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We propose an exact analysis for the scattering of an anti-plane shear wave by a piezoelec-
tric circular cylinder in a piezomagnetic matrix with imperfect interfaces. Two typical
imperfect interfaces are investigated: mechanically stiff and highly electromagnetic
conducting interfaces, and mechanically compliant and weakly electromagnetic conduct-
ing interfaces. We obtain the fields of scattered wave by means of series expansion, and
show that whether the interface is a perfect contact or with imperfection, it is sufficient
to invert a 4� 4 matrix and an infinite number of 6� 6 matrices to solve the involved
unknowns. Numerical examples are presented to demonstrate the effect of the imperfec-
tion on the directivity patterns, scattering cross-sections, and potential field distributions.
Results show that the mechanical or highly electric conducting imperfect interface has
great effect on those values. Further, we observe a large low-frequency peak of the
scattering cross-section for the composite with mechanical stiff imperfection.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Multiferroic composites consisting of piezoelectric and piezomagnetic phases exhibit a magneto-electric (ME) effect that
is absent in each constituent. The ME effect, which is related to inducing an electric polarization by a magnetic field or
conversely inducing a magnetization by an electric field, provides a variety of technological applications including magnetic
field sensors, four-state memory cells, and energy harvesting devices, etc. This has motivated a number of experimental
fabrications and theoretical predictions of ME composites. An extensive review of the literature and the state of the art
can be found in Fiebig (2005), Nan, Bichurin, Dong, Viehland, and Srinivasan (2008), Bichurin, Petrov, Averkin, and Liverts
(2010), Srinivasan (2010), Ma, Hu, Li, and Nan (2011).

The coupling in the multiferroic composite is achieved through the product property: the applied electric field creates a
deformation in the piezoelectric phase which in turn induces a deformation in the piezomagnetic phase thereby inducing a
magnetic field. The product ME effect is a new property determined by the mechanical interaction between the two phases.
Therefore, the interface is critical in achieving the giant magnetoelectricity, and has also made the composites with imperfect
interfaces the topic of a number of theoretical investigations. For example, Bichurin, Petrov, and Srinivasan (2003) intro-
duced an interface coupling parameter that defines the degree to which the deformation of the piezoelectric layer follows
that of the magnetostrictive layer. Nan, Liu, and Lin (2003) adopted the Green’s function approach to study the interfacial
bonding on the ME effect in the PZT-Terfenol-D laminated composite. Chang and Carman (2007) proposed a quasistatic
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model including shear lag and demagnetization effect for predicting the ME effect in ME laminates. Wang, Pan, and Roy
(2007) and Pan, Wang, and Wang (2009) employed the complex variable approach and Mori–Tanaka method to derive
the effective moduli of ME fibrous composites with soft and stiff imperfect interfaces, respectively. Kuo (2013) generalized
the classic work of Rayleigh (1892) in a periodic conductive perfect composite to the coupled magneto-electro-elastic fibrous
composites with imperfect interfaces.

Recently, the dynamic behavior of ME composites has received considerable attention. For instance, Du, Shen, Ye, and Yue
(2004) examined the scattering of anti-plane shear waves by a cylindrical inhomogeneity in a magneto-electro-elastic matrix
with partial debonding. Chen and Shen (2007) extended the work of Levin, Michelitsch, and Gao (2002), who studied the
elastic waves propagation in composites with piezoelectric fibers, to ME composites. They first solved the problem
associated with a single cylindrical fiber, and then considered the problem associated with multiple fibers by employing
the effective field approach. Soh and Liu (2006) studied the propagation of an interfacial shear horizontal (SH) wave in
two bonded semi-infinite piezoelectric-piezomagnetic materials. Chen, Pan, and Chen (2007) presented an analytical treat-
ment for the propagation of harmonic waves in magneto-electro-elastic multilayered plates. Liu, Fang, and Liu (2007) and
Wang, Mai, and Niraula (2007) demonstrated the existence of a SH surface wave in a semi-infinite ME medium with
hexagonal symmetry. Pang, Liu, Wang, and Zhao (2008) and Liu, Fang, Wei, and Zhao (2008) investigated the propagation
of Rayleigh-type surface waves and Love waves in a piezoelectric-piezomagnetic layered half-space. Effects of the imperfect
interface on the SH waves, interfacial SH waves, and reflection and transmission of planes waves in a multiferroic composites
were also studied by Sun, Ju, Pan, and Li (2011), Huang, Li, and Lee (2009), and Pang and Liu (2011), respectively.

