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Abstract In this paper, we address data collinearity problems in multiple linear
regression from an optimization perspective. We propose a novel linearly constrained
quadratic programming model, based on the concept of the variance inflation factor
(VIF). We employ the perturbation method that involves imposing a general symmetric
non-diagonal perturbation matrix on the correlation matrix. The proposed VIF-based
model reduces the largest VIF by minimizing the resulting biases. The VIF-based
model can mitigate the harm from data collinearity through the reduction in both the
condition number and VIFs, meanwhile improving the statistical significance. The
resulting estimator has bounded biases under an iterative framework and hence is
termed the least accumulative bias estimator. Certain potential statistical properties
can be further considered as the side constraints for the proposed model. Various
numerical examples validate the proposed approach.
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1 Introduction

Motivation Collinearity problem describes the situation that the non-orthogonality
exists among explanatory variables in regression models. The breakdown in the orthog-
onality among explanatory variables causes imprecisions in the use of normal equation
in the ordinary least squares (OLSs) estimations. The imprecision oftentimes leads to
high variances, and thus low statistical significance, and even the incorrect signs of
the OLS estimators (Shen and Wohlgenant 2010). This renders the OLS estimators,
even though they still exist, inappropriate in statistical senses. Moreover, the power
in prediction of the established regression model is far weakened (Belsley 1984).
Hence, collinearity deserves more attention because its presence has frustrated the
researchers endeavoring to establish important relationship among interesting vari-
ables using regression models (Shacham and Brauner 1997; Næs and Mevik 2001).

Belsley (1980) ascribed collinearity problem to a data problem, instead of a statis-
tical one. This is because the specification of the models has implied the independence
among the explanatory variables. Inevitably, yet, we work with non-experimental data,
pooling from an unknown vast population. Uncertainties and unpredictabilities in the
behaviour of the collected samples oftentimes lead to unsatisfactory results. Much
effort has been sowed in designing sophisticated experiments as well as new tech-
niques to, at least, mitigate the harm from data collinearity, for example the ridge
regression (Hoerl and Kennard 1970), the LASSO (Tibshirani 1996) and the bridge
regression (Frank and Friedman 1993).

Spanos and McGuirk (2002) discussed the near-multicollinearity problems by clas-
sifying the problems into (i) a structual issue (systematic volatility) and (ii) a numerical
issue (erratic volatility). Systematic volatility refers to high correlations among the
explanatory variables, concerning the structure of the correlation matrix that poten-
tially invokes the presence of the data collinearity. The numerical issues concern the
ill-conditionedness of the data matrix.

Ridge regression has won its reputation in addressing data collinearity problems
successfully by imposing perturbations on the diagonals of a correlation matrix. Ridge
regression takes effect by sacrificing the intrinsic structure of the correlation matrix,
viz., the correlation between a variable and itself is 1 by definition. The perturbation,
no matter how small, on the diagonals of the correlation matrix violates this definition
essentially.

We aim at the proposal of a novel approach that incorporates both the systematic
and erratic volatilities, as aformentioned. From the systematic perspective, the pro-
posed approach mitigates the effects from data collinearity by preserving the intrinsic
structure of the correlation matrix, in which aspect the ridge regression does not. From
the erratic perspective, the proposed approach exploits the numerical sensitivity of a
matrix suffering from ill-conditionedness, inheriting the essence from matrix theory
(Horn and Johnson 1990). Moreover, our approach retains the intrinsic property of
a correlation matrix. Therefore, our approach enjoys both theoretical and numerical
merits.

Literature review By far, there is no concensus for the detection of the presence of data
collinearity. The presence of data collinearity is often detected through the concepts of
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the condition number (CN), the variance inflation factor (VIF) and so forth (Fox and
Monette 1992; Curto and Pinto 2007; Kovás et al. 2005). Another criterion is that if
there is more than one non-diagonal elements of the correlation matrix having value(s)
very close to ±1, the collinearity can be said to be present. All those concepts are built
upon the correlation matrix for the explanatory variables in regression models. Each of
these existing diagnostic tools has its own advantages and weaknesses. For a thorough
discussion, please refer to Belsley (1980).

The concept of CN relates to the eigenstructure of the correlation matrix. The CN
is defined through the ratio of the largest to the smallest eigenvalues of the correlation
matrix. A high CN value, usually 30 in the literature (Belsley 1980), suggests the
presence of data collinearity. Nevertheless, there is still no rule of thumb for the CN to
reveal the presence of data collinearity. One of the drawbacks of CN is that CN tends
to be inflated, misleading the researchers to believing the presence of data collinearity
(Lazaridis 2007). The use of CN as the main diagnostic tool should be with caution.

Another widely used diagnostic tool is called the VIF that indicates how the variance
of the corresponding coefficient is inflated due to data collinearity (Curto and Pinto
2011; Robinson and Schumacher 2009). Naturally, a high VIF value for an explanatory
variable suggests the presence of data collinearity. Although there is no rule of thumb
for VIFs, a value of 10 is often adopted, but with caution (O’Brien 2007). Built upon
the concept of VIF, Fox and Monette (1992) introduced a generalized diagnostic for
the collinearity problems. Curto and Pinto (2011) proposed the corrected VIFs that
incorporate the R2 values as the adjustments for the original VIFs. Lin et al. (2011)
proposed a regression method using the concept of VIF as the criterion for variable
selection. Liao and Valliant (2012) examined the role of VIFs in complex survey data.
Increases in the use of VIF as the major tool for different purposes reveals the increase
in its importance in the literature. Based upon this fact, this paper adopts VIF as the
major tool as a natural choice.

There have been a great many of techniques developed as the remedy for the conse-
quent symptoms resulting from data collinearity. To name a few, the ridge regression
(Hoerl and Kennard 1970; McDonald 2009), the LASSO, the bridge regression, the
principal component regression (Batah et al. 2009), better estimators, say Liu-type
estimators (Liu 2003) or other estimators (Bagheri and Midi 2009), the variable dele-
tion/selection approach (Xin and Zhu 2010), data adjustments (Echambadi and Hess
2007; Shieh 2010) and so forth (Bashtian et al. 2011; Fierro and Bunch 1994; Lin 2008)
have been widely used and discussed. Others are referred to Soofi (1990), Leung and
Yu (2000) and Næs and Mevik (2001).

In light of the above from the literature, this paper proposes a novel approach, built
upon the concept of VIF, as a new remedy for data collinearity problems in multiple
linear regression. More specifically, we develop a novel optimization model based upon
the concept of VIF to tackle data collinearity problems. Similar to ridge regression but
unlike those intended for variable selection, the proposed VIF-based model possesses
the feature that all the variables in the regression model are kept, which can be of
practical interest (McDonald and Schwing 1973; Schwing and McDonald 1976).

