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Abstract

In this paper, a dynamic factor model is proposed to extract the dynamic factors
from time series data. In order to deal with the problem of scaling, the cross-correlation
matrices (CCM) are first employed to cluster the time series data. Then, the dynamic
factors are extracted using the revised independent component analysis (ICA). In addi-
tion, a numerical study is used to demonstrate the proposed method. On the basis of the
simulated results, we can conclude that the proposed method can really extract the effec-
tive dynamic factors.
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1. Introduction

Dynamic factor analysis (DFA), which was proposed by Engle and Watson
[1,2], is a dimension-reduction approach for extracting the common trends of
time series data. The mathematical formulation of DFA can be described as
follows. Let the multivariate time series vector at time t be yt. Then, the dy-
namic factor model can be formulated as

yt ¼Cat þ et; ð1Þ
at ¼at�1 þ et; ð2Þ

where C denotes the factor loading, at � N(at,mt) is the common trends at time
t, et � N(0,re) is the noise component matrix, and et � N(0,re) is the diagonal
error covariance matrix. In addition, at, et, and et are independent of each
other.

Although DFA has been successfully used in the applications of econom-
ics [3–6] and psychology [7,8], two main problems should be considered for
adopting DFA in practice. First, the computational cost of estimating
parameters in DFA is usually heavy. Several papers have been reported that
DFA can only be suitable for small scaling time series data [9,10]. Although
several algorithms such as Markov chain Monte Carlo method [11,12], and
EM algorithm [9,10] have been proposed to deal with the problem above,
these methods cannot truly overcome the problem of scaling. Second, the
conventional DFA only extract the linear common trends among time series
data using the second-order statistics. However, the information of the high-
order statistics should also be considered to response the complex systems in
practice.

In this paper, a novel algorithm is proposed to deal with the problems above
simultaneously. First, in order to overcome the problem of scaling, the cross-
correlation matrices (CCM) [13] are used to cluster time series variables into
segments. Next, the revised independent component analysis (ICA) is proposed
to extract the dynamic factors by different segments. Sixteen daily indices of
stock markets and foreign currency exchange rates from 1995 to 1997 are used
to demonstrate the proposed method. In addition, the dynamic factors are used
to predict the daily indices and compare with the dynamic regression model.
On the basis of the simulated results, we can conclude that the proposed
method can really extract the important common trends among time series
data and performs the accurate prediction.

The remainder of this paper is organized as follows. The dynamic factor
model is proposed in Section 2. A numerical example, which is used to
illustrate the proposed method and compare with the dynamic regression
model, is presented in Section 3. Discussion and conclusions are in the last
section.
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2. Dynamic factor model

In order to derive the dynamic factors, the CCM [13] is first employed to
calculate the correlation of the multivariate time series so that we can cluster
the variables into several segments to reduce the computational cost. Next,
the dynamic factors can be derived using the ICA approach.

2.1. Cross-correlation matrices

Consider the multivariate time series Zt, and the mean vector l, then the
cross-covariance matrices at the lth lag can be defined as

Rl ¼ CovðZ t;Z t�lÞ ¼ E½ðZ t � lÞðZ t�l � lÞ0�

¼ E

z1t � l1

z2t � l2

..

.

zkt � lk

2
6666664

3
7777775
½z1ðt�lÞ � l1; z2ðt�lÞ � l2; . . . ; zkðt�lÞ � lk�

¼

v11ðlÞ v12ðlÞ � � � v1kðlÞ

v21ðlÞ v22ðlÞ � � � v2kðlÞ

..

. ..
.

� � � ..
.

vk1ðlÞ vk2ðlÞ � � � vkkðlÞ

2
6666664

3
7777775

.

ð3Þ

On the basis of the cross-covariance matrices, we can obtain the CCM as
follows:

Pl ¼

q11ðlÞ q12ðlÞ � � � q1kðlÞ
q21ðlÞ q22ðlÞ � � � q2kðlÞ

..

. ..
.

� � � ..
.

qk1ðlÞ qk2ðlÞ � � � qkkðlÞ

2
66664

3
77775
; ð4Þ

where

qijðlÞ ¼
vijðlÞ

½viiðlÞvjjðlÞ�1=2
. ð5Þ

By detecting the coefficients of the CCM, we can cluster the correlated time ser-
ies variables into several segments. Next, we can introduce the ICA method
and present how the dynamic factors can be obtained using ICA.
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Fig. 1. The concept of ICA.

J.-J. Huang et al. / Appl. Math. Comput. 175 (2006) 1288–1297 1291
2.2. Independent component analysis

ICA [14,15] is a statistical tool to extract the independent component (IC)
from an observed multivariate time series. ICA has been proposed to deal with
many real-world applications such as signal processing [16,17], magnetoen-
cephalography (MEG) [18], and image analysis [19,20]. The concepts of ICA
can be described as follows. Let a time signal vector be xt = {x1,x2, . . . ,xn},
the ICA model can be formulated as

xt ¼ Ast; ð6Þ
where A denotes the unknown mixing matrix and s denotes the sources.

The problem of ICA is to extract the IC vector, yt, from the signal vector, st.
We can depict the problem above as shown in Fig. 1.

In order to derive the ICs, we can calculate the demixing matrix, W, such
that

yt ¼Wxt ¼WAst. ð7Þ
Therefore, if we can find W = A�1, then yt = st, and the perfect separation oc-
curs. It should be highlighted that the conventional ICA only deal with the ran-
dom variables and cannot handle the time series data. In this paper, a revised
ICA, which was proposed in [21,22], is proposed to deal with non-stationary
and temporally correlated data.