Motivated by these advances, and in a departure from previous works, this research is devoted to the anti-plane shear
wave scattering by a piezoelectric circular cylinder of infinite length, which is imperfectly bonded to a piezomagnetic matrix.
Both the fiber and matrix are assumed to be transversely isotropic, which are the materials frequently used in applications.
Note that due to the polarization (magnetization) of the piezoelectric (piezomagnetic) material, the phase cannot possess the
center of symmetry which makes the components of the piezoelectric (piezomagnetic) tensors be zero. Two kinds of imper-
fect interfaces are studied: (1) mechanically stiff and highly electromagnetic conducting interfaces, at which the potentials
are continuous across the interface, while the normal component of flux undergoes a discontinuity which is proportional to
the local surface Laplacian of the potential fields; and (2) mechanically compliant and weakly electromagnetic conducting
interfaces, at which the normal flux are continuous, while the potentials are discontinuous at such contact. The jumps in
potential components are further assumed to be proportional to their respective interface flux components.

The remainder of this paper is organized as follows. In Section 2 we formulate the governing equation for the anti-plane
shear wave scattering by a piezoelectric circular cylinder in a piezomagnetic matrix. We obtain the solution in Section 3. Two
kinds of imperfect contacts are studied: mechanically stiff and highly electromagnetic conducting interfaces, and mechan-
ically compliant and weakly electromagnetic conducting interfaces. Numerical examples are demonstrated in Section 4
using composites of BaTiO3 and CoFe2O4. We study the effect of the imperfection on the directivity pattern, scattering
cross-section, and potential field distributions.

2. Formulation

Let us consider an unbounded piezomagnetic matrix containing an infinite long piezoelectric circular cylinder of radius a.
Assume that each phase is transversely isotropic (i.e., has 6 mm symmetry) with the symmetry axes oriented with cylinders.
We introduce a Cartesian coordinate system with x- and y-axes in the plane of the cross-section and z-axis along the axis of
the cylinder. Assume that the cylinder is subjected to an incident anti-plane shear (SH) wave traveling in the positive
x-direction.

The constitutive laws of the pth phase for the non-vanishing fields in a polar coordinate system can be recast in the
compact form as (Wang, Pan et al., 2007)
RðpÞj ¼ LðpÞZðpÞj ; j ¼ r; h; ð2:1Þ
where for ease of the terminology, p = ‘‘e’’ (p = ‘‘m’’) refers to the piezoelectric (piezomagnetic) phase,
LðeÞ ¼
C44 e15 0
e15 �j11 0
0 0 �l11

0B@
1CA
ðeÞ

; LðmÞ ¼
C44 0 q15

0 �j11 0
q15 0 �l11

0B@
1CA
ðmÞ

;

RðpÞj ¼
rzj

Dj

Bj

0B@
1CA
ðpÞ

; ZðpÞr ¼
@UðpÞ

@r
; ZðpÞh ¼

@UðpÞ

r@h
; UðpÞ ¼

w

u
w

0B@
1CA
ðpÞ

: ð2:2Þ
Here rzj;Dj;Bj are the stress, electric displacement, and magnetic flux. C44;j11, and l11 are, respectively, the elastic modulus,
dielectric permittivity, and magnetic permeability, while e15 and q15 are the piezoelectric and piezomagnetic coefficients.
w;u, and w are the out-of-plane displacement, electric potential, and magnetic potential, respectively.
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In the absence of body force, electric charge density and electric current density, the equilibrium equations are given by
C44 e15 q15