Our contributions This paper addresses the data collinearity problems in multiple
linear regression. Our contributions are summarized as follows.
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First of all, we propose a novel VIF-based optimization model to overcome the
data collinearity problems. To the best of our knowledge, there is no such model
to date in the literature. The established linearly constrained quadratic programming
(LCQP) model is convex, so it is computationally efficient. Moreover, on the one hand,
our approach resembles LASSO (Tibshirani 1996) and bridge regression (Frank and
Friedman 1993) in the sense that all involve solving associated optimization models to
obtain estimators. On the other hand, our approach resembles ridge regression in the
sense that the established estimator can be representative of a revised normal equation,
to be discussed in the next paragraph.

Second, compared to the ridge regression, our approach tackles the collinearity
problems in a more reasonable way. Ridge estimators are derived from imposing a
diagonal perturbation matrix, λI , for I an identity matrix of appropriate dimension,
on the correlation matrix, viz., ̂β R = (X T X + λI )−1 X T y, given the centered and
scaled data matrix X and y. This can be counterintuitive, for the correlation between
a variable and itself is by definition 1, no matter how small the perturbation λ is. One
may even find out that the ridge regression can still produce a solution by setting
λ = 1. Our approach preserves the intrinsic of the correlation matrix by imposing a
perturbation matrix W on the correlation matrix, viz., ̂βW = (X T X +W)−1 X T y, for
W symmetric and having zeros on the diagonal. Such an imposition does not change
the values on the diagonal of the original correlation matrix.

Third, our approach provides another tool for regression modelling that evades
variable selection when data collinearity problem is present. This can be helpful when
certain important variables might be ruled out by the variable selection according to
certain criteria, as pointed out in McDonald and Schwing (1973) and Schwing and
McDonald (1976). Therefore, our approach accompanies the ridge regression in this
aspect. Both the LASSO and the bridge regression are intended for variable selections,
so we will not make comparisons therewith.

Lastly, various examples validate our approach. The numerical results indicate that
(i) our approach can not only improve the VIFs, but the CN as well; (ii) statistical
significance can be potentially improved; and (iii) estimates with different signs can
be corrected.

Organization The rest of the paper is organized as follows. In Sect. 2, we first give
an overview of the proposed model, and then specify the proposed LCQP built upon
the concept of VIF. In Sect. 3, we answer the question of how the superposition of a
perturbation matrix affects the OLS estimators. In Sect. 4, we discuss algorithmic and
statistical issues. We first visualize certain statistical constraints mathematically. The
proposed LCQP can be refined by incorporating the additional statistical constraints.
We then state the proposed iterative algorithm for solving the LCQP and the related
numerical issues subsequently. In Sect. 5, we mainly focus on the standard t hypoth-
esis testing for the perturbed regression estimators. In Sect. 6, we illustrate various
examples that suffer from data collinearity problems. The examples include a sales
data drawn from Chatterjee and Hadi (2006) in Sect. 6.1, a famous benchmark diabetes
data (Efron et al. 2004) in Sect. 6.2, an application to the collinear dataset (Chatterjee
and Hadi 2006) in Sect. 6.3 and one time series data with one variable having wrong
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sign after being detrended (Shen and Wohlgenant 2010) in Sect. 6.4. Lastly in Sect. 7,
we point out certain concluding remarks and the future research directions.

2 Model specification

Overview In this section, we aim at the establishment of the LCQP for addressing
data collinearity problems. Before that, we first introduce certain notations that will
be used subsequently in the model derivation. We then specify the construction of the
model.

The key idea of the proposed approach resides in the superposition of a symmetric
non-diagonal perturbation matrix on the correlation matrix. This essentially originates
from the matrix theory. When a matrix suffers from ill-posedness, viz., the condition
number thereof is very high, a slight perturbation in the data can result in a relatively
large change in the eigenstructure of the matrix (Horn and Johnson 1990). Our model
inherits the merit of the theory, to show that such perturbations can be obtained through
solving a convex LCQP.

We start with the centered and scaled regression model, generally without intercept.
In light of Belsley (1980), both the normal equation and the VIFs can be considered
as a function of the correlation matrix. We employ the first-order Taylor approxima-
tion on both the normal equation and the VIFs to construct the objective function
and the constraints, respectively, for the resultant LCQP. The LCQP has a convex
quadratic objective function and a set of linear constraints. The convexity guarantees
the computational efficiency in solving the LCQP, as will be shown later in Sect. 6.

2.1 Notations and assumptions

All vectors are written in boldface, and matrices are written in capital letters. We
denote by x ∈ R

m a real column vector of dimension m-by-1, with xi as its i th
element, for i ∈ {1, . . . , m} and m ∈ N (set of natural numbers). We write A ∈ R

m×n

a real matrix of dimension m-by-n, for m, n ∈ N. We denote a matrix A ∈ R
m×n

by
[

ai, j
]

in which ai, j is the (i, j)th element of the matrix A,∀i ∈ {1, . . . , m} and
∀ j ∈ {1, . . . , n}. Occasionally, we use (A)i, j ≡ ai, j as the (i, j)th element of the
matrix A. We let A ≡ [

ai, j
]

i �= j ∈ R
m×m be a squared matrix with all diagonals

being zero and with nondiagonals being ai, j ,∀i �= j . A diagonal matrix A ∈ R
m×m

is denoted by Diag [ai ] with ai being the i th diagonal element of A. We denote by
A � (�) 0 a positive (semi)definite matrix A. The transpose of a matrix A ∈ R

m×n is
denoted by AT ∈ R

n×m . The inverse of a matrix A ∈ R
m×m , if it exists, is denoted by

A−1 ∈ R
m×m . The determinant of a matrix A ∈ R

m×m is denoted by det (A). The kth
submatrix derived from deleting the kth row and column of a matrix A is denoted by
A {k}. The eigen-system of a matrix A ∈ R

m×m is denoted by the pair (Λ (A) , V (A)),
where Λ(A) ≡ (λ1, . . . , λm)T is the eigenvalues and V (A) ≡ (υ1, . . . , υm), with
υk ∈ R

m for k = 1, . . . , m, are the eigenvectors associated.
This paper adopts the standard vector/matrix norms. For a vector x ∈ R

m , the
standard vector l2-norm is defined by ‖x‖2

2 ≡ ∑m
i=1 x2

i . For a matrix A ∈ R
m×m , the

standard matrix l2-norm is defined by ‖A‖2
2 ≡ ∑m

i, j=1 a2
i, j .
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This paper considers a general centered and scaled regression model, viz., y =
Xβ + u. Let X ∈ R

n×k be the centered and scaled data matrix. The matrix product
X T X (≡ ΩX X ) ∈ R

k×k is the correlation matrix for the independent variables accord-
ingly (Belsley 1984). The correlation coefficient between variable i and variable j is
denoted by �i, j , viz., ΩX X ≡ [

�i, j
]

with �i, j = 1, if i = j , and �i, j ∈ [−1, 1],
if i �= j , for i, j ∈ {1, . . . , k}. Let y ∈ R

n be the response (or the dependent) vector,
β ∈ R

k the vector of regression coefficients and u ∈ R
n be the residual vector.