In addition, although ICA and principal component analysis (PCA) share
some common characteristics like building generative model and performing
dimension reduction, PCA only process the second-order dependencies in the
data. However, ICA is a generation of PCA that separates the higher-order
dependencies in the data. In addition, conventional PCA can only deal with
the random variable data instead of the time series data. We can depict
Fig. 2 to present the proposed algorithm as follows.

In the next section, a numerical study is used to demonstrate the proposed
method.
3. Numerical study

In this section, 16 daily indices of stock markets and foreign currency ex-
change rates from 1995 to 1997, including Amsterdam, Frankfurt, Hong Kong,
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Fig. 2. The procedures of the proposed algorithm.
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London, New York, Paris, Singapore, Tokyo, and so on, are used to extract
the dynamic factors. These daily indices can be represented using Fig. 3.

In order to cluster the indices above to reduce the computational cost, the
CCM is used to calculate the correlation among indices as shown in Table 2.
On the basis of the CCM, we can cluster these indices into three segments as
shown in Table 1 (Table 2).

Next, we can extract the dynamic factors from the segments using ICA.
Since the cluster 1 contains many indices, we extract two dynamic factors from
cluster 1 as shown in Fig. 4. However, only one dynamic factor is extracted
from clusters 2 and 3 as shown in Figs. 5 and 6.

Next, the dynamic regression (DR) model is employed to test the efficiency
of the proposed method. First, we select six variables to be the dependent
variable and the other 15 variables are used to predict the dependent variable
in the six dynamic regression models. Next, we use the same dependent vari-
ables but the dynamic factors to be the independent variables in other six
dynamic regression models. Finally, we use Akaike information criterion
(AIC), Hannan-Quinn criterion (HQC), corrected AIC (AICC), and Schwarz
Bayesian criterion (SBC) to compare the proposed method with the dynamic
regression model as shown in Table 3.

On the basis of the simulated results, we can conclude that the dynamic fac-
tor model performs almost the same accuracy with the dynamic regression
model. It indicates the dynamic factors can really be extracted and reflect the
common trends of the multivariate time series. Next, we provide the depth dis-
cussion according to our implementation.



Fig. 3. The trend chart of the 16 daily indices.

Table 1
Cluster for multivariate time series

Cluster for multivariate time series

Cluster 1 AMSTEOE, DAXINDX, FRCAC40, FTSE100, HNGKNGI, SPCOMP,
DTCHGUS, FRNFRUS, GERMDUS, JAPYNUS, SWISFUS

Cluster 2 JAPDOWA, AUSTRUS, CDNDLUS
Cluster 3 SNGALLS, BRITPUS
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4. Discussion and conclusions

Dynamic factor analysis is a useful tool for extracting the common trends
among time series data. The dynamic factors are useful for the decision-maker.
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Fig. 5. The third dynamic factor derived form cluster 2.
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Fig. 4. The first and second dynamic factors derived form cluster 1.

J.-J. Huang et al. / Appl. Math. Comput. 175 (2006) 1288–1297 1295
For example, by extracting the important factors, the decision-maker can
understand the changing trends of the future and effectively manage the strate-
gic planning.

In this paper, the 16 daily indices of stock markets and foreign currency ex-
change rates are used to extract the dynamic factors. Since the computational
cost of dynamic factor analysis is heavy, the CCM is first used to cluster the 16
indices into three segments. Next, the dynamic factors are extracted by each
cluster. In the first cluster, two dynamic factors are extracted. From the shape
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Table 3
The comparison of the dynamic regression model and the proposed method

Dependent Independent AIC HQC AICC SBC

DFA AMSTEOE F1 and F2 4.2023 4.2094 4.2023 4.2207
DR AMSTEOE Others 4.1956 4.2335 4.1966 4.2939
DFA JAPDOWA F3 15.1852 15.1899 15.1852 15.1975
DR JAPDOWA Others 13.2089 13.2467 13.2098 13.3071
DFA SNGALLS F4 �8.6634 �8.6587 �8.6634 �8.6511
DR SNGALLS Others 3.0958 3.1336 3.0967 3.1940
DFA DAXINDX F1 and F2 7.2486 7.2557 7.2487 7.2671
DR DAXINDX Others 7.2401 7.2779 7.2410 7.3383
DFA AUSTRUS F3 �5.7006 �5.6959 �5.7006 �5.6884
DR AUSTRUS Others �10.0310 �9.9955 �10.0302 �9.9389
DFA BRITPUS F4 �11.5517 �11.5469 �11.5516 �11.5394
DR BRITPUS Others �11.5466 �11.5087 �11.5456 �11.4483

1296 J.-J. Huang et al. / Appl. Math. Comput. 175 (2006) 1288–1297
of the first-two dynamic factors, it can be seen that the direction of the two fac-
tors are opposite. It can be interpreted that the two opposite forces control the
indices of cluster 1. On the other hand, the second and the third dynamic fac-
tors which are extracted from cluster 2 and cluster 3 seem reflect the short-term
and the long-term cycle trends.

In addition, we use the dynamic factors to predict the daily indices and com-
pare with the dynamic regression model. On the basis of Table 3, it can be seen
that the dynamic factors can perform the accurate prediction. That is, the pro-
posed method can really extract the important common trends among time ser-
ies data. Finally, the problem of scaling can be overcome using the proposed
method.
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