e15 �j11 0
q15 0 �l11

0B@
1CA
ðpÞ r2w

r2u
r2w

0B@
1CA
ðpÞ

¼
�qx2w

0
0

0B@
1CA
ðpÞ

; ð2:3Þ
wherer2 ¼ 1
r
@
@r þ @2

@r2 þ 1
r2

@2

@h2 represents the two-dimensional Laplace operator for the variable r and h, and q is the mass den-
sity of the material. Note that throughout the paper, the time factor e�ixt , where x is the angular frequency, is suppressed. In
addition, the quasi-static approximation for the electric and magnetic fields is used in the analysis. This is because the cor-
responding characteristic velocity of the electromagnetic waves has 105 times higher than that of the elastic waves. There-
fore, we can neglect the electromagnetic field generated by the elastic field propagation (Levin et al., 2002).

To proceed, we introduce two new functions u and w which are related to w;u, and w by
uðeÞ ¼ uðeÞ � eðeÞ15

jðeÞ11

wðeÞ;

wðmÞ ¼ wðmÞ � qðmÞ15

lðmÞ11

wðmÞ: ð2:4Þ
Substitution of Eq. (2.4) into Eq. (2.1) yields the auxiliary constitutive laws:
RðpÞj ¼ LðpÞZðpÞj ; ð2:5Þ

ZðpÞr ¼
@UðpÞ

@r
; ZðpÞh ¼

@UðpÞ

r@h
;

where
LðeÞ ¼
eC44 e15 0
0 �j11 0
0 0 �l11

0B@
1CA
ðeÞ

; UðeÞ ¼
w

u
w

0B@
1CA
ðeÞ

ð2:6Þ
for the piezoelectric material, and
LðmÞ ¼
eC44 0 q15

0 �j11 0
0 0 �l11

0B@
1CA
ðmÞ

; UðmÞ ¼
w

u
w

0B@
1CA
ðmÞ

ð2:7Þ
for the piezomagnetic material. Further, the governing equation (2.3) decoupled into the Helmholtz and Laplace equations
for the phase:
ðr2 þ k2
e ÞwðeÞ ¼ 0; r2uðeÞ ¼ 0; r2wðeÞ ¼ 0;

ðr2 þ k2
mÞwðmÞ ¼ 0; r2uðmÞ ¼ 0; r2wðmÞ ¼ 0; ð2:8Þ
where k is the wave number defined by
k2
e �

qðeÞx2eC ðeÞ44

; eC ðeÞ44 � CðeÞ44 þ
eðeÞ15

� �2

jðeÞ11

;

k2
m �

qðmÞx2eC ðmÞ44

; eC ðmÞ44 � CðmÞ44 þ
qðmÞ15

� �2

lðmÞ11

; ð2:9Þ
with eC ðpÞ44 being the stiffened elastic constant.

3. Representation of the solution

Consider that the composite is subjected to an incident SH wave of unit amplitude propagating along the x-direction, and
can be expanded as (Arfken & Weber, 2001)
eikmx ¼ J0 kmrð Þ þ 2
X1
n¼1

inJnðkmrÞ cos nh; ð3:1Þ
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where i is the imaginary number. The general solution to the Helmholtz and Laplace equations for the circular cylinder and
its surrounding matrix can be expanded with respect to its center as
wðeÞðr; hÞ ¼ Aw
0 J0ðkerÞ þ 2

X1
n¼1

inAw
n JnðkerÞ cos nh;

uðeÞ r; hð Þ ¼ Au
0 þ

X1
n¼1

Au
n r=að Þn cos nh;

wðeÞ r; hð Þ ¼ Aw
0 þ

X1
n¼1

Aw
n ðr=aÞn cos nh ð3:2Þ
for the piezoelectric inclusion, and
wðmÞðr; hÞ ¼ eikmx þ Bw
0 H0ðkmrÞ þ 2