A random variable Y that is normally distributed with mean E [Y ] and variance
V ar (Y ) is denoted by Y ∼ N (E [Y ] , V ar (Y )). If Y is a standard normal random
variable, then it is denoted by Y ∼ N (0, 1).

Assumptions to be adopted in this paper are the following. We adopt the traditional
linear model assumptions, inclusive of the normality condition for the residuals. We
note that the homoskedasticity is required since we shall need the t-statistics as the
main hypothesis testing. Moreover, we assume that all the explanatory variables are
exogenous.

2.2 Model derivation

We start with the centered and scaled regression model

y = Xβ + u. (2.1)

The OLS estimators can be secured by the normal equation, as a function of the
correlation matrix, in particular

̂β (ΩX X ) =
(

X T X
)−1

X T y ≡ Ω−1
X XΩXy, (2.2)

where ΩXy ≡ X T y. The population correlation matrix is by definition symmetric and
positive definite. The sample correlation matrix, however, may not be so, depending
on the behaviour of the collected non-experimental data, for example Knol and Berge
(1989). In this study, we assume that the sample correlation matrix is positive definite,
viz., ΩX X � 0. Mathematically, we require the smallest eigenvalue of the correlation
matrix to be positive.

In light of Belsley (1980), the VIFs of the independent variables can be derived
from the diagonal elements of the inverse of the correlation matrix, viz., the diagonals
of Ω−1

X X . We denote by Vi (ΩX X ) the VIF for the i th independent variable, in particular

Vi (ΩX X ) ≡
(

Ω−1
X X

)

i,i
, for i ∈ {1, . . . , k} . (2.3)

Our aim is to find a symmetric non-diagonal perturbation matrix W ≡ [
�i, j
]

i �= j ,
as defined in Sect. 2.1, such that the resulting correlation matrix remains positive
definite, viz.,

Ω∗
X X = ΩX X + W � 0. (2.4)
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Note that (W)i, j ≡ 
�i, j = 0, for i = j . Statistics imposed with (2.4) are perturbed.
In our case, the OLS estimators (2.2) imposed with (2.4) become the perturbed OLS
estimators, or simply perturbed estimators, in particular

̂βW
(

Ω∗
X X

) ≡ (

Ω∗
X X

)−1
ΩXy. (2.5)

The VIFs (2.3) imposed with (2.4) become the perturbed VIFs, in particular

Vi
(

Ω∗
X X

) ≡
(

Ω∗−1
X X

)

i,i
, for i ∈ {1, . . . , k} . (2.6)

We shall employ the perturbation method by applying the first-order Taylor approxi-
mation to the perturbed versions of (2.2) and (2.3), viz., (2.5) and (2.6), to establish
the objective function and the constraints, respectively, for the LCQP.

Objective function We start with the perturbed normal Eq. (2.5). Applying the first-
order Taylor approximation about ΩX X to ̂β

(

Ω∗
X X

)

suggests

̂βW
(

Ω∗
X X

) = ̂β (ΩX X ) +
∑

i> j

̂β
′
i, j (ΩX X )
�i, j = ̂β (ΩX X ) + B� , (2.7)

where � ∈ R
n(n−1)/2 is the decision vector consisting of 
�i, j ,∀i > j , and the

columns of B ∈ R
n×(n(n−1)/2) are made of ̂β

′
i, j (ΩX X ) for each particular pair

(i, j) ,∀i �= j . We remind the readers of that the perturbation matrix W ≡ [
�i, j
]

i �= j
will be composed of the elements in the decision vector � , by rearranging the ele-
ments properly. The matrix B can be derived from taking partial derivative of (2.2)
with respect to the nondiagonals. In particular,

̂β
′
i, j (ΩX X ) = ∂̂β i, j (ΩX X )

∂�i, j
= −Ω−1

X X

(

ei ̂β j + e j ̂βi
)

, ∀i �= j

wherein ei is a column zero vector with 1 at the i th position.
Since we are imposing perturbations on the OLS estimators, the resulting estima-

tors become biased. We define the bias by the difference between the perturbed and
the original estimators, viz., bW ≡ ̂βW

(

Ω∗
X X

) − ̂β (ΩX X ) = B� . Therefore, our
objective here is to minimize the bias incurred from such perturbations. In particular,
we aim to minimize the bias in the regression estimator, viz.,

min
�∈Rn(n−1)/2

‖B�‖2 = � T BT B� , (2.8)

where ‖·‖2 is the standard vector l2-norm. The convexity of (2.8) is obvious, for the
product of any matrix A, AT A, is symmetric and positive semidefinite.
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VIF constraints We proceed on with the perturbed VIFs in (2.6). Applying the first-
order Taylor approximation about ΩX X to each Vl

(

Ω∗
X X

)

suggests

Vl
(

Ω∗
X X

) = Vl (ΩX X ) +
∑

i> j

V ′
l (ΩX X ) 
�i, j , for l = 1, . . . , k. (2.9)

The keys to obtain the derivative V ′
l (ΩX X ) are twofold. First, from matrix theory

(Horn and Johnson 1990), we know that

Vl (ΩX X ) = det (ΩX X {l}) / det (ΩX X ) . (2.10)

Second, the determinant of a matrix is the product of its eigenvalues, viz.,

det (ΩX X ) =
n

∏

p=1

λp (ΩX X ) and det (ΩX X {l}) =
n−1
∏

p̂=1

λ p̂ (ΩX X {l}) , (2.11)

where λp and λ p̂ are the pth and p̂th eigenvalues for the matrices ΩX X and ΩX X {l},
respectively.

Based upon (2.10) and (2.11), it can be shown that

V ′
l (ΩX X ) = 2

⎡

⎣

n−1
∑

q̂=1

υ̂q̂,ı̂ υ̂q̂,ĵ

λq̂ (ΩX X {l}) −
n

∑

q=1

υq,iυq, j

λq (ΩX X )

⎤

⎦Vl (ΩX X ) , (2.12)

which is a scalar. Note that υq and υ̂q̂ are the qth and q̂th eigenvectors associated with
ΩX X and ΩX X {l}, respectively; and υq,i and υ̂q̂,ı̂ are the i th and ı̂ th elements of the
eigenvectors υq and υ̂q̂ , respectively. We can thereby write (2.9) as

Vl
(

Ω∗
X X

) = Vl (ΩX X ) + vT
l � , for l = 1, . . . , k, (2.13)

for i �= j and ı̂ �= ĵ in (2.12). Note that the vector vl in (2.13) is composed of (2.12)
for different pairs (i, j).

From (2.13) we define the difference between the perturbed and the original VIFs
by

dl (� ) ≡ Vl
(

Ω∗
X X

) − Vl (ΩX X ) = vT
l � , for l = 1, . . . , k.

