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Abstract We study the problem of learning a hidden graph by edge-detecting queries,
each of which tells whether a set of vertices induces an edge of the hidden graph or not.
We provide a new information-theoretic lower bound and give a more efficient adaptive
algorithm to learn a general graph with n vertices and m edges in m log n+ 10m+ 3n
edge-detecting queries.

Keywords Combinatorial search · Graph learning · Competitive group testing ·
Complex model

1 Introduction

In a graph learning problem, a hidden graph G is known to belong to a given family
G of labeled graphs on vertex set [n] := {1, 2, · · · , n}. Referring to the information
of “belonging to G”, we wish to identify G by edge-detecting queries, each of which
tells whether a subset of [n] induces an edge of G. Such a problem is motivated
by applications in DNA physical mapping [14]. In the strategy proposed by Sorokin
et al. [19] for physical mapping, some cloned fragments are produced to cover the
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whole DNA molecule with some gaps and then some of them are assembled to form
longer continuous fragments (contigs). However, the information about the mutual
placement of the contigs on the DNA sequence is lost. Multiplex PCR is a tool to tell
whether there are two neighbouring contigs among a set of contigs so as to identify
the relative replacements of the contigs. For example, if a DNA molecule is circular,
then identifying every pair of close contigs can provide the order of contigs along
the circular molecule; this identification work can be modeled by a graph learning
problem on a family of Hamiltonian cycles and each Multiplex PCR experiment plays
an edge-detecting role in graph learning problem.

Learning a hidden graph is also a subarea of combinatorial search on graphs [1].
Many conditions on G have been considered in the literature [3,7,8,14,15]: labeled
graphs in G have prescribed topology such as Hamiltonian cycle, matching, tree, star,
and clique; labeled graphs in G have bounded degree. The problem of learning a general
graph is to deal with labeled graphs that have no restricted topology. Specifically, G
collects all simple graphs on [n]. Angluin and Chen [6] proved that a hidden general
graph can be identified in 12m log n edge-detecting queries (log := log2) where m
(unknown) is the number of edges in the hidden graph. This is the best known result
to the best of our knowledge.

Learning a hidden general graph can be viewed as a variant of group testing
which is a well-known field of combinatorial search. Given a set of items, each
of which is either positive or negative, a group test on a subset of items deter-
mines whether it contains any positive item. The main task of classical group test-
ing problem is to identify positive items by group tests. An extension of classi-
cal group testing is the complex model, where a set of complexes, each of which
is a subset of basic items, is given and the property (positive or negative) of
each complex is not yet determined; the corresponding query to identify positive
complexes answers whether a subset of basic items contains at least one posi-
tive complex. In classical group testing, the number of positive items is usually
assumed upper bounded while for competitive group testing [12], no information
on the number of positive items is given. Learning a hidden graph is identical to
a subcase of complex model where every set of two items is a complex; posi-
tive complexes correspond to edges and negative ones correspond to all pairs of
items that are not edges. Many studies have been done on the classical competi-
tive group testing (see [10,11,18] for recent development); however, to the best of
our knowledge, very little is known about the competitive group testing on complex
model.

An affine plane of order p contains p2 points and p2 + p blocks of size p such
that each pair of points occur together in exactly one of the blocks. Such an affine
plane exists whenever p is a prime power [4]. The affine plane method proposed
in [14,20] and then employed in [9,16] is to take an affine plane with the point set
containing [n] and then identify each subgraph induced by a block. In this paper, we
concentrate on the study of learning a hidden general graph. We improve the trivial
information-theoretic lower bound (see Sect. 2). Furthermore, by exploiting the affine
plane method along with a fundamental algorithm, we can learn a general graph G on
[n] in m log n + 10m + 3n edge-detecting queries where m (unknown) is the number
of edges of G, which is an improvement of the upper bound in [6] (see Sect. 3). Our
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algorithm performs as well as the algorithms in [9] for some families of graphs of
known topology.