X1
n¼1

inBw
n HnðkmrÞ cos nh;

uðmÞ r; hð Þ ¼
X1
n¼1

Bu
n a=rð Þn cos nh;

wðmÞ r; hð Þ ¼
X1
n¼1

Bw
n ða=rÞn cos nh ð3:3Þ
for the piezomagnetic matrix. Here r; hð Þ is the polar coordinate centered at the origin of the inclusion. Jnð�Þ and Hnð�Þ are,
respectively, the Bessel function of the first kind and the Hankel function of the first kind, both of order n. The coefficients
Aw

n ;A
u
n ;A

w
n ;B

w
n ;B

u
n ;B

w
n , are unknown constants to be determined from the interface and boundary conditions. The dimension of

these coefficients are the same as the corresponding displacement w [L], electric potential [ML2A�1T�3], and magnetic poten-
tial [A].

In order to treat the imperfect interface effect, we first resort to a more general three-phase composite of a similar dis-
tribution in which the inclusions possess a concentric elastic coating of thickness t and material parameter
Lc ¼ diagðC44;�j11;�l11Þ (Hashin, 2001; Miloh & Benveniste, 1999; Torquato & Rintol, 1995.) By passing to the limit that

t ! 0 and that either L�1
c ! 0 (mechanically stiff and highly electromagnetic conducting interfaces) or Lc ! 0 (mechanically

soft and weakly electromagnetic conducting interfaces), we recover the distribution of interest in which the interfacial prop-
erty is characterized by the parameters a and b given by:
a ¼ lim
t!0

L�1
c !0

tLcð Þ ¼
aw 0 0
0 au 0
0 0 aw

0B@
1CA ð3:4Þ
for the mechanically stiff and highly electromagnetic conducting case, and
b ¼ lim
t!0

Lc!0
tL�1

c

� �
¼

bw 0 0
0 bu 0
0 0 bw

0@ 1A ð3:5Þ
for the mechanically soft and weakly electromagnetic conducting case.
We first consider that the interface is mechanically stiff and highly electromagnetic conducting, that is,
RðmÞr

��
@V � RðeÞr

��
@V ¼ aDsU

ðeÞ��
@V ; UðmÞ

��
@V ¼ UðeÞ

��
@V ; ð3:6Þ
where Ds ¼ 1
r2

@2

@h2 is the surface Laplace operator, and @V : r ¼ a denotes the interface between the matrix and the circular
cylinder. The case where a ¼ 0 corresponds to a perfect interface, whereas a�1 ¼ 0 describes an isoexpansion and equipoten-
tial interface.

Using the orthogonality properties of trigonometric and Bessel (Hankel) functions, the interface conditions (3.6) provide
K0u0 ¼ v0; ð3:7Þ
where
K0 ¼

�H0ðkmaÞ J0ðkeaÞ 0 0
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11

J0ðkeaÞ 1 0
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�eC ðmÞ44 kmH00ðkmaÞ eC ðeÞ44 keJ00ðkeaÞ 0 0
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Fig. 1. Directivity patterns of the scattered wave for a cylinder with a perfect contact for various kma.
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Fig. 2. Directivity patterns of the scattered wave for a cylinder with a stiff interface a ¼ diagð1;0;0Þ for various kma.
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Fig. 3. Directivity patterns of the scattered wave for a cylinder with a highly electric conducting interface a ¼ diagð0;1;0Þ for various kma.
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Fig. 4. Directivity patterns of the scattered wave for a cylinder with a soft interface b ¼ diagð1;0;0Þ for various kma.
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for n ¼ 1;2;3; . . . ;1. Here the prime 0 denotes the derivative with respect to the variable in the parenthesis.
Next, we consider that the interface is mechanically soft and weakly electromagnetic conducting, i.e.,
RðmÞr

