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Abstract We build a model under the framework of discrete optimization to explain how
high frequency trading (HFT) can be applied to supply liquidity and reduce execution cost.
We derive the analytical properties of our model in finding the optimal solution to minimize
the overall execution cost of HFT. We show that the execution cost can be reduced after
increasing trading frequency (i.e., the higher the trading frequency, the lower the execution
cost) with a simulation study. In addition, we conduct an empirical investigation with tick
level data from US equity market through January 2008 to October 2010 to verify our con-
clusion drawn from the simulation study. Based on the simulation and empirical results we
collected, we show that the HFT can reduce the execution cost when supplying liquidity.

Keywords Discrete optimization · High frequency trading · Liquidity · Price impact ·
Optimal execution

1 Introduction

Technological innovation has improved the trading capacity of financial assets. Many market
participants are now employing algorithmic trading (AT) that uses computer algorithms to
automatically complete the trading process which involves making trade decision, order
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submission, and order management after submission. High frequency trading (HFT) is a
special class of algorithmic trading (AT) that uses computer algorithms making elaborate
trading decision based on the electronically received information before human traders are
capable of processing same information they observe. Much attention has, and continues
to be, focused on the impact of high frequency trading, particularly due to the tremendous
increases in volumes of HFT and the U.S. May 6, 2010 flash crash.

Many market participants are claiming that HFT leads to flickering quotes and disappear-
ing liquidity, and others believe that HFT benefits the market by adding liquidity resulting
in reduced spreads and lower volatility. It is important to understand the mechanism of HFT.
Well understanding of HFT can help the regulator or policy maker to apply more effective
tools to regulate the market, for example, to introduce financial transaction tax or to restrain
certain kind of trading activities. Market participants will benefit from understanding the
mechanism of HFT by improving the efficiency of their trading algorithms. Exchanges will
provide better service for HFT in order to maintain market quality and control transaction
cost. Several studies have investigated the empirical results to support that AT improves liq-
uidity and enhances the informativeness of quotes, see Hendershott et al. (2011), for exam-
ple. Most documented studies are focusing on the empirical consideration for HFT assuming
that the HFT tasks can be successfully realized. Biais et al. (2011) propose an equilibrium
analysis of HFT and conclude that HFT can increase gains from trade and generate adverse
selection. Jovanovic and Menkveld (2012) suggest a model and show that HFT entry can
indeed increase welfare, but it might also reduce it.

In this paper, we are going to investigate how HF trader to achieve the trading goal (i.e.,
providing liquidity and reduce execution cost) based on his optimal policy. Market maker
(sometimes called designated market maker or specialist) serves as liquidity provider to
guarantee that every trader who wants to trade can find a counterparty willing to trade the
same amount at that time. One of the market maker’s privilege is to observe the order flow.
By observing order flow, HFT algorithm is capable of extracting information that has not yet
crossed the news screens. Since all quote and volume information is public, such behavior is
fully compliant with all the applicable laws. Typically, when conducting HFT, trader quotes
a pair of bid-ask prices to trade with two simultaneously incoming orders and takes the
spread as his profit.

In this paper we propose a model considering the motivation of HFT for liquidity sup-
ply, that is, HF traders act as market makers providing liquidity by placing passive orders.
Currently, the regulation shows a tendency to require the HFT firms post firm quotes at com-
petitive prices, thus provide a regular source of liquidity and effectively turn HFT firms into
market makers.1 Following Easley et al. (2012), we consider the passive order does not cross
the market and generates adverse selection cost2 for HFT since we cannot directly control the
timing of its execution. We focus on the unique characteristics of HFT, that is, low latency
such that the computerized algorithms will elaborate the trading strategy based on the infor-
mation electronically received before human traders process on the same information they
observed. We define the information electronically received as the “news” on the limit order
book. We have already learned that a particular trade or order (for example, large passive or-
ders) placed by HF traders will generate high impact on asset price and increase transaction
costs (due to adverse selection). Easley et al. (2012) point out that order flow is toxic when

1For example, see Article 51 of The Markets in Financial Instruments Directive (MiFID II) proposed by the
European Commission in 2011.
2The passive orders are filled quickly when they should be filled slowly and filled slowly when they should
be filled quickly, see Jeria and Sofianos (2008).
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it adversely selects market makers who provide liquidity at a loss. Therefore, the objective
of HFT in our model is to minimize the execution cost by optimally executing orders.

Similar as Bertsimas and Lo (1998), Almgren and Chriss (1999, 2000), Obizhaeva and
Wang (2013), and Sun and Kruse (2012) the model we presented to show the optimal exe-
cution are relying on the price impact functions that characterize the impact of a sequence
of trades on prices when the trades are executed. In our model we decompose the price im-
pact resulting from HFT into two parts: a permanent impact when the price moves to a new
direction (upward or downward), and a temporary impact which instantaneously affects the
trade that has been triggered. Huberman and Stanzel (2004) point out that the linear price
impact function excludes the quasi-arbitrage (i.e., price manipulation) and support viable
market prices. Therefore, we adopt the linear price impact function in our model, that is,
a linear combination of the permanent and temporary price impact is characterized by the
price impact function. In order to reduce the adverse selection, HFT algorithms will pre-
dict the liquidity change after the news (i.e., the information electronically received by HFT
algorithms) disseminated to all traders. HFT algorithms will then decide the optimal order
submission strategy accordingly in order to fill the large order undertaken.

Easley et al. (2012) argue that in the high frequency world, the order arrival process is
informative and volume arrival is a metric for it. In this paper, we model the effect of dissem-
inated news on liquidity (captured by volume arrival) with depth and the resilience effect of
order flow on the limit order book for the underlying asset (see Patell and Wolfson 1984 and
Lee et al. 1993). Based on the resilience model proposed by Obizhaeva and Wang (2013),
we allow the variables that model the limit order book to be changed at the predetermined
time points within the trading period. Based on this setting we can characterize different
order flows measured by volume arrival (as liquidity increasing, decreasing, or remaining
constant) to the “news” by assigning a probability to different consequences after the dis-
seminated news. This makes our model more flexible to capture different market situations
since we allow the permanent and temporary market impact to be adjusted accordingly to
the order flow changes. In practice, HFT algorithms can define the probability based on their
own estimations or other indicators (for example, VPIN suggested by Easley et al. 2012) so
that our model can be implemented easily.

We show the importance of incorporating drift of market when the HFT algorithms look-
ing for the optimal execution. The higher the altitude market moves to one direction (upward
or downward), the more important the drift variable considered in our model turns to be. We
show that the market volatility (measured by the variance of underlying price changes) has
no significant influence on the optimal HFT strategy, although it depends on the fair price
dynamics. Our model suggests that (i) it is better not to provide liquidity immediately after
detecting the disseminated order flow, and (ii) market makers only start to supply liquidity
after adopting the trading strategy (i.e., size of the passive order) accordingly to the volume
arrival inferred from order flow.

In this paper we compare the performance of our HFT trading strategy with two alterna-
tive trading strategies: the optimal trading without considering HFT originally proposed by
Obizhaeva and Wang (2013) and the non-optimal trading (i.e., naive trading by submitting
orders with equalized size) mentioned in Bertsimas and Lo (1998). We run a simulation
to examine the analytical properties derived from our model, and show that the HFT per-
forms better in providing liquidity and reducing execution cost than other trading strategies
we investigated. In addition, we empirically verify the performance of HFT by using tick
level data of 105 stocks from S&P 100, S&P MidCap 400, and S&P SmallCap 600 compo-
nent companies in US market through January 2008 to October 2010. We found that (i) the
empirical results coincide with those from the simulation study, that is, HFT can signifi-
cantly reduce the execution cost; and (ii) when increasing the trading frequency, the overall
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execution cost of HFT is significantly reduced comparing with other non-HFT strategies
investigated, particularly in our sample, the execution cost will be reduced between 25 bps
and 33 bps per trade per day when fixed the size of position for providing liquidity.