2 Lower bound

Angluin and Chen [6] proved that for any 0 < ε < 2, εm(log n − 2) edge-detecting
queries are required to identify a hidden graph G drawn from the family G of all graphs
with n vertices and m = n2−ε edges. In the following, we deal with the problem that the
hidden G is drawn from the family of all graphs with n vertices, that is, the number of
edges in G is unknown. We provide the following information-theoretic lower bound.

Theorem 2.1
⌈

log
(∑m

i=0

((n
2)
i

))⌉
edge-detecting queries are required to identify a

graph G drawn from the family of all graphs with n vertices if G has exactly m edges.

Before proving our main result on the lower bound, we need to establish some
notions and a lemma. A query can be represented by a subset S of [n] and we use
q(S) to denote its outcome while q(S) = 1 means the outcome is “yes” and q(S) = 0
means otherwise. For simplicity, we call a pair of vertices a non-edge if it does not
induce an edge of the hidden graph. Let TA denote the computation tree of an adaptive
algorithm A that solves the problem of learning a general graph on [n]. Then each leaf
represents a graph G on [n] and in TA the path from the root to the leaf G represents
the query history of the hidden graph G under A. While applying an algorithm, pairs
of vertices are determined as non-edges or edges gradually. For any query S ⊆ [n]
in the query history of G, let E−S (resp. E+S ) collect all pairs of vertices that are
determined as non-edges (resp. edges) in the partial history from the beginning to S.
Let

(S
2

) := {{i, j} : i �= j ∈ S}. Then E∗S :=
([n]

2

) \ (E−S ∪ E+S ) collects all pairs of
vertices that are not determined right after S. Let lA(G) be the depth of a leaf G in TA

and lA(m) = max{lA(G) :G has m edges}. First of all, we have the following result.

Lemma 2.2 Let G be the family of all graphs on [n]. Then for any algorithm A that
solves the hidden graph problem on G, there exists an algorithm Am that also solves
the hidden graph problem on G and satisfies lAm (m) = lA(m) and lAm (r) ≥ lAm (r−1)

for any r ≤ m.

Proof Let Am be a procedure obtained by adjusting A as follows: Suppose that G is
the hidden graph in G. While applying algorithm A, let S be the first query satisfying
|E+S ∪ E∗S| = |

([n]
2

) \ E−S | ≤ m − 1 and S′ be the query preceding S. Since the
number of edges in the hidden graph is unknown, a positive query does not provide
any information to declare any pair of vertices as non-edge. Hence if q(S) = 1, then
|([n]2

) \ E−S′ | = |
([n]

2

) \ E−S | ≤ m − 1, contradicting the selection of S. Therefore,

q(S) = 0 and thus
(S

2

) ∩ E(G) = ∅. Furthermore, assume without loss of generality

that
(S

2

)
� E−S′ since each pair of vertices in E−S′ has been determined as non-edge

after S′. Now, we have an e ∈ (S
2

) \ E−S′ that is an element in E∗S′ \ E(G). In algorithm
Am , we turn to treat e as an edge and q(S) = 1; whenever a query after S contains
e, the outcome is designated to be yes. After each pair of vertices is determined as
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edge or non-edge, return the hidden graph with e removed. Namely, we identify G by
identifying some graph G ′ with E(G ′) = E(G)∪ {e} where e is not an edge of G and
is designated in the middle of excuting the algorithm A. It is clear that Am also solves
the hidden graph problem on G.

Next, suppose that the hidden graph G has m edges. Then it is clear that any query S
in the query history of the hidden graph G under algorithm A satisfies |([n]2

)\E−S | ≥ m.
Hence the query history is preserved to Am . This implies lAm (m) = lA(m).