��
@V ¼ RðeÞr

��
@V ; UðmÞ

��
@V �UðeÞ

��
@V ¼ bRðeÞr

��
@V : ð3:11Þ
The case where b ¼ 0 corresponds to a perfect interface, whereas b�1 ¼ 0 describes a completely debonded and electric
charge-free (insulating) interface. Analogous to the previous case, the interface conditions (3.11) give constraints (3.7)
and (3.9), but with K0 and Kn replaced by
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Fig. 6. Angular distribution of the absolute value of vertical displacement, electric potential and magnetic potential for a cylinder with a perfect contact
versus h for various kma.
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Fig. 7. Angular distribution of the absolute value of vertical displacement, electric potential and magnetic potential for a cylinder with a stiff interface
a ¼ diagð1;0;0Þ versus h for various kma.
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Fig. 8. Angular distribution of the absolute value of vertical displacement, electric potential and magnetic potential for a cylinder with a highly electric
conducting interface a ¼ diagð0;1;0Þ versus h for various kma.
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Fig. 9. Angular distribution of the absolute value of vertical displacement, electric potential and magnetic potential for a cylinder with a complaint interface
b ¼ diagð1;0;0Þ versus h for various kma.
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K0 ¼

�H0ðkmaÞ bweC ðeÞ44 keJ00ðkeaÞ þ J0ðkeaÞ 0 0
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2666666664
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; ð3:12Þ
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4. Numerical results and discussion

As a numerical example, we apply our solution to the BaTiO3 (BTO, piezoelectric)-CoFe2O4 (CFO, piezomagnetic) multif-
erroic composite. Both of them are transversely isotropic. The independent material constants of BTO are
C44 ¼ 43� 109 N=m2; e15 ¼ 11:6 C=m2;j11 ¼ 11:2� 10�9 C2=Nm2;l11 ¼ 5� 10�6 Ns2=C2;q ¼ 6:02� 103 kg=m3, while those

of CFO are C44 ¼ 45:3� 109 N=m2; q15 ¼ 550 N=Am;j11 ¼ 0:08� 10�9 C2=Nm2; l11 ¼ 590� 10�6 Ns2=C2; q ¼ 5:20�
103 kg=m3 (Cannas, Falqui, Musinu, Peddis, & Piccaluga, 2006; Wang, Pan et al., 2007). Here the xy plane is an isotropic plane
and the poling direction/magnetic axis is along the z-direction. Further, the following dimensionless imperfect parameters

have been chosen for computation in the analysis: aw ¼ aw=ðCðeÞ44 aÞ;au ¼ �au=ðjðeÞ11 aÞ;aw ¼ �aw=ðlðeÞ11 aÞ; bw ¼ bwCðeÞ44=a;

bu ¼ �bujðeÞ11=a, and bw ¼ �bwlðeÞ11=a.
In our calculation, the series in Eqs. (3.2) and (3.3) are truncated at n ¼ N with a relative error less than 1%. It is observed

that N is a monotonically increasing function of the normalized frequency kma. That is, the smaller truncated number of N
can be adopted when the wave frequency is smaller.

4.1. Directivity pattern

The directivity patterns of the scattered waves are of interest in practical applications. The scattered component in the
mechanical displacement wðmÞ in the far field has the following asymptotic behavior (Abramowitz & Stegun, 1972; Wang,
Pan et al., 2007)
wðmÞs ¼

ffiffiffiffiffiffiffiffiffiffiffi
2

pkmr

s
ei kmr�p

4ð Þ Bw
0 þ 2

X1
n¼1

inBw
n e�inp2 cosðnhÞ

" #
; r !1; ð4:1Þ
where the subscript s denotes the scattering field in the matrix.
Substituting (4.1) into (3.3)2,3 and (2.4)2, the stress rðmÞzr;s , electric potential uðmÞs and magnetic potential wðmÞs in the far field

induced by the scattered shear wave are given by
rðmÞzr;s ¼ ikm
eC ðmÞ44 wðmÞs ; uðmÞs ¼ 0; wðmÞs ¼ qðmÞ15

lðmÞ11

wðmÞs ; r !1: ð4:2Þ
Therefore, the far field behaviors of the stress, mechanical displacement, and magnetic potential in the piezomagnetic matrix
at the far field are related. The far field directivity pattern of the scattered shear wave is defined by Liu, Wu, and Ying (2000)
D hð Þ ¼ Bw
0 þ 2

