 
approach does reach a more optimal solution in terms of 
picture quality, bit-rate, and hardware complexity. 

From both algorithm and architecture descriptions, we know 
that pipelining can be applied to this new algorithm where 
computational complexity can be reduced and compression 
ratio can be enhanced. Below, we highlight some practical 
design issues for real-life applications. 

1) The required memory space can be estimated by (2M- 
4)NW + 1024 W, where the first term is for TSVQ and 
the second term is for FSVQ. 

2) Input sample rates for TSVQ and FSVQ are different. 
Since the TSVQ deals with block image data while the 
FSVQ deals with index data, data rate of the latter is only 
1/N of the former. Thus, the TSVQ is more computation 
intensive. 

3) Parallel computation or shared hardware data-path can 
be considered by trading off area and performance at 
the multipath TSVQ. For example, if only one 8-b data 
bus is available, at least 4 N  cycles are needed for each 
stage. On the other hand, if the bus number increases, 
parallel datapaths are needed and, hence, cycle-count 
can be reduced. 

(b) 

Fig. 9. 
microphoto of the chip. 

(a) Shows floor plan of the VQ encoder chip, and (b) shows 

V. CONCLUSION 

In this paper, we have proposed a new VQ algorithm and a- 
chitecture which combines the advantages of both tree-search 
and finite-state VQ’s. This so-called multipath tree-search 
FSVQ architecture does solve the problem that sometimes the 
selected state codevector does not contain the better codevector 
to represent the input vector. Simulation results have shown 
that good picture quality can be achieved at lower output 
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bit-rate. Moreover, we have also presented a VLSI solution 
for the proposed algorithm, where tested results show that 30 
imagehideo frames per second (1024 x 1024 pixels) can be 
handled‘ at 33 MHz. 

In summary, this fully pipelinable multipath wee-search 
based architecture not only suits the implemention of various 
FSVQ’s for real-time imagehide0 coding, but also achieves 
higher SNR than conventional FSVQ’s in terms of bit-rate 
and picture quality. 
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