The rest of paper is organized as follows. An introduction of the model setup is provided
in Sect. 2. Section 3 describes our contributions and introduces the analytical solutions for
solving the optimization problem of minimizing the market impact of HFT. Section 4 inves-
tigates the performance of our model by running simulations. In order to show the model
implementation for practitioners, we provide numerical examples to show the performance
of trading strategies based on the proposed model comparing with alternative non-HFT trad-
ing strategies and discuss the results. In Sect. 5, we then examine the performance of our
model with real American market data to show the practical implementation. Section 6 con-
cludes.

2 The model setup

High-frequency trading (HFT) utilizes computers to transact within a finer time interval at
incomprehensible speed. High frequency (HF) trading firms represent approximately 2 %
of the nearly 20,000 trading firms operating in the U.S. markets, but since 2009 they have
accounted for over 70 % of the volume in U.S. equity markets and are fast approaching
50 % of the volume in futures markets.3 How does this sweeping market change affect
retail investors? There are two very different answers to that question. Supporters claim
that HFT is a net-positive market force because it provides liquidity and tightens bid-ask
spreads. On the other side, detractors claim that HFTs is a net-negative force on the market
and should be reined in because HF traders regularly manipulate unaware investors and
otherwise destabilize markets. The answer surely lies somewhere in between. But which
is closer to the truth? To find out, we build a model to investigate. In order to make our
model remains neutral (i.e., towards neither supporter nor detractor’s viewpoint to build the
model), we have several assumptions that take into account both supporter and detractor’s
consideration for HFT.

Suppose there is a representative HF trader (for example, a trader from proprietary trad-
ing desks) who can observe the whole order flow. He should provide liquidity to accumulate
(or liquidate) a large position of securities with size X0 (X0 > 0) during a given time interval
[0, T ] (T > 0). T refers to any trading period, for example, it could be one second or mil-
lisecond under HFT. The major assumptions are (i) the representative HF trader has direct
market access (DMA), i.e., electronic trading facilities that give HF trader a low-latency way
to interact with the order book of an exchange, (ii) HF trader is able to transact the incoming
orders before other non-HF traders do, and (iii) HFT leads to three possible consequences,
i.e., liquidity increase, decrease, and unaffected, therefore, HF trader can decide to do or not
to do HFT based on the subsequent liquidity situation they estimated.

2.1 A trading scenario

We use following example to describe the trading scenario (e.g., DMA) investigated by our
model. Assume that a seller wants to sell 100,000 shares of XXXX. The market price of
an XXXX share is $26.40, but the seller’s limit price is $26.10. In other words, the seller
is willing to receive at least $26.10 for each share of XXXX or $0.30 less than its current
price. With flash orders from the exchange (e.g., NASDAQ), HF trader gets a peek at these

3CFTC (2010). Proposed rules, Federal Register 75 (112), 33198–33202.
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orders for a finer time (e.g., 30 milliseconds) before they are disseminated to everyone else.
Having detected an incoming order flow of bid for XXXX shares (e.g., limit bid at $26.30),
the computers of HF trader start issuing small orders, for example, limit orders with prices
higher than $26.10 but below $26.30 or immediate or cancel (IOC) orders at specific levels
below the current price ($26.30) of XXXX shares. If the first buy order at $26.15 is accepted,
another buy order at $26.20 is issued, and so on. This continues until a buy order at $26.09 is
issued. Because the seller’s limit price is $26.10, the buy order at $26.09 cannot be executed.
Meantime, HF trader could transact the accumulated position to match the incoming bid or-
der for the immediate profit. At this stage, HF trader floods the seller with buy orders at
$26.29, causing most of the company’s order of 100,000 XXXX shares to be filled at $0.11
below the market price. If HF trader observes that an incoming order flow of bid for XXXX
shares limited at $26.00, the computers of HF trader start continuously issuing small orders
at limit prices below $26.10 of XXXX shares and immediately cancel them to make the
seller misinterpret and drop the limit price. Under normal circumstances, a seller would see
the buy order at $26.30 and might subsequently raise the limit price on his/her order. How-
ever, HF trader’s has such a direct access to see the whole order flow before the seller that
unless the seller can observe the whole order flow, he/she would have no chance to do this.

In above example, HFT either involves front-running or manipulating, which are the
major accusation of HFT. In order to investigate HFT under a neutral consideration, when we
build our model with the above HFT framework (e.g., DMA), we impose following trading
constrains (that have also been considered by regulators) to eliminate front-running and
manipulating: (1) HF trader is obliged to submit market order (i.e., firm order requirement),
and (2) HF trader cannot simultaneously buy and sell (i.e., trade only on one side).

In this paper, we also consider other two trading strategies. One is the naive trading
strategy which splits the large order equally to small pieces and the other is the non-HF
trading strategy proposed by Obizhaeva and Wang (2013) (O-W). Naive trading focuses on
the minimal order size of each submission and non-HF trading (O-W) focuses on the optimal
choice following the price changes.

2.2 Market order

Market order will be executed at the best price currently available in the market and it is
used to realize immediacy of a trade. In our model, as we are going to investigate HFT
neutrally without considering its suspicion of manipulating, we allow HFT trade only with
market orders. The advantage of this setting for our model is twofold. First, it can reduce
the difficulty of the algorithm run by HF trader to estimate the execution uncertainty of limit
orders, particularly when the market bid-ask spread is relatively large. Second, it can limit
HF trader from flickering quotes and make them bring liquidity to the market. Easley et al.
(2012) pointed out that order flow is toxic when it adversely selects market makers who
may be unaware they are providing liquidity on a loss. It is necessary to consider optimal
trading when there exists flow toxicity in the market. Following the literature, we assume
that liquidity does not replenish immediately after it is taken but only gradually over time.
The HF trader is trying to passively accumulate or liquidate his large position, that is, break
up the order (see Keim and Madhavan 1995 and Chan and Lakonishok 1995). In our paper,
we will focus only on accumulating a position (i.e., buying), since our model can be easily
adopted for liquidation a position (i.e., selling).

In our model, HF trader is only allowed to submit market orders at discrete time points
which are equidistantly distributed, this means HF trader trades at time point N + 1 during
the whole trading period. N ∈ {1,2, . . .} stands for the trading frequency. ti (i ∈ 0, . . . ,N )
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are time points starting at t0 = 0 and ending in tN = T . We then write ti = iτ , where τ =
T/N is the duration between two successive time points we are able to trade. We define xtn

as the size of the order HF trader has submitted at time point tn, then X0 = ∑N

n=0 xtn . We
define Xtn = X0 −∑n−1

i=0 xti as the position HF trader still needs to accumulate before tn. We
also assume xtn ≥ 0. The space of feasible strategies is then defined as follows:

Φ =
{

{xt0 , . . . , xtN } : xtn ≥ 0 ∀n ∈ {0, . . . ,N};
N∑

n=0

xtn = X0

}

.