Our aim is to decrease the VIFs by imposing a perturbation on the correlation matrix,
viz., we want dl (� ) < 0. To this end, according to the authors’ experience, it suffices
to consider only the independent variable with the largest VIF value, in particular, we
consider

Vk∗
(

Ω∗
X X

) = Vk∗ (ΩX X ) + vT
k∗�

where k∗ = max1≤ j≤k
{

j |V j (ΩX X ) ≥ Vi (ΩX X ), for i �= j
}

. We denote such a con-
straint as

Vmax
(

Ω∗
X X

) = Vmax (ΩX X ) + vT
max� so that dmax (� ) < 0 (2.14)
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Note that (2.14) constitutes a linear constraint, and thus convex. We are now ready to
state the LCQP.

A quadratic programming model Combining (2.8) and (2.14), we form the following
norm-minimization model

min � T BT B� + ρ� T �

s.t. − vT
max� = vr and � ∈ R

n(n−1)/2 (2.15)

where ρ(>0) is a trade-off parameter and vr (>0) is the reduction in the VIF. An
intuitive interpretation of (2.15) is the following. We aim to find a perturbation matrix
(symmetric and zeros on diagonal) so that the largest VIF is reduced, meanwhile
minimizing the bias resulting from the perturbation.

The strict convexity of the objective function guarantees that the global minimizer
to (2.15) can be found, in light of the K–K–T optimality condition (Bazaraa et al.
2006) which in our case is both necessary and sufficient. In particular, the optimal
perturbation vector � ∗ is given by

� ∗ = −vr

vT
max

(

BT B + ρ I
)−1 vmax

(

BT B + ρ I
)−1

vmax. (2.16)

The trade-off parameter ρ plays two roles in the model. First, we wish the norm of
perturbation � T � is small enough so that the model works well. If the norm were
too large, the model could have poorly performed. The trade-off parameter ρ serves
as the penalty imposed on the norm of � T � . Second, the addition of the trade-off
parameter ensures that the objective function is well-posed, viz., BT B+Diag [ρ] � 0,
for ρ > 0. The choices of the parameters ρ and vr will be discussed more in Sect. 4.

3 On perturbed estimators

In this section, we examine how the superposition of a perturbation matrix affects
the OLS estimators asymptotically. The key to analysis originates from Miller (1981)
who gave the inversion results of a sum of several matrices. The main result on the
inversion of a sum of two matrices is given by

(A + B)−1 = A−1 −
(

I + A−1 B
)−1

A−1 B A−1, (3.1)

which is crucial to the following analysis. The proof of (3.1) is simply by multiplying
(A + B) on both sides.

Recall that our approach involves imposing a symmetric non-diagonal perturbation
matrix on the correlation matrix, viz., (2.4). It is obvious that the perturbed estimators
are biased. We characterize the bias in terms of the perturbation matrix in what follows.
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Expectation and variance Starting with (2.5) together with (3.1), it follows that

̂βW
(

Ω∗
X X

) = ̂βO L S −
[

(

Ω∗
X X

)−1 W
]

̂βO L S . (3.2)

which is a function of the OLS estimatorŝβO L S . It follows that the difference between
the original and the perturbed OLS estimators us given by

̂βO L S − ̂βW =
[

(

Ω∗
X X

)−1 W
]

̂βO L S . (3.3)

Taking expectation on both sides suggests

β − E
[

̂βW
] =

[

(

Ω∗
X X

)−1 W
]

β, (3.4)

where E
[

̂βO L S
] ≡ β, the unknown population parameters. The identity (3.4) indicates

that the bias between the population parameters and the expected perturbed estimators

is
[

(

Ω∗
X X

)−1 W
]

β. Thus, if the perturbation matrix W is appropriately controlled,

so is the bias.
The covariance of the established estimators ̂βW can also constructed from (3.2),

which suggests
Cov

(

̂βW
) = σ 2 Q (W) , (3.5)

where Q (W) ≡
[

I − (

Ω∗
X X

)−1 W
] [

I − (

Ω∗
X X

)−1 W
]T

is a function of the pertur-

bation matrix W .

Bounded bias We now show that the bias (3.3) is effectively bounded above. From
(3.3), it is not hard to see that the length of the bias in terms of usual vectoral l2-norms
becomes

∥

∥̂βW − ̂βO L S

∥

∥

2 ≤
(∥

∥

∥

(

Ω∗
X X

)−1
∥

∥

∥

2

∥

∥̂βO L S

∥

∥

2

)

‖W‖2 ≡ k ‖W‖2 , (3.6)

wherein k ≡
∥

∥

∥

(

Ω∗
X X

)−1
∥

∥

∥

2

∥

∥̂βO L S

∥

∥

2. Note that the norms for the matrices
(

Ω∗
X X

)−1

and W in (3.6) are standard matrix l2-norm, while that for the vector ̂βO L S is vector
l2-norm, as defined in Sect. 2.1. This indicates that the bias resulting from the super-
position of a perturbation matrix is controlled by the norm of the perturbation matrix.
Since W is composed of the elements of the perturbation vector � , the relationship
(3.6) can be further represented as

∥

∥̂βW − ̂βO L S

∥

∥

2 ≤ k ‖W‖2 = k′ ‖�‖2 , (3.7)

where k′ = 2k. From (3.7), it becomes obvious that, as long as the lengths of the
perturbations generated by the LCQP (2.15) are minimized, the biases in the estimators
are thereby minimized.
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4 Algorithm

Overview In this section, our aim is twofold. First, we bring up certain statistical
issues, mainly on the perturbation matrix as well as the R2 statistic in Sect. 4.1. Math-
ematically, we visualize them as the statistical constraints, as potential side constraints
for the LCQP (2.15). Second, we state the proposed VIF-based algorithm, the settings
for the model inputs and certain numerical issues in Sect. 4.2.

4.1 Statistical issues

There are certain issues for the perturbation matrix derived from (2.15) as well as the
goodness of fit for the perturbed model. We discuss the issues in what follows.

Approximate confidence bounds Let Ω∗
X X ≡

[

� ∗
i, j

]

. We require that the perturbed

correlation coefficients should lie within the confidence interval under the null hypoth-

esis H0 :
{

� ∗
i, j = �i, j

}

for a specific level of confidence. Let the null hypothesis be

H0 :
{

� ∗
i, j = �i, j

}

against the alternative H1 :
{

� ∗
i, j �= �i, j

}

. We adopt the Fisher’s

Z-transform on the correlation coefficients, given by

Z� ∗ = 1

2
ln

(

1 + � ∗
i, j

1 − � ∗
i, j

)

, for i �= j,

following approximately an normal distribution with mean Z� and variance σ 2
Z =

1
n−3 , viz., Z� ∗ ∼ N (

Z� , (n − 3)−1). The Fisher’s Z -statistic (Z ) is defined as

Z ≡ (Z� ∗ − Z� )

σZ
=

√
n − 3

2
ln

⎡

⎣

(

1 + � ∗
i, j

)

(

1 − �i, j
)

(

1 − � ∗
i, j

)

(

1 + �i, j
)

⎤

⎦ → N (0, 1) .