For r ≤ m, let Gr−1 be the worst case for Am among all graphs with r − 1
edges; namely, lAm (Gr−1) = lAm (r − 1). Let S be the first query satisfying |E+S ∪
E∗S| ≤ m − 1 along the query history of Gr−1 under A. Let Gr be the graph with
E(Gr ) = E(Gr−1) ∪ {e} where e is selected by the algorithm Am as above. Then
the query history of Gr−1 is a part of Gr ’s under Am . Hence, lAm (r) ≥ lAm (Gr ) ≥
lAm (Gr−1) = lAm (r − 1). �


We are now ready to prove the main result on the lower bound.

Proof of Theorem 2.1 According to Lemma 2.2, lA(m) = lAm (m) ≥ lAm (r) for any
r ≤ m. Then in TAm the depth of each leaf representing a hidden graph with at most

m edges is at most lAm (m). We have lA(m) = lAm (m) ≥ log
(∑m

i=0

((n
2)
i

))
. Namely,⌈

log
(∑m

i=0

((n
2)
i

))⌉
queries are required to identify a graph (with m edges) drawn

from the family of all graphs with n vertices. �

Theorem 2.1 shows that the lower bound εm(log n− 2) cannot be achieved by any

algorithm when the number of edges in the hidden graph is large.

3 Efficient learning of a general graph

To introduce our algorithm for identifying a hidden general graph, we start with some
basic routines. Angluin and Chen [5] proved that

Lemma 3.1 For any hidden hypergraph G on [n] with each edge of size at most r ,
there is an algorithm that identifies an edge of G in r�log n� edge-detecting queries.

A binary splitting algorithm [13] introduced to solve the classical group testing
problem is as follows. Test the set of items. If the outcome is positive, test a set
containing half of items, then we know that its outcome indicates either the tested half
or the other half contains a positive item. Then iteratively halve the one with positives
and test one of them until a positive item is obtained. Therefore, a binary splitting
algorithm can identify all positive items in d(�log n� + 1) + 1 group tests where d
(unknown) is the number of positive items and the last 1 is contributed by the last test
which ensures that there is no more positive item.

Let G[S] denote the subgraph of G induced by a vertex set S and G[X, Y ] denote
the bipartite subgraph of G induced by partite sets X and Y . A graph is called non-
trivial if it contains at least one edge. The following result extended from the binary
splitting algorithm plays a fundamental role in our main algorithm.

Lemma 3.2 A bipartite graph G with partite sets X, Y can be identified in |X | +
m(log |Y | + 2) edge-detecting queries where m (unknown) is the number of edges in
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Algorithm 1 IDENTIFY-HIDDEN-GRAPH
Step 1 Identify a maximal matching:

Find a maximal matching M of G by iteratively identifying an edge and removing its two vertices
from G until no more edge can be found. There remains an independent set, say I .
Return: M and I .

Step 2 Decompose G[[n] \ I ] into bipartite subgraphs:
Initialization: Take an edge e = {u, v} from M and let B1 = G[{u}, {v}] and k = 1.
Remove e from M .
Iteration: If M = ∅, then stop the iteration; otherwise, remove a new edge e = {u′, v′} from M
and let i = 1.
(∗) If i > k, then let k ← k + 1 and Bk := G[{u′}, {v′}], and go back to the beginning of the
iteration; otherwise, for Bi := G[X, Y ], apply queries on X ∪{u′}, X ∪{v′}, Y ∪{u′} and Y ∪{v′}.
If either q(X ∪ {u′}) = 0 = q(Y ∪ {v′}) or q(X ∪ {v′}) = 0 = q(Y ∪ {u′}), then include u′, v′ into
X and Y correspondingly such that Bi = G[X, Y ] is bipartite and then go back to the beginning
of the iteration; otherwise, let i ← i + 1 and go back to (∗).
Return: B1, · · · , Bk .

Step 3 Identify each Bi := G[Xi , Yi ] by applying IDENTIFY-BIPARTITE on G[{u}, Yi \ {v}] for each
u ∈ Xi where {v, u} is an edge in M .

Step 4 For any Bi = G[X, Y ] and B j = G[X ′, Y ′] with 1 ≤ i < j ≤ k, apply IDENTIFY-BIPARTITE
to G[X, {u}], G[Y, {u}] G[X, {v}], and G[Y, {v}] for every u ∈ X ′ and v ∈ Y ′ with {u, v} ∈ M .