2.3 Price impact

We assume the underlying transaction price follows a geometric Brownian motion Ft with
drift μ and volatility σ and an initial value F0 = V0. In addition, part of the exogenous price
movement (i.e., without trading influence) is the size of the spread s > 0 which is assumed
to be constant. We then call the exogenous price movement the unaffected best ask price
At , where At = Ft + s/2. The limit-order book is modeled by using a constant depth q ,
which means when executing a buy order of the size q the price will be increased by 1 unit.
In general, this translates into the price impact of an order xtn is xtn/q . The average price
impact of the whole order is then xtn/2q . The price jump is due to the influence of order
submitted to the market and consists of the permanent and temporary price impact.

We decompose the price impact of an order xtn into two parts xtn/q = λxtn + κxtn , where
0 ≤ λ ≤ 1/q is the percentage of the permanent price impact and κ = 1/q − λ is the per-
centage of the temporary price impact contributed respectively to the total price impact. We
call the term λxtn with 0 ≤ λ ≤ 1/q , the permanent price impact of the trade xtn and κxtn

with κ = 1/q −λ, the temporary price impact. Permanent price impact is the change in price
caused by HF trader’s order that leads the market to believe that future prices will be dif-
ferent than originally expected or there is a change in the asset’s intrinsic value. Temporary
price impact occurs whenever an order is released to the market but does not provide funda-
mental news or information that changes the market current valuation or long-run outlook
of underlying asset. Trades cause temporary increases in price for buy orders and temporary
decrease for sell orders subsequently followed by a price reversion back to the initial price
trajectory. In order to model the way the temporary price impact of an order vanishes along
with time we use a resilience factor ρ following Obizhaeva and Wang (2013). The part of
the temporary price impact of the order xtn that remains until t > tn is κxtne

−ρ(t−tn), where
the resilience factor ρ > 0. The temporary price impact at time point tn before we make a
trade is defined as Dtn = ∑n−1

i=0 xti κe−ρ(tn−ti ). In fact, the temporary price impact Dtn at tn
before we submit the order, satisfies the recursive equation Dtn = (Dtn−1 + κxtn−1)e

−ρτ with
the initial condition D0 = 0.

2.4 Order flow

We assume that HF trader has the direct access to the order flow and can observe the in-
coming order before other traders at one of the equidistant distributed time points during
the trading period. In this model, we focus on trading one security and assume HF trader
can observe the incoming order (or order flow) of that security during the trading period.
We define tm ∈ {t1, . . . , tN−1} as equidistant distributed time points. HF trader cannot im-
mediately identify how other traders react to the incoming order flow since there might
exist simultaneous orders. We assume that the market only has r different possible reac-
tions to the event. To each of the possible market reaction we assign a set of variables
ωi = (qi, ρi, κi, λi,μi, σi) for i ∈ [1, r], which characterize the influence of news once it
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is disseminated to the market and observed by other traders. By doing so we are able to
model the changes of the depth in the limit order book, the temporary and permanent price
impact, and the resilience speed. We also assign a probability 0 ≤ pi ≤ 1 for i ∈ [1, r] to
each possible market reaction. We impose the condition that

∑r

i=1 pi = 1. We assume that
these probabilities are independent from the price development before the news is publicly
available and the probability can be estimated or predefined based on the order flow we can
see under HFT. ω0 = (q0, ρ0, κ0, λ0,μ0, σ0) are the variables describe the market before the
news is publicly available.

2.5 Execution cost and the objective function

Then the objective function is to find the strategy that minimizes the execution cost of accu-
mulating the whole position, that is,

min
x0,...,xT

(

E

m−1∑

n=0

xtn

(

Ftn + s

2
+ λ0(X0 − Xtn) + Dtn + xtn

2q0

)

+
N∑

n=m

xtn

(

Ftn + s

2
+ λj (X0 − Xtn) + Dtn + xtn

2qj

))

.

3 Analytical solutions

The “incoming order” we considered in this paper will significantly influence the market
by stimulating different order flows. Several empirical studies have tried to determine the
effect of the news, see, for example, Patell and Wolfson (1984), Lee et al. (1993), and Sun
et al. (2011). These studies show that the consequences introduced by the news are absorbed
by the market mostly within the first 10–15 minutes after it is disseminated. The control
variable in our model is size of the market order submitted by HFT algorithm.

Proposition 1 Given the model setting described in Sect. 2, with ω0 = (q0, ρ0, κ0, λ0,μ0, σ0)

for [0, tm−1], and ωi = (qi, ρi, κi, λi,μi, σi) for i ∈ [1, r] from [tm, tN ] with probability
pi and the underlying asset price following a geometric Brownian motion, the strategy
xtN = XtN , and

xtn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2δi

n+1((1 + ci
n+12κie

−2ρi τ − gi
n+1e

−ρi τ )Dtn + (−λi − 2bi
n+1 + gi

n+1e
−ρi τ κi)Xtn

+ (1 − aN−n
i − hi

n+1ai + lin+1κie
−ρi τ ai)Ftn),

for tn ∈ {tm+1, . . . , tN−1},
− 1

2δ0
m+1((1 + 2

∑r

i=1 pi × ci
n+1e

−2ρi τ κi − ∑r

i=1 pi × gi
n+1e

−ρi τ )Dtm

+ (−∑r

i=1 pi × λi − 2
∑r

i=1 pi × bi
n+1 + ∑r

i=1 pi × gi
n+1e

−ρi τ κi)Xtm

+ (1 − ∑r

i=1 pi × (a
N+1−(m+1)
i ) − ∑r

i=1 pi × hi
n+1ai

+ ∑r

i=1 pi × lin+1aie
−ρi τ κi)Ftm),

for tn = tm,

− 1
2δ0

n+1((1 + c0
n+12κ0e

−2ρ0τ − g0
n+1e

−ρ0τ )Dtn + (−λ0 − 2b0
n+1 + g0

n+1e
−ρ0τ κ0)Xtn

+ (1 − am−n
0 × a − h0

n+1a0 + l0
n+1κ0e

−ρ0τ a0)Ftn ),

for tn ∈ {t0, . . . , tm−1},

(1)

is optimal, if (xt0 , . . . , xtN ) ∈ Φ .
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The optimal value function has following form

Jtn (Xtn ,Dtn ,Ftn , tn) =
{

J i
tn
(Xtn ,Dtn ,Ftn , tn) for tn ∈ {tm+1, . . . , tN },

J 0
tn
(Xtn ,Dtn ,Ftn , tn) for tn ∈ {t0, . . . , tm},

where

J i
tn
(Xtn ,Dtn ,Ftn , tn) =

(

aN−n
i Fn + s

2

)

Xtn + λi

(
λ0

λi

X0 − λ0

λi

Xtm + Xtm

)

Xtn + bi
nX

2
tn

+ ci
nD

2
tn

+ di
nF

2
tn

+ gi
nXtnDtn + hi

nXtnFtn + linDtnFtn , (2)

and

J 0
tn
(Xtn ,Dtn ,Ftn , tn) =

(

am−n
0 × aFn + s

2

)

Xtn + λ0X0Xtn + b0
nX

2
tn

+ c0
nD

2
tn

+ d0
nF

2
tn

+ g0
nXtnDtn + h0

nXtnFtn + l0
nDtnFtn , (3)

with ai = eμiτ , vi = e(2μi+σ 2
i
)×τ , a = ∑r

i=1 pi × (a
N+1−(m+1)
i ), and the coefficients given as

follows:

bn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bi
N = 1

2qi
− λi,

for n = N,

bi
n = bi

n+1 − 1
4δi

n+1(−λi − 2bi
n+1 + gi

n+1e
−ρi τ κi)