Since both the standard deviation σZ and �i, j ,∀i, j ∈ {1, . . . , k}, are known, we
can derive the confidence bounds for � ∗

i, j accordingly. It is not hard to see that the
following constraint satisfies the 100 × (1 − α) % confidence interval for � ∗

i, j

(1+�i, j)
(1−�i, j)

exp

(

2z α
2√

n−3

)

− 1

(1+�i, j)
(1−�i, j)

exp

(

2z α
2√

n−3

)

+ 1
≤ � ∗

i, j ≤
(1+�i, j)
(1−�i, j)

exp

(

2z1− α
2√

n−3

)

− 1

(1+�i, j)
(1−�i, j)

exp

(

2z1− α
2√

n−3

)

+ 1
, for i �= j

(4.1)

Remark 4.1 (Approximate bounds) Unfortunately, the confidence bounds (4.1) serves
merely as an approximation for the perturbed correlation coefficient � ∗

i, j , for i �= j .
The use of the Fisher’s Z -transform relies on the normality condition. The Fisher’s
Z -statistic can perform very poorly if the sample size is not large enough, say n < 500
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(Paul 1989). Moreover, there is so far no well-founded hypothesis testing procedure for
testing the relationship between the perturbed and the original correlation coefficients,

viz., H0 :
{

� ∗
i, j = �i, j

}

against the alternative H1 :
{

� ∗
i, j �= �i, j

}

. We bring up

(4.1) for purpose of completion.

Range of correlation coefficients We require that the perturbed correlation matrix still
retains its own characteristic, viz., every correlation coefficient should be within the
−1 to 1 range. Mathematically, we have

� ∗
i, j ∈ (−1, 1) , for i �= j , and � ∗

i, j = 1, for i = j. (4.2)

Sign restrictions The signs of the perturbation should satisfy some rules, if any. That
is, for some specific (i, j)th element, the corresponding perturbation is restricted in
sign,


�i, j = 0 or ± 
�i, j > 0, for (i, j) ∈ I (4.3)

where I is an index set subject to sign restrictions.

Goodness of fit The value of R2 must be less than unity. The R2 statistic is defined

by R2 = 1 − C1 (̃y − ŷ)T (̃y − ŷ), where ỹ ≡ (y−y) , ŷ = X̂β and C1 ≡ (

ỹT ỹ
)−1

. It
is obvious that R2 is a function of the regression estimator ̂β, and therefore a function
of the correlation matrix. In particular, letting R2 ≡ R (ΩX X ), we see that

R (ΩX X ) = 1 − C1
(

ỹ − X̂β (ΩX X )
)T (

ỹ − X̂β (ΩX X )
)

.

Imposing a perturbation matrix W such that (2.4) holds, the first-order Taylor approx-
imation of R (

Ω∗
X X

)

about ΩX X suggests

R (

Ω∗
X X

) = R (ΩX X ) +
∑

i> j

R′
i, j (ΩX X ) 
�i, j , (4.4)

in which R′ (ΩX X ) is the partial derivative with respect to �i, j ,∀i > j . It is not hard
to see that the R′

i, j (ΩX X ) in (4.4) is given by, for i �= j ,

R′
i, j (ΩX X ) = 2C1

(

̂β
T − ỹT XΩ−1

X X

)

(

ei ̂β j + e j ̂βi
)

, (4.5)

which is a scalar and ei is a column zero vector with 1 at the i th position. Expressed in
the vector/matrix notation, (4.5) becomes R (

Ω∗
X X

) = R (ΩX X ) + rT � . Similarly,
we want the difference between the perturbed and original R2 to remain non-negative,
viz.,

R (

Ω∗
X X

) − R (ΩX X ) = rT � ≥ 0. (4.6)

Remarkably, the R2 constraint (4.6) can be helpful when we lose grip on the R2 for
the perturbed model.
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Refined LCQP model The original LCQP (2.15) can be refined by incorporating the
side constraints (4.1)–(4.3) and (4.6), viz.,

min
�∈Rn(n−1)/2

{

� T
(

BT B + ρ I
)

� : −vT
max� = vr , (4.1)−(4.3) and (4.6)

}

. (4.7)

In this paper, the statistical constraints (4.1)–(4.3) and (4.6) will be treated as posterior
test.

On positive definiteness of perturbed correlation matrix We now return to (2.4) left
assertive. In general, W is indefinite in essence, so there is no guarantee that (2.4) is
true. Computationally, however, if one can ensure that the minimal eigenvalue of ΩX X

is greater than or equal to the maximal eigenvalue of W , (2.4) will hold. Specifically,
assuming that Ω∗

X X is positive definite, then, for any x �= 0, we see that

xT Ω∗
X X x = xT (ΩX X + W) x >

(

min
1≤i≤n

{λi (ΩX X )} − max
1≤i≤n

{λi (W)}
)

xT x > 0,

which implies min1≤i≤n {λi (ΩX X )} ≥ max1≤i≤n {λi (W)}. More numerical evi-
dences will be in Sect. 6.

4.2 Proposed algorithm, parameter settings and numerical issues

Before introducing the proposed algorithm, we bring up certain numerical issues that
relate to the design of the proposed algorithm. The proposed algorithm requires certain
exogeneous inputs to begin with. We shall describe the model input and the settings
thereof. We state the general structure of the proposed algorithm thereafter.

4.2.1 Numerical issues and algorithm inputs

Recall that the proposed LCQP (2.15) tackles the data collinearity problem by reducing
the largest VIF while keeping the resultant biases well controlled. The hope to find
a perturbation matrix that can reduce the largest VIF down to a specified level in a
one-step fashion can be of greed and is risky rendering the LCQP (2.15) to collapse.
Compared to the ridge regression, designing an iterative algorithm for our approach
is of necessity, as the inevitable trade-off for finding a more general symmetric non-
diagonal perturbation matrix. We shall show that the computational efficiency of the
designed algorithm for the LCQP (2.15) does not frustrate us much, albeit iterative.

Parameters for the VIF-based model For the LCQP (2.15), we need to specify the
trade-off parameter ρ and the reduction in VIF vr . The trade-off parameter ρ is by
default set to 5. We will show that the choice of ρ does not affect much the performance
of (2.15).

The choice of vr is more important than that for ρ, because the choice of vr relates
directly to the performance (or quality) of the solution to the LCQP model. A moderate
level for vr , say 5, is oftentimes a good choice. Any value greater than 10 would not be
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recommended. This paper chooses vr = 1 by default. A more elaborate setting for vr

is the dynamic adjustment. Keeping vr at a constant level may limit the performance of
our approach, especially at few steps before termination. A recommended setting for
vr would be in decreasing order, viz., vi

r > vi+1
r > 0 for i the iteration number. The

only trade-off for the dynamic adjustment is, however, that the number of iterations
increases. This can be offset by the computational efficiency in solving (2.15).

Parameters for the algorithm Since the proposed algorithm is iterative in nature, we
need to specify the initial values for the algorithm to begin with. The OLS estimators
̂βO L S for (2.1) are chosen as the initial estimators for the algorithm. The correlation
matrix ΩX X as well as the VIFs

{V j (ΩX X ) , j = 1, . . . , k
}

are known from the data
beforehand.