Step 5 Apply IDENTIFY-BIPARTITE to G[{v}, I ] for each v ∈ [n] \ I .

G. In particular, if 1 = |X | ≤ |Y | and G is known to be non-trivial, m(log |Y | + 2)

edge-detecting queries are sufficient.

Proof G can be identified by the following procedure: for each u ∈ X apply binary
splitting algorithm on Y with u included in each test. Overall, it takes at most |X | +
m(�log |Y |�+1) queries. For 1 = |X | ≤ |Y | and G is known to be non-trivial, a query
on {u} ∪ Y can be saved if X = {u}. �


We denote the procedure that identifies edges in a bipartite graph mentioned in the
proof of Lemma 3.2 by IDENTIFY-BIPARTITE. We now give a five-step algorithm
IDENTIFY-HIDDEN-GRAPH (see Algorithm 1) to identify an arbitrary hidden graph
G even though the number of edges in G is unknown. Our main strategy is to partition
[n], the set of vertices of G, into independent sets (see Step 1–2) and then identify the
hidden subgraphs induced by all pairs of independent sets (see Step 3–5).

Theorem 3.3 For the family G of all graphs on [n], a hidden graph G drawn from G
can be identified in m(log n+4)+α′(G)(log n+5)+1 edge-detecting queries where
m is the number of edges in G and α′(G) is the maximum size of matching in G.

Proof Denote the number of edges identified in Step i by mi . Step 1 clearly returns a
maximal matching M and an independent set I . Since identifying an edge can be done
in 2�log n�(≤ 2 log n+2) queries (Lemma 3.1), M is identified in |M |(2 log n+2)+1
queries where the last test is to ensure that the remaining graph is trivial after M is
identified.

Before each iteration in Step 2, some bipartite graphs B1, B2, · · · , Bk are built. In
the iteration, a new edge e = {u′, v′} is removed from M , and we find the smallest
index i such that Bi ∪ {e} is bipartite; if no such a Bi exists, then the edge e is isolated
as a new bipartite graph. Determining whether Bi ∪{e} is bipartite for a bipartite graph
Bi = G[X, Y ] can be accomplished by using the outcomes of the four queries X∪{u′},
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X ∪ {v′}, Y ∪ {u′} and Y ∪ {v′}. Finally, Step 2 returns bipartite graphs B1, · · · , Bk ,
and [n] \ I is successfully partitioned into independent sets which are partite sets
of B1, · · · , Bk . To analyze the number of queries spent in Step 2, we consider the
following two cases of pairs of e and Bi in the iteration:
Case 1 (e, Bi )s where e is not merged into Bi . Then w.l.o.g. q(X ∪ {u′}) = 1 =
q(Y ∪ {u′}) or q(X ∪ {u′}) = 1 = q(X ∪ {v′}). In either case, at least two edges
containing u′ or v′ will be identified in Step 4. Therefore, the total number of queries
spent in this case for all possible pairs of Bi and e is at most 2m4.
Case 2 (e, Bi )s where e is merged into Bi . Since each edge e is merged into Bi at most
once, at most 4|M | queries are spent in this case.

Hence, there are at most 2m4 + 4|M | queries spent in Step 2.
After Step 1 and Step 2, all the remaining hidden edges are between I and the

partite sets of B1, · · · , Bk and can be classified into three types:

Type 1: Edges in some Bi but not in M ,
Type 2: Edges in G[X, X ′], G[X, Y ′], G[Y, X ′] and G[Y, Y ′] for some Bi :=

G[X, Y ] and B j := G[X ′, Y ′],
Type 3: Edges containing a vertex in I .