2,

for n ∈ {m + 1, . . . ,N − 1},
b0

n = ∑r

i=1 pi × λi − λ0 + ∑r

i=1 pi × bi
m+1

− 1
4δ0

m+1(−
∑r

i=1 pi × λi − 2
∑r

i=1 pi × bi
m+1 + ∑r

i=1 pi × gi
m+1e

−ρi τ κi)
2,

for n = m,

b0
n = b0

n+1 − 1
4δ0

n+1(−λ0 − 2b0
n+1 + g0

n+1e
−ρ0τ κ0)

2,

for n ∈ {0, . . . ,m − 1};

(4)

cn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ci
N = 0,

for n = N,

ci
n = ci

n+1e
−2ρi τ − 1

4δi
n+1(1 + ci

n+12κie
−2ρi τ − gi

n+1e
−ρi τ )2,

for n ∈ {m + 1, . . . ,N − 1},
c0
n = ∑r

i=1 pi × ci
m+1e

−2ρi τ − 1
4δ0

m+1(1 + 2
∑r

i=1 pi × ci
m+1e

−2ρi τ κi

− ∑r

i=1 pi × gi
m+1e

−ρi τ )2,

for n = m,

c0
n = c0

n+1e
−2ρ0τ − 1

4 δ0
n+1(1 + c0

n+12κ0e
−2ρ0τ − g0

n+1e
−ρ0τ )2,

for n ∈ {0, . . . ,m − 1};

(5)
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dn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

di
N = 0,

for n = N,

di
n = di

n+1vi − 1
4 δi

n+1(1 − aN−n
i − hi

n+1ai + lin+1κie
−ρi τ ai)

2,

for n ∈ {m + 1, . . . ,N − 1},
d0

n = ∑r

i=1 pi × di
n+1vi

− 1
4δ0

m+1(1 − ∑r

i=1 pi × (a
N+1−(m+1)
i ) − ∑r

i=1 pi × hi
m+1ai

+ ∑r

i=1 pi × lim+1aie
−ρi τ κi)

2,

for n = m,

d0
n = d0

n+1v0 − 1
4δ0

n+1(1 − am−n
0 × a − h0

n+1a0 + l0
n+1κ0e

−ρ0τ a0)
2,

for n ∈ {0, . . . ,m − 1};

(6)

gn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gi
N = 1,

for n = N,

gi
n = gi

n+1e
−ρi τ − 1

2δi
n+1(1 + ci

n+12κie
−2ρi τ − gi

n+1e
−ρi τ )

× (−λi − 2bi
n+1 + gi

n+1e
−ρi τ κi),

for n ∈ {m + 1, . . . ,N − 1},
g0

n = ∑r

i=1 pi × gi
n+1e

−ρi τ

− 1
2δ0

m+1(1 + 2
∑r

i=1 pi × ci
m+1e

−2ρi τ κi − ∑r

i=1 pi × gi
m+1e

−ρi τ )

× (−∑r

i=1 pi × λi − 2
∑r

i=1 pi × bi
m+1 + ∑r

i=1 pi × gi
m+1e

−ρi τ κi),

for n = m,

g0
n = g0

n+1e
−ρ0τ − 1

2δ0
n+1(1 + c0

n+12κ0e
−2ρ0τ − g0

n+1e
−ρ0τ )

× (−λ0 − 2b0
n+1 + g0

n+1e
−ρ0τ κ0),

for n ∈ {0, . . . ,m − 1};

(7)

hn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hi
N = 0,

for n = N,

hi
n = hi

n+1ai − 1
2δi

n+1(−λi − 2bi
n+1 + gi

n+1e
−ρi τ κi)

× (1 − aN−n
i − hi

n+1ai + lin+1κie
−ρi τ ai),

for n ∈ {m + 1, . . . ,N − 1},
h0

n = ∑r

i=1 pi × hi
m+1ai

− 1
2δ0

m+1(−
∑r

i=1 pi × λi − 2
∑r

i=1 pi × bi
m+1

+ ∑r

i=1 pi × gi
m+1e

−ρi τ κi)(1 − ∑r

i=1 pi × (a
N+1−(m+1)
i )

− ∑r

i=1 pi × hi
m+1ai + ∑r

i=1 pi × lim+1aie
−ρi τ κi),

for n = m,

h0
n = h0

n+1a0 − 1
2δ0

n+1(−λ0 − 2b0
n+1 + g0

n+1e
−ρ0τ κ0)

× (1 − am−n
0 × a − h0

n+1a0 + l0
n+1κ0e

−ρ0τ a0),

for n ∈ {0, . . . ,m − 1};

(8)
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ln =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

liN = 0,

for n = N,

lin = lin+1e
−ρi τ ai − 1

2δi
n+1(1 − aN−n

i − hi
n+1ai + lin+1κie

−ρi τ ai)

× (1 + ci
n+12κie

−2ρi τ − gi
n+1e

−ρi τ ),

for n ∈ {m + 1, . . . ,N − 1},
l0
n = ∑r

i=1 pi × lim+1aie
−ρi τ

− 1
2δ0

m+1(1 + 2
∑r

i=1 pi × ci
m+1e

−2ρi τ κi − ∑r

i=1 pi × gi
m+1e

−ρi τ )

× (1 − ∑r

i=1 pi × (a
N+1−(m+1)
i ) − ∑r

i=1 pi × hi
m+1ai

+ ∑r

i=1 pi × lim+1aie
−ρi τ κi),

for n = m,

l0
n = l0

n+1e
−ρ0τ a0 − 1

2δ0
n+1(1 − am−n

0 × a − h0
n+1a0 + l0

n+1κ0e
−ρ0τ a0)

× (1 + c0
n+12κ0e

−2ρ0τ − g0
n+1e

−ρ0τ ),

for n ∈ {0, . . . ,m − 1};

(9)

and

δn+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δi
n+1 = ( 1

2qi
+ bi

n+1 − gi
n+1κie

−ρi τ + ci
n+1κ

2
i e−2ρi τ )−1,

for n ∈ {m + 1, . . . ,N − 1},
δ0
n+1 = (

∑r

i=1 pi × 1
2qi

+ ∑r

i=1 pi × bi
n+1 − ∑r

i=1 pi × gi
n+1e

−ρi τ κi

+ ∑r

i=1 pi × ci
n+1e

−2ρi τ κ2
i )−1,

for n = m,

δ0
n+1 = ( 1

2q0
+ b0

n+1 − g0
n+1κ0e

−ρ0τ + c0
n+1κ

2
0 e−2ρ0τ )−1,

for n ∈ {0, . . . ,m − 1}.

(10)

Proof See Appendix. �

3.1 Case for “one-side trading” constraint

“One-side trading” refers to the situation that the HF trader is not allowed to make an oppo-
site trade, i.e., cannot simultaneously buy and sell. In our model, the optimal choice of HFT
may include orders for opposite trade, i.e., xtn < 0 given different combinations of param-
eters which means the strategy is not in Φ , then the solution is not optimal. HF trader then
faces three choices: (1) to follow what the optimal solution suggests, (2) not to submit order,
or (3) to submit an order that completes the whole trade.