We now specify the stopping criterion for our iterative algorithm. Recall that what
LCQP (2.15) does is to reduce the largest VIF while keeping the bias minimized.
And since our aim is to mitigate the harm from the presence of data collinearity, it is
reasonable to set an appropriately desired level for the largest VIF to go to. We denote
the desired level by vl . For the purpose of comparison, we shall let vl be 3 by default,
depending on the examples.

Algorithm inputs By and large, the algorithm inputs can be represented as a six-tuple
vector P , in particular

P = (

ΩX X ,
{V j (ΩX X ), j = 1, . . . , k

}

,̂βO L S, ρ, vr , vl
)

(4.8)

4.2.2 A VIF-based algorithm

We now present our proposed algorithm. A general algorithmic structure for the algo-
rithm is given below.

WHILE max j=1,...,k
{V j (
X X )

}

> vl

Step 1. (Initialization) Input P as in (4.8)
Step 2. (Construct matrices) Determine the matrices B and vmax
Step 3. (Solve for optimality) Solve (2.15) or use (2.16) to obtain �∗
Step 4. (Posterior Tests) Test if the solution from Step 3 satisfies (4.1)–(4.3)
Step 5. (Update) Update 
X X → 
X X +W∗, ̂β (
X X ) → ̂β (
X X )+ B�∗ and Vmax (
X X ) →

Vmax (
X X ) − vT
max�∗.

ENDWHILE

A few remarks on the VIF-based algorithm are made. First of all, the use of the
refined LCQP (4.7) incorporates the additional statistical constraints (4.1)–(4.3) and
(4.6), as given in Sect. 4.1. However, as numerical results suggest in Sect. 6, there is
no need to impose additional difficulty on the LCQP (2.15). We treat the statistical
constraints (4.1)–(4.3) and (4.6), if not used, as posterior tests.

Regarding the Step 4 of the proposed algorithm, the readers must be aware of the fact
that the superposition of the perturbation matrix W∗ has a universal effect on all VIFs
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(and, of course, the estimators). Recall that the constraint of the LCQP (2.15) is built
upon the independent variable with the largest VIF, and the index thereof is determined
by k∗ = max1≤ j≤k

{

j |V j (ΩX X ) ≥ Vi (ΩX X ), i �= j
}

. The perturbation matrix W∗
is, however, imposed upon each and every non-diagonal element of the correlation
matrix. There is no escape that all VIFs change due to the superposition. Fortunately,
the changes in the VIFs are beneficial in the sense that only those pathological VIFs
are reduced while those good VIFs fluctuates slightly around their original values.
This will later be clear in Sect. 6. By and large, numerically, we effectively calculate
all VIFs in Step 4 and the index in the constraint −vT

max� = vr (or rT � ≥ 0) varies
over iterations.

Maximal number of iterations The objective of this study is to mitigate the effect of
the presence of the data collinearity, instead of the annihilation thereof. As a matter
of fact, there is no way to eliminate the data collinearity, even if it is not severe at all,
given we are working with non-experimental data. Hence, it is not our goal to reduce
the V I Fs down to level 0. Setting an appropriate desired level at which the VIFs go
to, the maximal number of iteration must be finite. More precisely, given a desired
level vl and the reduction in VIF vr , the maximal total number of iterations required
by the algorithm is

M =
⌈Vmax (ΩX X ) − vl

vr

⌉

< ∞,

wherein all quantities are finite and �a� is the least integer great than or equal to a ∈ R.
As a consequence, it follows that

˜kM = k′
⌈Vmax (ΩX X ) − vl

vr

⌉

(

sup0≤i≤M

∥

∥

∥� i
∥

∥

∥

2

)

< ∞,

for k′ in (3.7).

4.3 Perturbed estimators revisited

Having described the proposed VIF-based algorithm, we examine how the iterative
structure affects the bias of our regression estimators ̂βW

(

Ω∗
X X

)

.
We return to (3.7). Let i be the iteration number and M be the maximal iteration

number at which the algorithm terminates. The inequality (3.7) becomes

∥

∥

∥

̂β
i
W

(

Ω∗
X X

) − ̂β (ΩX X )

∥

∥

∥

2
≤ k′

∥

∥

∥� i
∥

∥

∥

2
, for i = 1, . . . , M

wherein̂β
i
W

(

Ω∗
X X

)

and � i are the results at the i th iteration of the algorithm. Hence,
upon termination, the overall bias generated by the algorithm is

M
∑

i=1

∥

∥

∥

̂β
i
W

(

Ω∗
X X

) − ̂β (ΩX X )

∥

∥

∥

2
≤

M
∑

i=1

k′
∥

∥

∥� i
∥

∥

∥

2
≤ ˜kM , (4.9)
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where ˜kM ≡ k′Msup0≤i≤M

∥

∥� i
∥

∥

2 is a constant. Note that the supremum operator
can be replaced by the maximum operator, as long as M is finite. Since � i constitutes
the global minimizer of the LCQP (2.15) at iteration i , the quantity sup0≤i≤M

∥

∥� i
∥

∥

2
is well controlled and so is the overall bias. Based upon the fact above, we term the

resulting estimator ̂β
M
W

(

Ω∗
X X

)

the least–accumulative–bias estimators (LABs).

5 Hypothesis testing

In this section, we discuss the hypothesis testing on the perturbed estimators. As the
objective function of (2.15) suggests, the superposition of the perturbation on the
correlation matrix results in changes in the regression estimators. It is necessary to
perform the standard t test on the perturbed regression estimators. We also show that
the the t-statistic is effectively a function of the VIFs.

We implement the standard t test on the null hypothesis H0 : {

β j
(

Ω∗
X X

) = 0
}

against H1 : {

β j
(

Ω∗
X X

) �= 0
}

. The purpose is to ensure that the perturbed regression
estimators still retain their statistical significance.

The t-statistic for the j th estimator is defined by t j = ̂β j/se
(

β̂ j

)

, for j = 1, . . . , k.

The standard errors of the regression estimators are effectively functions of the VIFs,
in particular,

se
(

̂β j
) =

√

σ 2V j
(

Ω∗
X X

)

with σ 2 = ∥

∥

(

y − ȳ − X̂β
(

Ω∗
X X

))∥

∥

2
2 ,

for a centered and scaled model (2.1). The perturbed t-statistic therefore is defined as

t j
(

Ω∗
X X

) ≡ ̂β
(

Ω∗
X X

)

/

√

σ 2V j
(

Ω∗
X X

)

. (5.1)

From the relationship between t j
(

Ω∗
X X

)

and V j
(

Ω∗
X X

)

in (5.1), it is obvious that the
reductions in VIFs increase the values of the t-statistics.