Step 3–5 clearly identify edges of Type 1–3, respectively. Therefore, the correctness
of IDENTIFY-HIDDEN-GRAPH is obtained. It remains to analyze the number of
queries spent in Step 3–5. In Step 3, since |Yi \ {v}| < |M | ≤ n

2 for i = 1, · · · k, by
Lemma 3.2 the total number of queries spent here is at most m3(log n

2 + 2)+ |X1| +
|X2| + · · · + |Xk | = m3(log n+ 1)+ |M |. In Step 4, according to the construction of
Bi and B j (see Step 2), at least two of G[X, {u}], G[Y, {u}], G[X, {v}], and G[Y, {v}]
are known to be non-trivial and thus at most two of them are trivial. Therefore, in Step
4 the number of trivial subgraphs that IDENTIFY-BIPARTITE is applied to is at most
m4. Hence by Lemma 3.2 Step 4 takes at most [m4(log n

2+2)]+m4 ≤ m4 log n+2m4
queries. Finally, since |[n] \ I | = 2|M |, by Lemma 3.2 at most 2|M | +m5(log n+ 2)

queries are spent in Step 5.
Overall, IDENTIFY-HIDDEN-GRAPH identifies the hidden graph in

(m3 + m4 + m5)(log n + 4)+ |M |(2 log n + 9)+ 1

= m(log n + 4)+ |M |(log n + 5)+ 1

queries where m3 + m4 + m5 + |M | = m. Therefore, the theorem follows. �

Recall that an affine plane of order p contains p2 points and p2 + p blocks of size

p such that each pair of points occur together in exactly one of the blocks. Such an
affine plane exists whenever p is a prime power. The affine plane method is to take an
affine plane with the point set containing [n] and then identify each subgraph induced
by a block. Since each pair of points occurs together in exactly one of the blocks, the
hidden graph can be determined by identifying the subgraphs induced by blocks. Each
subgraph induced by a block has exactly p vertices. Therefore, to make the method
efficient, we need a small prime power p satisfying p2 ≥ n. For n > 242, there is a
prime p such that n ≤ p2 ≤ 2n (obtained from [17]; see [9,16]) and for n ≤ 242, a
prime power p satisfying n ≤ p2 ≤ 2n can be found easily. Hence,
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Lemma 3.4 For n > 1, there exists a prime power p such that n ≤ p2 ≤ 2n.

We then identify the graph induced by a block by using IDENTIFY-HIDDEN-
GRAPH.

Theorem 3.5 For the family G of all graphs on [n], a hidden graph G drawn from G
can be identified in m log n+10m+3n edge-detecting queries where m is the number
of edges in G.

Proof By the definition of affine plane, we know that each hidden edge appears in
exactly one of the subgraphs induced by blocks. Thus the total number of edges
identified from blocks is exactly m. LetB be the set of blocks. Since

∑
B∈B α′(G[B]) ≤

m and the subgraph induced by a block has p (≤ √2n) vertices, by Theorem 3.3 the
hidden graph can be identified in

∑
B∈B

(||G[B]||(log p + 4)+ α′(G[B])(log p + 5)+ 1
)

≤ m(log p + 4)+ m(log p + 5)+ (p2 + p)

≤ m log n + 10m + 2n +√2n

queries where ||G[B]|| is the number of edges in G[B]. �


4 Conclusion

For the graph learning problem on the family of all graphs with n vertices, we first pro-

vide a better information-theoretic lower bound log
(∑m

i=0

((n
2)
i

))
(m is the number of

edges in the hidden graph). We further provide a deterministic algorithm, IDENTIFY-
HIDDEN-GRAPH, together with the affine plane method to identify the hidden graph
in m log n + 10m + 3n edge-detecting queries. Furthermore, for some families of
graphs of known topology, our algorithm exhibits the same economic performance as
the algorithms presented in [9] do (see the following table).

Hamiltonian cycles Perfect matchings

Information lower bound n log n (1+ o(1))( n
2 log n)

Chang et al. [9] n log n + 10n n
2 log n + 4n

IDENTIFY-HIDDEN-GRAPH with affine plane method n log n + 13n n
2 log n + 8n
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