Not to submit order, that is, xtn = 0, which is the next best solution if the optimal solu-
tion suggests an order with xtn < 0, because of the parabolic structure of the optimal value
function. Submitting an order which completes the whole trade, that is, xtn = Xtn , which is
the next best solution if the optimal solution suggests an order with xtn > Xtn , because of
the parabolic structure of the optimal value function. An order with xtn > Xtn is not allowed,
because this forces an order with xtn < 0 later on. If we choose beforehand which order we
will be using, the coefficients for this time point will follow different equations. We can do
this for every time point, except for the last one when we are forced to submit the order
xtN = XtN to complete the whole trade. We then end up with 3N different sets of recursive
equations for the parameters. The only way we can be sure to find the best feasible strategy,
is to calculate all possible strategies then select the best strategy, which is in Φ .
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When the underlying asset price follows a geometric Brownian motion, we can derive
the following propositions:

Proposition 2 For the case xtn = Xtn , the coefficients follow the equations: when n ∈
{m + 1, . . . ,N − 1}:

bi
n = 1

2qi

− λi, ci
n = 0, di

n = 0, gi
n = 1, hi

n = 0, lin = 0;
when n = m:

b0
n =

r∑

i=1

pi × 1

2qi

− λ0, c0
n = 0, d0

n = 0, g0
n = 1, h0

n = 0, l0
n = 0;

and when n ∈ {0, . . . ,m − 1}:
b0

n = 1

2q0
− λ0, c0

n = 0, d0
n = 0, g0

n = 1, h0
n = 0, l0

n = 0.

Proof When n ∈ {m + 1, . . . ,N − 1}, we have the optimal value function

J i
tn
(Xtn ,Dtn ,Ftn , tn) =

[(

Ftn + s

2

)

+ λ0(X0 − Xtm) + λi(Xtm − Xtn) + Dtn + xtn

2qi

]

xtn ,

where we find the coefficients. When n = m, the optimal value function has the form

J 0
tn
(Xtn ,Dtn ,Ftn , tn) =

[(

Ftn + s

2

)

+ λ0(X0 − Xtn) + Dtn + xtn

2qu

]

xtn ,

from which we find the coefficients. When n ∈ {0, . . . ,m − 1} we have the optimal value
function

J 0
tn
(Xtn ,Dtn ,Ftn , tn) =

[(

Ftn + s

2

)

+ λ0(X0 − Xtn) + Dtn + xtn

2q0

]

xtn ,

that gives the coefficients. �

Proposition 3 For the case xtn = 0, the coefficients follow the equations: when n ∈
{m + 1, . . . ,N − 1}:

bi
n = bi

n+1, ci
n = ci

n+1e
−2ρi τ , di

n = di
n+1vi,

gi
n = gi

n+1e
−ρi τ , hi

n = hi
n+1ai, lin = lin+1e

−ρi τ ai;
when n = m:

b0
n =

r∑

i=1

pi × bi
n+1, c0

n =
r∑

i=1

pi × ci
n+1e

−2ρi τ ,

d0
n =

r∑

i=1

pi × di
n+1vi, g0

n =
r∑

i=1

pi × gi
n+1e

−ρi τ ,

h0
n =

r∑

i=1

pi × hi
n+1ai, l0

n =
r∑

i=1

pi × lin+1aie
−ρi τ ;

and when n ∈ {0, . . . ,m − 1}:
b0

n = b0
n+1, c0

n = c0
n+1e

−2ρ0τ , d0
n = d0

n+1v0,

g0
n = g0

n+1e
−ρ0τ , h0

n = h0
n+1a0, l0

n = l0
n+1e

−ρ0τ a0.
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Proof When n ∈ {m + 1, . . . ,N − 1}, we have the optimal value function

J i
tn
(Xtn ,Dtn ,Ftn , tn) =

(

ai × a
N−(n+1)
i Fn + s

2

)

Xtn + λi

(
λ0

λi

X0 − λ0

λi

Xtm + Xtm

)

Xtn

+ bi
n+1X

2
tn

+ ci
n+1D

2
tn
e−2ρi τ + di

n+1viF
2
tn

+ gi
n+1XtnDtne

−ρi τ

+ hi
n+1XtnaiFtn + lin+1Dtne

−ρi τ aiFtn ,

and find the coefficients from it. When n = m, the optimal value function is

J 0
tn
(Xtn ,Dtn ,Ftn , tn) =

(

Fna + s

2

)

Xtn + λ

(
λ0

λ
X0 − λ0

λ
Xtn + Xtn

)

Xtn

+
(

r∑

i=1

pi × bi
n+1

)

X2
tn

+ D2
tn

(
r∑

i=1

pi × ci
n+1e

−2ρi τ

)

+
(

r∑

i=1

pi × di
n+1vi

)

F 2
tn

+ XtnDtn

(
r∑

i=1

pi × gi
n+1e

−ρi τ

)

+
(

r∑

i=1

pi × hi
n+1ai

)

XtnFtn

+ DtnFtn

(
r∑

i=1

pi × lin+1aie
−ρi τ

)

,

which gives the coefficients. When n ∈ {0, . . . ,m − 1}, we can obtain the coefficients from
the optimal value function

J 0
tn
(Xtn ,Dtn ,Ftn , tn) =

(

a0 × a
m−(n+1)

0 ×
r∑

i=1

pi × (
a

N+1−(m+1)
i

)
Fn + s

2

)

Xtn + λ0X0Xtn

+ b0
n+1X

2
tn

+ c0
n+1D

2
tn
e−2ρ0τ + d0

n+1v0F
2
tn

+ g0
n+1XtnDtne

−ρ0τ

+ h0
n+1Xtna0Ftn + l0

n+1Dtne
−ρ0τ a0Ftn .

�

4 Simulation study

In this section we conduct a simulation study to compare the performance (i.e., execution
cost reduction) of HFT, non-HF optimal trading proposed by Obizhaeva and Wang (2013)
(O-W in short), and the naive trading (that equally splits the large order into small pieces),
which is popular for practitioners. In order to calibrate the magnitude of the execution cost
reduction provided by these candidate strategies, we run the simulation for 100,000 times to
ensure the statistical significance. We set the initial value of underlying asset price at 100. In
our simulation study, the lower the execution cost, the better the performance of the trading
strategy we investigated.

4.1 Simulation results

In this simulation, we examine performance of HFT based on the liquidity change measured
by volume arrival. In our HFT model, we describe the volume arrival with q , ρ, and p.
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We consider three different market reactions inferred from order flow for liquid-
ity changes under HFT, that are, liquidity remains same, increasing liquidity, and de-
creasing liquidity. These three situations are uniformly distributed with probability of
1/3. For practitioners, they can modify the probability based on their own estimation.
Following Obizhaeva and Wang (2013), we assign ω0 = (5000,2.2,1/10000,1/10000),
ω1 = (4000,2.0,1/8000,1/8000) , ω2 = (5000,2.2,1/10000,1/10000), and ω3 = (6000,

2.4,1/12000,1/12000). We can consider ω1 as a situation when the liquidity decreases in
the market. In consequence, the depth of the limit-order book turns out to be smaller, which
leads to a higher price impact for the orders we submitted to the market. The resilience
speed ρ is smaller according to the liquidity decreasing. For ω3, it describes an opposite
situation as ω1 does, which is the situation when the liquidity increases. For ω2, the HFT
order has no impact to the market. For the case the underlying value follows the geometric
Brownian motion, we use the same setting as described above and keep the parameters of
the geometric Brownian motion unchanged, regardless of the order flow.

We consider different scenarios to describe the change of liquidity after we originate
HFT. Table 1 shows the result of comparing the expected execution cost for HFT, non-
HF optimal trading (O-W), and Naive trading when ρ and q move symmetrically. Table 2
shows the result of comparing the expected execution cost for HFT, non-HF optimal trading
(O-W), and Naive trading when ρ and q move asymmetrically. Table 3 shows the result of
comparing the expected execution cost for HFT, non-HF optimal trading (O-W), and Naive
trading when p changes. We can conclude that the expected execution cost of HFT is lower
than non-HF optimal trading (O-W) and Naive trading. Figure 1 illustrates the expected
execution cost of HFT is lower than non-HF trading and Naive trading.