6 Numerical examples

We apply the LCQP (2.15) and the proposed algorithm in Sect. 4.2 to four examples of
two data types. The first two examples are of cross-section. One of them is the diabetes
dataset discussed in Efron et al. (2004), and the other is a collinear dataset (Chatterjee
and Hadi 2006) in that the correlation coefficients among independent variables are
all greater than 0.9. The rest are time-series datasets. One of them is drawn from
Chatterjee and Hadi (2006), and the other is from Shen and Wohlgenant (2010). All
experiments are implemented in MATLAB R2010b with Pentium 4, 3 GHz CPU and
1G RAM.
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Table 1 The summary of the original information for the Diabete data, derived from the ordinary least
squares

Vars age sex bmi map tc CN

̂βO L S −0.48 −11.42 24.76 15.45 −37.72 470.08

VIFs 1.22 1.28 1.51 1.46 59.2 –

SE 59 60.46 65.7 64.6 411.46 –

Vars ldl hdl tch ltg glu R2

̂βO L S 22.7 4.81 8.43 35.78 3.22 0.52

VIFs 39.19 15.4 8.89 10.08 1.49 –

SE 334.79 209.87 159.45 169.75 65.16 –

Significance of bold shows the reduction in VIFs

Table 2 The summary of the original information for the Diabete data, derived from the proposed algorithm

Vars age sex bmi map tc CN

̂βW −0.2 −11.31 25.56 15.99 −37.12 20.46

VIFs 1.17 1.32 2.26 1.52 2.99 Iters

SE 57.88 61.52 80.59 65.99 92.76 93

Vars ldl hdl tch ltg glu R2

̂βW 22.92 4.28 9.01 36.45 3.76 0.52

VIFs 2.09 1.75 2.18 2.18 1.4 CPU

SE 77.45 70.81 79.1 79.19 63.46 6.48

Significance of bold shows the reduction in VIFs

6.1 The diabetes dataset

The diabetes data, as discussed in Efron et al. (2004), has 10 explanatory variables,
inclusive of age, sex, bmi, map, tc, ldl, hdl, tch, ltg and glu; and there is one response
variable. The context of the dataset is to construct a model to examine the relationship
among those variables. The basic regression information is summarized in Table 1,
consisting of the OLS estimators, VIF values and the standard error.
Applying the LCQP (2.15) using the algorithm to the model yields the perturbed
information in Table 2. We see that the R2 value for the perturbed model remains at
the same level as that from the OLS results. The CN has dropped down enormously
from 470 to 21.

Figure 1 indicates the relationship between the CN and the VIFs. From the figure,
we first observe that the VIF s for (a) age, (b) sex, (c) bmi, (d) map and (j) glu basically
fluctuate around their original values, even though the VIFs for (c) bmi and (d) map
increase slightly. As for those variables with pathological VIFs, their VIFs suggest a
tendency to decrease over the iterations.

Figure 2 concerns two things. First, Fig. 2a shows the relationship between the CN
and the perturbation norm ‖�‖2 over the iterations. By and large, the norm increases
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Fig. 1 a–j Represent the relationship between the condition number and the VIFs for each explanatory
variable in the diabetes dataset. (Solid line—left axis; dashed line—right axis)

as the CN decreases, even though there are certain fluctuations after the 60th iteration.
This fact indicates that it indeed takes more effort for the perturbation to reduce to VIFs,
as the ill-posedness is mitigated. The basically reflects the matrix property (Horn and
Johnson 1990). Second, Fig. 2b gives the numerical validation of the postive definite-
ness assumption (2.4). As in Sect. 4.1, we show that, as long as the minimal eigenvalue
of ΩX X is greater than the maximal eigenvalue of W , the positive definiteness of Ω∗

X X
remains.

6.2 An application to collinear data

We make an attempt to deal with collinear dataset as an example. The context of the
collinear dataset results from a study on the equal opportunity in public education in
United States. The objective was to examine the effect of school inputs on students’
achievements. More details are referred to Chatterjee and Hadi (2006) and the related
literature therein. There are three independent variables (FAM, PEER and SCHOOL),
1 dependent variable (ACHV) and 70 random measurements.

The regression information is summarized in Table 3 below. As the authors men-
tioned, a high F-statistic value (5.72) indicates that the three variables are valid as the
explanatory variables, although the t-statistics reveal statistical insignificance individ-
ually.

The information in Table 3, as well as the correlation matrix below, all suggest the
strong collinearity among independent variables. The strong linear structure between
pairs of the three variables does affect the estimators obtained in Table 3.
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Fig. 2 a Relationship between the condition number and the perturbation norm; b concerns the positive
definiteness property of the perturbed correlation matrix for diabetes data. (Solid line—left axis; dashed
line—right axis)

Table 3 The summary of the original information for the education data, derived from the ordinary least
squares

Variables FAM PEER SCHOOL CN R2

̂βO L S 1.16 1.74 −1.91 393.97 0.19

VIFs 38.443 31.478 88.372 – –

SE 12.52 11.33 18.98 – –

Significance of bold shows the reduction in VIFs

Table 4 The correlation matrix for variables FAM, PEER and SCHOOL

Variables FAM PEER SCHOOL

FAM 1 0.959 0.986

PEER – 1 0.983

SCHOOL – – 1

We see that the original OLS estimator for SCHOOL suggests a negative marginal
effect, with respect to standard deviations, on students’ achievements, holding other
factors constant. However, our approach suggests a more reasonably positive marginal
effect for SCHOOL, as summarized in Table 5. The confliction between the original
and pertured results suggest that more investigation may be needed to confirm how
those variables are related (Table 4).

123



1534 Y. Jou et al.

Table 5 The summary of the original information for the education data, derived from the proposed
algorithm

Variables FAM PEER SCHOOL CN R2

̂βW 0.46 0.54 0.14 14.39 0.18

VIFs 2.66 2.85 3.84 Iter CPU

SE 3.33 3.44 3.99 87 1.73

Significance of bold shows the reduction in VIFs
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Fig. 3 The relationships between the condition number and VIFs for: a FAM, b PEER and c SCHOOL for
education data. (Solid line—left axis; dashed line—right axis)

Figure 3 shows that all VIFs,together with the CN, decreases. More to that, if we
compare (c) to (a) and (b) in Fig. 3, the proposed algorithm effectively renders the
most pathological VIF to decrease stably over the iterations.

The next figure shows (i) the relationship between the condition number and the
perturbation norm; and (ii) the relationship between the minimal and maximal eigen-
values for Ω∗

X X and W . In Fig. 3a, the figure again confirms that, as the condition
number drops down, the perturbation norm becomes larger. In Fig. 3b the positive
definiteness is firm accordingly (Fig. 4).