X1
n¼1

inBw
n e�inp2 cos nhð Þ

�����
�����; ð4:3Þ
which exhibits the angular distribution of the absolute value of the amplitude of the stress component rðmÞzr at a large dis-
tance from the cylinder.
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Fig. 10. Angular distribution of the absolute value of vertical displacement, electric potential and magnetic potential for a cylinder with a weakly magnetic
conducting interface b ¼ diagð0;0;1Þ versus h for various kma.
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Fig. 1 shows the directivity patterns of the scattered waves for a perfectly bonded cylinder (a ¼ 0; b ¼ 0) under six differ-
ent frequencies kma ¼ 0:5;1;3;5;10;20. Figs. 2 and 3 represent, respectively, the corresponding results for a stiff interface
with a ¼ diagð1;0;0Þ and those for a highly electric conducting interface with a ¼ diagð0;1;0Þ. Fig. 4 plots the results for
a compliant interface with b ¼ diagð1;0;0Þ. We do not show the plots for a highly magnetic conducting interface
ða ¼ diagð0;0;1ÞÞ, and the weakly electromagnetic conducting interface ðb ¼ diagð0;1;0Þ; b ¼ diagð0;0;1ÞÞ since we observe
that there are only minor effect of aw; bu, and bw on the directivity pattern.

From these figures, we observe that for the mechanical imperfection interface (Figs. 2 and 4), the directivity pattern
becomes complicated and concentrated at h ¼ 0 as the frequency increases, which means that the directivity pattern of
the shadow side ðh ¼ 0Þ of the piezoelectric cylinder is more sensitive than that of the incident side ðh ¼ pÞ. However, for
the perfect interface as shown in Fig. 1, the maximum of the directivity pattern occurs at the incident side at low frequency,
while the pattern becomes complicated and concentrated along the opposite of the incident wave direction at high
wavenumbers. For the highly electric conducting interface (Fig. 3), the maximum of the directivity pattern first occurs at
the incident side at low frequency. As the frequency increases, the maximum of the pattern occurs symmetrically with
respect to the x-axis and eventually merged along h ¼ 0. All the above imperfections significantly alter both the shape
and size of the directivity pattern, and these multiple peaks results from the interference caused by the incident and
reflected waves.

4.2. Scattering cross-section

The scattering cross-section of the shear wave for the cylinder is the ratio of the total energy flow carried outwards by the
scattered wave to the energy flow of the incident wave through a normal area that is equal to the cross-section area of the
scatterer, which is defined by Liu et al., 2000
Q ¼
2 Bw

0

�� ��2 þ 2
P1

n¼1 inBw
n

�� ��2
kma

: ð4:4Þ
Fig. 5 is the scattering cross-section of the scattered shear wave for a perfect interface (solid line ‘‘-’’), for a stiff interface
(dashed line ‘‘- -’’), for a highly electric conducting interface (dashed-dotted line ‘‘-�’’), and for a compliant interface (dotted
line ‘‘. . .’’). For the other imperfect parameters, they have the same results for that of the perfect contact case. The curves are
calculated in steps of kma ¼ 0:1 and N ¼ 60. The frequency range is kma ¼ 0 to 40. The most striking feature of the scattering
cross-section curves is the existence of a sequence of maximum and minimum for the scattered shear wave when the inter-
face is a mechanical imperfect contact. Further, a large low-frequency peak occurring at kma ¼ 1, which corresponds to the
resonance scattering, can appear for a mechanically stiff imperfect interface with a ¼ diagð1;0;0Þ. We will see how this effect
influence the field distribution in the following subsection. We further remark that except there exists small fluctuation at
small frequency, the scattering cross-section for a perfect contact and remaining kinds of interface imperfection is in general
a monotonically increasing function of the normalized frequency kma.