In order to show the influence of trading frequency on the execution cost, we compute
the analytical value of execution cost for different trading frequencies under a scenario given
by our model. Table 4 shows the result of comparing the expected execution cost for HFT,
non-HF optimal trading (O-W), and Naive trading at different trading frequencies. We can
see that when increase trading frequency, the execution cost of HFT is reduced comparing
with that of O-W and Naive trading. From Table 4, we can find that when increasing trad-
ing frequency, the execution cost of Naive trading is accordingly increased while that of
O-W does not change significantly. Figures 2 and 3 illustrate the pattern of execution cost
reduction when we increase trading frequency.

5 Empirical study

In Sect. 4, we investigate the performance of our trading strategy based on the simulated
prices which follow the geometric Brownian motion. In this section, we assess the perfor-
mance of HFT with the real market data at different trading frequencies.

5.1 Data

We apply the HFT strategy derived from our theoretical model for a sample of US stocks
from January 2008 to October 2010. We start with a sample of S&P 100, S&P MidCap
400, and S&P SmallCap 600. In our sample, we have 105 stocks. 89 stocks from S&P 100,
9 stocks from S&P MidCap 400, and 7 stocks from S&P SmallCap 600 component stocks
at tick level from the Trades and Quotes (TAQ). We apply the trade classification rules
suggested by Ellis et al. (2000), that is, trades executed at the ask quote are buys, executed
at the bid quote are sells, and all other trades are categorized by the tick rule since the HFT
strategy investigated can only submit market orders.
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Fig. 1 Expected execution cost
for different trading strategies
(μ = 3 %)

Table 4 Comparison of the expected execution cost for HFT, non-HF optimal trading (O-W), and Naive
trading at different trading frequencies

Drift Trading
fre-
quency
N

60 min 30 min 15 min 10 min 5 min 1 min

μ = −5 % HFT 104.5402 104.5244 104.4895 104.4580 104.3804 104.1756

O-W 105.1298 105.1305 105.1273 105.1268 105.1264 105.1262

Naive 105.2932 105.3723 105.4163 105.4324 105.4491 105.4629

μ = −3 % HFT 105.9459 105.9311 105.8971 105.8681 105.7996 105.6270

O-W 106.1368 106.1376 106.1345 106.1340 106.1336 106.1334

Naive 106.3047 106.3849 106.4295 106.4458 106.4626 106.4766

μ = 0 % HFT 107.6235 107.6101 107.5791 107.5544 107.5000 107.3723

O-W 107.6406 107.6416 107.6385 107.6379 107.6376 107.6374

Naive 107.8110 107.8919 107.9368 107.9532 107.9702 107.9842

μ = 3 % HFT 108.7840 108.7722 108.7458 108.7265 108.6866 108.5998

O-W 109.1369 109.1377 109.1346 109.1341 109.1337 109.1335

Naive 109.3049 109.3851 109.4297 109.4460 109.4629 109.4768

μ = 5 % HFT 109.2706 109.2597 109.2375 109.2223 109.1922 109.1305

O-W 110.1303 110.1310 110.1279 110.1273 110.1269 110.1267

Naive 110.2941 110.3732 110.4173 110.4334 110.4501 110.4639

The S&P 100 stocks are large cap companies (i.e., blue chip companies across multiple
industry groups) in the U.S. The S&P MidCap 400 stocks are mid-sized companies which
over 7 % of the U.S. equity market. The S&P SmallCap 600 covers approximately 3 % of
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Fig. 2 The simulation result:
expected execution cost reduction
of HFT comparing with the
non-HF optimal trading (O-W)

Fig. 3 The simulation result:
expected execution cost
reduction of HFT comparing
with Naive trading

the U.S. equities market.4 Therefore, in this empirical study we are able to assess our HFT
strategy for different stocks based on their cap segment in the market which is typically
renowned for trading liquidity and financial instability.

5.2 Empirical results

We use the tick level data to verify the conclusion we have drawn based on the simula-
tion study. In this empirical test, we assume that we only provide liquidity once per trading
day by submitting market orders for accumulating a position of 100,000 shares. The order
size is decided by our HFT algorithm derived in Sect. 3. Transaction prices are determined
by aggregating the data with the trade classification rules suggested by Ellis et al. (2000)
mentioned above. For each trading day through our sample, we compute the average exe-
cution cost of HFT, non-HF optimal trading (O-W), and Naive trading at different trading

4See S&P, http://www.standardandpoors.com.

http://www.standardandpoors.com
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Fig. 4 Expected execution cost
reduction of HFT comparing
with the non-HF optimal trading
(O-W) for Procter and Gamble
(P&G)

Fig. 5 Expected execution cost
reduction of HFT comparing
with Naive trading for Procter
and Gamble (P&G)

frequencies (i.e., from 1 minute to 60 minutes). Figure 4 to Fig. 9 illustrate some repre-
sentative patterns when we comparing the expected execution cost reduction of HFT with
non-HF optimal trading (O-W) and Naive trading. We can see that the empirical observation
for comparing the expected execution cost reduction of HFT with non-HF optimal trading
(O-W) is relatively close to the patterns we theoretically shown (see Fig. 2). But the empir-
ical results for comparing the expected execution cost reduction of HFT with Naive trading
is not close to the patterns we theoretically shown (see Fig. 3).

In order to quantitatively compare the execution cost reduction of HFT at different trad-
ing frequencies with non-HF optimal trading (O-W) and Naive trading, we regress the cost
of non-HF optimal trading (O-W) and Naive trading on that of HFT. The specification (re-
gression 1) is

Yit = αi + γt + βXit + εit , (11)

where Xit stands for the measure of execution cost of stock i on day t based on HFT and Yit

measures the execution cost of stock i on day t without considering HFT under the model
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Fig. 6 Expected execution cost
reduction of HFT comparing
with the non-HF optimal trading
(O-W) for Exxon

Fig. 7 Expected execution cost
reduction of HFT comparing
with Naive trading for Exxon

setting, i.e., non-HF optimal trading (O-W) and Naive trading. Based on our simulation
result, we can infer that αi + γt in Eq. (11) should be greater than zero and β should be
greater than 1 if HFT can significantly reduce the execution cost comparing with the non-
HF optimal trading (O-W) and Naive trading.

In order to remove the individual and time effects that might influence the execution
costs, we then run the regression with following specification (regression 2):

Y ∗
it = β̄X∗

it + εit . (12)

Based on our simulation result, we can infer that β̄ in Eq. (12) should be greater than 1 if
HFT can significantly reduce the execution cost comparing with the non-HF optimal trading
(O-W) and Naive trading.

We report the results of expected execution cost reduction of HFT with non-HF optimal
trading (O-W) in Table 5 and with Naive trading in Table 6 respectively. In our regression,
the term of αi +γt measures the expected execution cost reduction in dollar and the term of β̄

measures that in bps. From Tables 5 and 6, we can see (1) the execution cost of HFT given by



424 Ann Oper Res (2014) 223:403–432

Fig. 8 Expected execution cost
reduction of HFT comparing
with the non-HF optimal trading
(O-W) for JP Morgan

Fig. 9 Expected execution cost
reduction of HFT comparing
with Naive trading for JP Morgan

our model is lower than that of the non-HFT no matter if it is optimal trading (O-W strategy)
or not (Naive strategy) and (2) increasing trading frequency will further reduce the execution
cost, that is, the higher the trading frequency, the lower the execution cost. Particularly, in the
sample we investigated, under the empirical setting we made (i.e., only one fixed position for
supplying liquidity each trading day), when increasing trading frequency from 60 minutes
to 1 minute, the corresponding expected execution cost reduction comparing with non-HF
optimal trading (O-W) and Naive trading is 16 bps and 23 bps respectively.