6.3 The sales dataset

The following data represents a period of 23 years during which the firm was operating
under fairly stable condition. The data shows the effect of the advertising expenditures

123



A VIF-based optimization model to alleviate collinearity problems in multiple linear regression 1535

0

200

400

(a)

C
on

di
tio

n 
N

um
be

r

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

||w
|| 2

0

0.1

0.2

(b)

λ m
in

(Ω
X

X
)

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

λ m
ax

(W
)
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Table 6 The summary of the original information for the advertising data, derived from the ordinary least
squares

Vars At Pt Et At−1 Pt−1 CN R2

̂βO L S 2.35 3.9 3.15 1.6 2.03 233.92 0.92

VIFs 36.94 33.47 1.08 25.92 43.52 – –

SE 6.81 6.48 1.16 5.7 7.39 – –

Significance of bold shows the reduction in VIFs

Table 7 The summary of the new information for the advertising data, derived from the proposed algorithm

Vars At Pt Et At−1 Pt−1 CN R2

̂βW 1.98 3.49 3.44 1.21 1.6 11.78 0.92

VIFs 2.51 2.85 1.16 1.97 2.36 Iters CPU

SE 1.03 1.77 2.61 0.72 0.79 45 0.69

Significance of bold shows the reduction in VIFs

(At and the lagged At−1), promotion expenditures (Pt and the lagged Pt−1), and sales
expense (Et ) on the aggregate sales of a firm in period t . For details of the data, please
see Chatterjee and Hadi (2006).

We summarize the OLS information is given in Table 6.
Applying the proposed approach to the dataset, the results are summarized in Table 7.
The CPU time is 0.7 s for 47 iterations.
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Table 8 The correlation matrix for explanatory variables for US Pork Data

Vars lp lq ldw ldpe lcr4 d98 t

lp 1 −0.25 0.89 −0.004 −0.79 −0.19 −0.86

lq – 1 0.13 −0.17 −0.04 0.07 −0.11

ldw – – 1 −0.05 −0.78 −0.19 −0.91

ldpe – – – 1 −0.02 −0.27 0.12

lcr4 – – – – 1 0.25 0.95

d98 – – – – – 1 0.19

t – – – – – – 1

Table 9 The summary of the original information for (detrended) US pork data, derived from the ordinary
least squares

Vars lp lq ldw ldpe lcr4 d98 t CN

̂βO L S 0.19 −0.04 −0.15 0.06 0.06 −0.05 −0.43 336.74

VIFs 18.45 3.61 22.38 1.87 25.19 1.17 58.79 R2

SE 0.28 0.13 0.31 0.09 0.33 0.07 0.51 0.98

Table 10 The summary of the original information for (trended) US pork data, derived from the ordinary
least squares

Vars lp lq ldw ldpe lcr4 d98

̂βO L S 0.21 −0.03 −0.01 0.01 0.2 −0.05

VIFs 18.45 3.61 22.38 1.87 25.19 1.17

SE 0.37 0.16 0.33 0.09 0.16 0.09

In Fig. 5, we observe that the good VIF for (c) Et fluctuates upward slightly, while
other pathological VIFs drop down enormously. All results reveal the same conclusion
as in the previous two examples (Fig. 6).

6.4 United States pork data

The following example illustrates the United States Pork dataset. The dataset contains
the retail price (rp), deflated retail price (drp), net farm value (nfv), total price spread
(tps), deflated price spread (dps), wage price (wp), wage price index (wpi), fuel price
index (fpi), industrial cost (ic), deflated industrial cost (dic), quantity (q), consumer
price index (cpi), and top 4 concentration rate (cr4) for US pork industry since 1970–
2008 (Table 8).

We refer the detailed context of the dataset to Shen and Wohlgenant (2010). The
model of interest is a detrended one, given by lr = β1lp +β2lq +β3ldw +β4ldpe +
β5lcr4+β6d98+β7t + ε, where lr is the log of the difference between deflated retail
price and deflated price spread, lp is the log of deflated retail price, lq is the log of
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Table 11 The summary of the original information for (detrended) US pork data, derived from the proposed
algorithm

Vars lp lq ldw ldpe lcr4 d98 t CN R2

̂βW 0.19 −0.04 0.03 0.01 −0.15 −0.05 −0.14 14.1 0.96

VIFs 2.65 1.05 2.69 1.73 2.95 1.12 2.31 Iters CPU

SE 0.19 0.12 0.19 0.15 0.2 0.12 0.18 197 3.53
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Fig. 7 The relationship between the condition number and the VIFs for: a lp, b lq, c ldw, d ldpe, e lcr4,
f d98 and g t (from top to bottom). (Solid line—left axis; dashed line—right axis)

quantity, ldw is the log of deflated wage price index, ldpe is the log of deflated fuel
price index, lcr4 is the log os top four concentration rates, d98 is equal 1 if the year
is 1998 or 1999; and 0, otherwise, and t is the cardinal of the years. As reported, the
results for the trended version have a sign difference between coefficients for ldw. Too
see that, we first look at the correlation matrix given below. Table 9 contains the OLS
information. The trending variable was intended to account for the trending variations
existing among the variables. However, it turns out that introducing a detrending
variable t invokes serious collinearity problem for the problem.
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More to that, if we look at the trended version of the problem, we see that the coefficient
for ldw has effectively a different sign, see Table 10.
We attempt to see if the proposed approach can mitigate the effect from introducing the
detrending variable t . Table 11 suggests the perturbed information for the detrended
model.

Two things can be observed. First, the proposed approach successfully reverses
the sign for variable ldw, agreeing with that in the trended model. Second, how-
ever, as we see from Table 11, the coefficient for variable lcr4 becomes negative,
meaning that the marginal percentage effect on lr has a 14 % drops, holding others
constant.

Figure 7 reveals the fact that the CN behaves as VIFs, especially those pathological
ones, do. In Fig. 8a, we observe that there are certain fluctuations on the curve for
the perturbation norm over the iterations. Similarly, there is a quick incline in CN
at around 120th iteration. The phenomena may be due to certain implicit numerical
issues. By and large, Fig. 8a confirms that as the CN goes down, the perturbation norm
goes up. Figure 8b simply confirms the positive definiteness of ΩX X .

7 Concluding remarks

In this study, we propose a novel optimization model, based on the concept of VIF,
to alleviate data collinearity problems in multiple linear regression. We show that
the VIFs can decrease through solving the convex LCQP (2.15), using the proposed
VIF-based algorithm. Various numerical examples validate the proposed approach.
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The comparison between the proposed algorithm and the ridge regression can be
unfair, because both approaches require exogenous parameters that directly affect the
performance thereof. More to that, the relationship between the settings for ridge
regression and our approach is not obviously related. In general, ridge regression
outperforms the proposed algorithm in the VIF reduction.

There are a few issues needed to be solved. First of all, the development of the

testing procedure for testing the hypothesis H0 :
{

� ∗
i, j = �i, j

}

against the alternative

H1 :
{

� ∗
i, j �= �i, j

}

is still missing in the literature. Once the testing procedure has

been constructed, the examination of the perturbations generated by the LCQPs (2.15)
can be done. Second, as the numerical examples suggest, the algorithm still suffer
from numerical instability after certain iterations. This is due to the feature that the
proposed algorithm can decrease the CN while decreasing the VIFs. As the CN has
dropped down to a certain level, the sensitivity of the matrix becomes weak. So, a
stablization of the performance of the algorithm may be needed.
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