4.3. Mechanical displacement, electric potential, and magnetic potential

Fig. 6 is the angular distribution of vertical displacement, electric potential and magnetic potential for a cylinder with a
perfect contact versus h for various kma. Figs. 7–10 show the corresponding plots for a stiff interface with a ¼ diagð1;0;0Þ
(Fig. 7), for a highly electric conducting interface with a ¼ diagð0;1;0Þ (Fig. 8), for a compliant interface with
b ¼ diagð1; 0;0Þ (Fig. 9), and for a weakly magnetic conducting interface with b ¼ diagð0;0;1Þ (Fig. 10). Similarly we do
not show the figures for a highly magnetic conducting interface ða ¼ diagð0;0;1ÞÞ, and for a weakly electric conducting inter-
face ðb ¼ diagð0;1;0ÞÞ since we observe that there are only minor effect of aw and bu on the potential distribution.

From Figs. 6(a)–10(a) and 6(c)–9(c), we observe that at kma ¼ 0:5, the distributions of displacement wj j and magnetic
potential l0w

�� �� around the cylinder are almost uniform except those with the mechanical stiff imperfect interface (Fig. 7).
In addition, multiple peaks and larger value appear along the circumference of the piezoelectric cylinder at kma ¼ 1 in
Fig. 7, which correspond to the resonance scattering shown in Fig. 5. Further, we observe that the distributions of the electric
potential e0uj j are different from those of the displacement and magnetic potential. Each distribution has two lobes and is
symmetric with respect to both x- and y- axes at kma ¼ 0:5 and 1.0 (Figs. 6(b), 8(b)–10(b)). Finally, it is observed the
magnetic potential is extremely large for a cylinder with a weakly magnetic conducting interface (Fig. 10(c)), although
the other two potentials are the same as those of the perfect case.

5. Concluding remarks

In summary, we have presented an exact analysis to the anti-plane shear wave scattering by a piezoelectric fiber in a
piezomagnetic matrix with imperfect interfaces. Both mechanically stiff and highly electromagnetic conducting interfaces,
and mechanically soft and weakly electromagnetic conducting interfaces are considered. Our analyses show that whether
the interface is a perfect contact or with imperfection, it is sufficient to invert a 4� 4 matrix and an infinite number of
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6� 6 matrices to solve the involved unknowns. Comparing with the results of the perfect contact case, the mechanical
imperfection or highly electric conducting imperfect interface has great influence on the value and distribution of the direc-
tivity pattern, scattering cross-section, mechanical displacement, and electromagnetic potential, while the weakly magnetic
conducting interface has only influence on the value and distribution of the magnetic potential. The other imperfect param-
eters, i.e., the highly (weakly) magnetic (electric) conducting imperfection has really minor effect on these figures of merits.
We also observe a large low-frequency peak of the scattering cross-sections with mechanical stiff imperfection, and a
sequence of small high-frequency peak for that with mechanical compliant imperfection. We note that for clarity we show
the case of a piezoelectric fiber in a piezomagnetic matrix in the paper. However, based on this framework, it can be easily
extended to its complimentary counterpart of a piezomagnetic fiber in a piezoelectric matrix, and can also be easily extended
to take into account different kinds of imperfect interface conditions. The present theoretical framework provides a general
guideline for the bonding interface of the piezoelectric and piezomagnetic phases under dynamic loading. Further, while in
the present scattering problem, only a single piezoelectric cylinder is considered, the corresponding wave scattering by a
cluster of piezoelectric cylinders is also of interest and forms the subject of future study.
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