We compute average daily trading volume (i.e., daily trading volume divided by the num-
ber of daily transactions) and average daily transaction for each stock. We then sort stocks
into five quintiles based on the average trading volume per trade (i.e., average daily trading
volume divided by the average daily transaction). Quintile 1 refers to stocks with largest
average trading volume per trade and quintile 5 corresponds to the smallest. We investigate
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if the performance of our trading strategies is different with respect to different quintiles.
We use the performance dummy δj (i), which occurs in the following fixed effect model:

Yit = αi + γt +
5∑

j=1

βjδj (i)Xit + εit , (13)

where δj (i) = 1 when the i-th observation belongs to the j -th group and δj (i) = 0 otherwise.
We report the results based on Eq. (13) in Tables 7 and 8. We can see that the performance of
HFT strategy is better than the O-W and Naive strategy for each quintile. We can verify that
the HFT strategy can reduce transaction cost comparing with non-HFT strategy and such
superior performance is independent of the characteristics (trading volume or turnover) of
underlying stock.

5.3 Comparison with simulation results

In our simulation study, following the geometric Brownian motion assumption, we generate
the price dynamics and assess the performance of HFT together with non-HF trading and
Naive trading. We find that (1) for a given trading frequency, the HFT strategy performs
better than the non-HF (O-W) trading and Naive trading; and (2) when we increase trading
frequency, our HFT strategy performs better than other two trading strategies. Our empirical
results confirm the simulation results. We can conclude this based on Tables 4, 5 and 6. For
example, in Table 4, we can see that when increase trading frequency, the expected execution
cost of HFT turns to decrease while the cost of Naive trading increases and we conclude the
same from Table 6.

Figure 2 illustrates the expected execution cost reduction of HFT comparing with the
non-HF (O-W) trading. From the empirical results, we could observe a similar pattern for
the comparison between HFT and non-HF (O-W) trading, see Figs. 4, 6, and 8 for different
stocks. Figure 3 illustrates the expected execution cost reduction of HFT comparing with the
Naive trading, the corresponding empirical results illustrate different patterns, see Figs. 5,
7, and 9 for different stocks, but these different patterns do not violate our conclusion.

6 Conclusions

This paper presents a model under discrete optimization to explain how high frequency
trading (HFT) can reduce the expected execution cost and supply liquidity. In this model,
we consider only liquidity influence by HFT and treat market volatility as an exogenous
variable. The HF traders in our model act as market makers providing liquidity by submitting
passive orders. They neither make directional bets nor strive to earn tiny margins on the
trades. They try to limit their position risk by controlling adverse selection in the execution
of their passive orders, that is, to predict order flow or volume arrival after submitting the
HFT order and decide how to break up the large order optimally to reduce market impact.

In this paper, we show the numerical solution and analyze the properties derived from the
model. In order to show the rigidity of the model, we conduct both simulation and empirical
investigation. With the simulation study, we illustrate the theoretical performance of HFT
given the model setting. This study shows that HFT can reduce the expected execution cost
when comparing with non-HF optimal trading and Naive trading. This study investigates the
expected execution cost reduction of HFT with tick level data of US stocks sampled from
S&P 100, S&P MidCap 400, and S&P SmallCap 600 through January 2008 to October
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2010. We show that in the sample we investigated, under the empirical setting (i.e., only one
fixed position for supplying liquidity each trading day), HFT can significantly reduce the
expected execution cost. Particularly, when increasing trading frequency from 60 minutes
to 1 minute, the corresponding expected execution cost reduction comparing with non-HF
optimal trading (O-W) and Naive trading is 16 bps and 23 bps respectively.

Our finding coincides with other empirical papers stating that HFT improve market qual-
ity and reduce price impact (see for example, Hendershott et al. 2011). In our model, HFT
has neither information on the fundamental values of the asset traded nor increases mi-
crostructure noise since these variables are all exogenous. Since the volatility is also treated
as exogenous variable, with our model we cannot conclude if HFT increases stock price
volatility.

Appendix

A.1 Proof of Proposition 1

For the induction basis at time tN = T we have

J i
T (XT ,DT ,FT ,T ) =

(

FT + s

2

)

XT +
[

λ0(X0 − Xtm) + λi(Xtm − XT ) + DT + XT

2qi

]

XT

=
(

FT + s

2

)

XT + λi

(
λ0

λi

X0 − λ0

λi

Xtm + Xtm

)

XT

+
(

1

2qi

− λi

)

X2
T + XT DT .

For the induction step for some tn ∈ {tm+1, . . . , tN−1} we get

J i
tn
(Xtn ,Dtn ,Ftn , tn) = min

xtn

{[(

Ftn + s

2

)

+ λ0(X0 − Xtm) + λi(Xtm − Xtn) + Dtn + xtn

2qi

]

xtn

+ EtnJ
i
tn+1

(
Xtn − xtn , (Dtn + κixtn )e

−ρi τ ,Ftn+1 , tn+1

)
}

= min
xtn

{[(

Ftn + s

2

)

+ λ0(X0 − Xtm) + λi(Xtm − Xtn) + Dtn + xtn

2qi

]

xtn

+
(

ai × a
N−(n+1)
i Fn + s

2

)

(Xtn − xtn)

+ λi

(
λ0

λi

X0 − λ0

λi

Xtm + Xtm

)

(Xtn − xtn ) + bi
n+1(Xtn − xtn)

2

+ ci
n+1(Dtn + κixtn )

2e−2ρi τ + di
n+1viF

2
tn

+ gi
n+1(Xtn − xtn)(Dtn + κixtn )e

−ρi τ

+ hi
n+1(Xtn − xtn)aiFtn + lin+1(Dtn + κixtn )e

−ρi τ aiFtn

}

. (14)

To obtain the minimum, we differentiate Eq. (14) with respect to xtn

∂J

∂xtn

=
(

Ftn + s

2

)

+ λ0(X0 − Xtm) + λi(Xtm − Xtn) + Dtn + xtn

qi

−
(

aN−n
i Fn + s

2

)

− λi

(
λ0

λi

X0 − λ0

λi

Xtm + Xtm

)

− 2bi
n+1(Xtn − xtn )
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+ 2κic
i
n+1(Dtn + κixtn )e

−2ρi τ + gi
n+1e

−ρi τ
[
κi(Xtn − xtn) − (Dtn + κixtn )

]

− hi
n+1aiFtn + lin+1κie

−ρi τ aiFtn

= xtn

(
1

qi

+ 2bi
n+1 − 2gi

n+1κie
−ρi τ + ci

n+12κ2
i e−2ρi τ

)

+ Xtn

(−λi − 2bi
n+1 + gi

n+1e
−ρi τ κi

) + Dtn

(
1 + ci

n+12κie
−2ρi τ − gi

n+1e
−ρi τ

)

+ Ftn

(
1 − aN−n

i − hi
n+1ai + lin+1κie

−ρi τ ai

)
. (15)

Setting ∂J
∂xtn

!= 0 for Eq. (15) to obtain the optimal choice

xtn = oDtn + wXtn + uFtn , (16)

where

o = −1

2
δi
n+1

(
1 + ci

n+12κie
−2ρi τ − gi

n+1e
−ρi τ

)
,

w = −1

2
δi
n+1

(−λi − 2bi
n+1 + gi

n+1e
−ρi τ κi

)
,

u = −1

2
δi
n+1

(
1 − aN−n

i − hi
n+1ai + lin+1κie

−ρi τ ai

)
,

δi
n+1 =

(
1

2qi

+ bi
n+1 − gi

n+1κie
−ρi τ + ci

n+1κ
2
i e−2ρi τ

)−1

.

Putting Eq. (16) into Eq. (14) we obtain the optimal value function given by Eq. (2)
and find the coefficients given by Eqs. (4)–(10). This completes the induction for tn ∈
{tm+1, . . . , tN }. We are unsure about market reaction to the event and the following change
of the parameters that describe the market. At tm we face the following problem

J 0
tn
(Xtn ,Dtn ,Ftn , tn) = min

xtn Etn

{[(

Ftn + s

2

)

+ λ0(X0 − Xtn) + Dtn + xtn

2qu

]

xtn

+ Jtn+1

(
Xtn − xtn , (Dtn + κuxtn )e

−ρuτ ,Ftn+1 , tn+1

)
}

(17)

where qu, κu, au and ρu should indicate that the current value of q and the future value of κ ,
ρ, and au are unknown.

Because the event is modeled as a discrete random variable, we obtain

EtnJtn+1

(
Xtn − xtn , (Dtn + κuxtn )e

−ρuτ , auFtn+1 , tn+1

)

=
r∑

i=0

pi × J i
tn+1

(
Xtn − xtn , (Dtn + κixtn )e

−ρi τ , aiFtn , tn+1

)
. (18)

We use ai = eμiτ and vi = e(2μi+σ 2
i
)×τ and define

1

q
=

r∑

i=1

pi × 1

qi

, a =
r∑

i=1

pi × (
a

N+1−(m+1)
i

)
, λ =

r∑

i=1

pi × λi.

Combining Eqs. (17) and (18) with this definitions, we find that

J 0
tn
(Xtn ,Dtn ,Ftn , tn)

=
[(

Ftn + s

2

)

+ λ0(X0 − Xtn) + Dtn + xtn

2q

]

xtn
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+
(

Fna + s

2

)

(Xtn − xtn) + λ

(
λ0

λ
X0 − λ0

λ
Xtn + Xtn

)

(Xtn − xtn)

+
(

r∑

i=1

pi × bi
n+1

)

(Xtn − xtn)
2

+ D2
tn

(
r∑

i=1

pi × ci
n+1e

−2ρi τ

)

+ 2Dtnxtn

(
r∑

i=1

pi × ci
n+1e

−2ρi τ κi

)

+ x2
tn

(
r∑

i=1

pi × ci
n+1e

−2ρi τ κ2
i

)

+
(

r∑

i=1

pi × di
n+1vi

)

F 2
tn

+ (Xtn − xtn)

(

Dtn

(
r∑

i=1

pi × gi
n+1e

−ρi τ

)

+
(

r∑

i=1

pi × gi
n+1e

−ρi τ κi

)

xtn

)

+
(

r∑

i=1

pi × hi
n+1ai

)

(Xtn − xtn)Ftn + DtnFtn

(
r∑

i=1

pi × lin+1aie
−ρi τ

)

+ xtnFtn

(
r∑

i=1

pi × lin+1aie
−ρi τ κi

)

. (19)

We then obtain the solution that minimizes Eq. (19) is

xm = −1

2
δm+1

((

1 + 2
r∑

i=1

pi × ci
n+1e

−2ρi τ κi −
r∑

i=1

pi × gi
n+1e

−ρi τ

)

Dtm

+
(

−λ − 2
r∑

i=1

pi × bi
n+1 +

r∑

i=1

pi × gi
n+1e

−ρi τ κi

)

Xtm

+
(

1 − a −
r∑

i=1

pi × hi
n+1ai +

r∑

i=1

pi × lin+1aie
−ρi τ κi

)

Ftm

)

, (20)

with

δm+1 =
(

1

2q
+

r∑

i=1

pi × bi
n+1 −

r∑

i=1

pi × gi
n+1e

−ρi τ κi +
r∑

i=1

pi × ci
n+1e

−2ρi τ κ2
i

)−1

.

Inserting Eq. (20) into Eq. (19), we find the optimal value function given by Eq. (2) and the
coefficients given by Eqs. (4)–(10). For the induction step for some tn ∈ {t0, . . . , tm−1} we
get

J 0
tn
(Xtn ,Dtn ,Ftn , tn) = min

xtn

{[(

Ftn + s

2

)

+ λ0(X0 − Xtn) + Dtn + xtn

2q0

]

xtn

+ EtnJ
0
tn+1

(
Xtn − xtn , (Dtn + κ0xtn )e

−ρ0τ ,Ftn+1 , tn+1

)
}

= min
xtn

{[(

Ftn + s

2

)

+ λ0(X0 − Xtn) + Dtn + xtn

2q0

]

xtn

+
(

a0 × a
m−(n+1)

0 × aFn + s

2

)

(Xtn − xtn) + λ0X0(Xtn − xtn)

+ b0
n+1(Xtn − xtn )

2 + c0
n+1(Dtn + κ0xtn)

2e−2ρ0τ + d0
n+1v0F

2
tn
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+ g0
n+1(Xtn − xtn)(Dtn + κ0xtn)e

−ρ0τ

+ h0
n+1(Xtn − xtn )a0Ftn + l0

n+1(Dtn + κ0xtn)e
−ρ0τ a0Ftn

}

. (21)

To obtain the minimum we differentiate Eq. (21) with respect to xtn

∂J

∂xtn

=
(

Ftn + s

2

)

+ λ0(X0 − Xtn) + Dtn + xtn

q0

−
(

am−n
0 × aFn + s

2

)

− λ0X0 − 2b0
n+1(Xtn − xtn)

+ 2κ0c
0
n+1(Dtn + κ0xtn)e

−2ρ0τ + g0
n+1e

−ρ0τ
[
κ0(Xtn − xtn) − (Dtn + κ0xtn)

]

− h0
n+1a0Ftn + l0

n+1κ0e
−ρ0τ a0Ftn

= xtn

(
1

q0
+ 2b0

n+1 − 2g0
n+1κ0e

−ρ0τ + c0
n+12κ2

0 e−2ρ0τ

)

+ Xtn

(−λ0 − 2b0
n+1 + g0

n+1e
−ρ0τ κ0

) + Dtn

(
1 + c0

n+12κ0e
−2ρ0τ − g0

n+1e
−ρ0τ

)

+ Ftn

(
1 − am−n

0 × a − h0
n+1a0 + l0

n+1κ0e
−ρ0τ a0

)
. (22)

Setting ∂J
∂xtn

!= 0 for Eq. (22) to obtain the optimal choice

xtn = oDtn + wXtn + uFtn , (23)

where

o = −1

2
δ0
n+1

(
1 + c0

n+12κ0e
−2ρ0τ − g0

n+1e
−ρ0τ

)
,

w = −1

2
δ0
n+1

(−λ0 − 2b0
n+1 + g0

n+1e
−ρ0τ κ0

)
,

u = −1

2
δ0
n+1

(
1 − am−n

0 × a − h0
n+1a0 + l0

n+1κ0e
−ρ0τ a0

)
,

δ0
n+1 =

(
1

2q0
+ b0

n+1 − g0
n+1κ0e

−ρ0τ + c0
n+1κ

2
0 e−2ρ0τ

)−1

.

Putting Eq. (23) into Eq. (21) we obtain the optimal value function given by Eq. (2) and the
coefficients given by Eqs. (4)–(10). This concludes the induction.
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