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Learning-Based Hierarchical Graph for Unsupervised
Matting and Foreground Estimation

Chen-Yu Tseng and Sheng-Jyh Wang, Member, IEEE

Abstract— Automatically extracting foreground objects from a
natural image remains a challenging task. This paper presents
a learning-based hierarchical graph for unsupervised matting.
The proposed hierarchical framework progressively condenses
image data from pixels into cells, from cells into components,
and finally from components into matting layers. First, in
the proposed framework, a graph-based contraction process is
proposed to condense image pixels into cells in order to reduce the
computational loads in the subsequent processes. Cells are further
mapped into matting components using spectral clustering over
a learning based graph. The graph affinity is efficiently learnt
from image patches of different resolutions and the inclusion of
multiscale information can effectively improve the performance
of spectral clustering. In the final stage of the hierarchical
scheme, we propose a multilayer foreground estimation process
to assemble matting components into a set of matting layers.
Unlike conventional approaches, which typically address binary
foreground/background partitioning, the proposed method pro-
vides a set of multilayer interpretations for unsupervised matting.
Experimental results show that the proposed approach can
generate more consistent and accurate results as compared with
state-of-the-art techniques.

Index Terms—Image matting, spectral graph, segmentation.

I. INTRODUCTION

MAGE matting is a process to extract foreground objects

from an image, along with an alpha matte. This process
leads to many useful applications, such as image/video editing,
image layer decomposition, and scene analysis. Typically, in
image matting, the image value I; at the pixel i can be roughly
expressed as a linear combination of a foreground color value
F; and a background color value B;. That is,

Ii =0;F;i + (1 —a;)B;, ey

where a; corresponds to the opacity of the foreground color
and is usually named the alpha matte value.

Up to now, several approaches have been proposed to esti-
mate the alpha matte from a natural image. These approaches
can be generally classified into two categories: supervised
matting [1], [2], [6], [9], [10], [12], [16]-[18] and unsupervised
matting [3], [22]-[24]. In supervised matting, certain kinds
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of user’s guidance, like tri-maps or scribbles, are provided
to define a small number of pixels to be either “foreground”
or “background”. Based on these labeled pixels, a supervised
matting method estimates the alpha matte values for the
remaining unlabeled pixels. In contrast, unsupervised matting
aims to automatically estimate the alpha matte from the input
image without any user’s guidance. Without users’ involve-
ment, how to accurately estimate the alpha matte becomes a
very challenging task. In this paper, we focus mainly on the
development of a hierarchical framework for the unsupervised
matting problem. The proposed framework, however, can be
slightly modified to deal with supervised matting.

In contrast to the abundant publications for supervised mat-
ting, much fewer approaches have been proposed to address
the unsupervised matting problem [3], [22]-[24]. Among
these unsupervised matting methods, the spectral matting
method proposed in [3] is a pioneering work, which extends
the principles of spectral segmentation methods [19]-[21]
to obtain an unsupervised decomposition of the image by
analyzing the eigenvectors corresponding the smallest eigen-
values of the image’s matting Laplacian matrix. This matting
Laplacian matrix computes the affinity between pixel pairs
and is originally proposed in [1] to deal with supervised
matting. In spectral matting, Levin et al. use the matting
Laplacian matrix as the graph Laplacian in spectral analysis to
automatically infer matting components. In their approach, the
final alpha matte is obtained by properly assembling matting
components based on certain grouping criteria.

Even though the spectral matting method has demonstrated
its potential to automatically generate high-quality alpha matte,
we find three major issues that need to be further investigated.
The first issue is the intensive computations required by
spectral analysis. To deal with this issue, a coarse-to-fine
scheme has been presented in [3] to scale down the input
image first, compute the coarse alpha matte thereafter, and
perform up-sampling to recover a fine-level matte finally.
Even though this coarse-to-fine scheme can greatly reduce the
required computations, some image details may get lost and
the matting quality may get degraded.

The second issue is that the grouped matting components
might not always be consistent with each other. One reason for
the inconsistency is that the grouping criterion based on the
matting Laplacian tends to overly group components together.
Recently, various kinds of grouping criteria have been pre-
sented to deal with this issue. For example, Wang et al. in [22]
propose a modification of the matting Laplacian by adjusting
the affinity between components based on the color similarity
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between matting components. If the measured color similar-
ity exceeds an upper/lower threshold, they increase/decrease
the corresponding affinity value of the matting Laplacian.
However, this approach is somewhat sensitive to thresh-
old setting. Besides, their matting Laplacian matrix is con-
structed based on local analysis only. The lack of global
information makes it difficult to deal with cluttered scenes.
On the other hand, Hu et al. [23] present the use of a
foreground/background color constraint. By assuming that
pixels on the image borders are more likely to be parts of the
background, they establish a background color model based on
the statistics of the color values on image borders and define
a foreground/background constraint over the matting compo-
nents. However, this approach relies only on a simple color
model and their matting Laplacian matrix is also constructed in
a local way. This makes their approach less capable in dealing
with cluttered scenes.

The third issue is that existing unsupervised matting
approaches [3], [22], [23] focus mainly on binary partitioning
of the image content even though the spectral matting method
allows an image to be decomposed into several matting layers.
Since a natural image may contain more than one foreground
object, it would be more practical to generate multiple com-
positions of alpha mattes and provide multiple matting layers.

In this paper, we present a hierarchical framework, as illus-
trated in Fig. 1, to deal with unsupervised matting. Based on a
bottom-up mechanism, the proposed framework progressively
condenses image data from pixels into cells, from cells into
components, and finally from components into matting layers.
In our design, we apply simpler operations over the huge
amount of image data in the pixel level while adopting more
complicated operations over the greatly condensed data in
the higher levels. This strategy enables efficient and accurate
estimation of the alpha mattes.

In the bottom level of the hierarchy, image pixels are first
condensed into cells though a pixel-to-cell mapping. This
mapping is based on the assumption that neighboring data
in the feature space tend to share similar matting values. This
condensation can greatly reduce the required computations for
spectral analysis without generating noticeable quality degra-
dation. More importantly, the cell-based structure is suitable
for the learning of multi-scale affinity in the construction of
the cell-level graph model. The inclusion of multi-scale affinity
can effectively improve the performance of spectral analysis
when dealing with images of cluttered scenes. After the
construction of the cell-level graph, matting components are
automatically extracted by solving a graph partitioning prob-
lem. Finally, in the top level of the hierarchy, a component-
level graph is introduced for the estimation of multiple matting
layers. Moreover, we also propose a foreground probability
distribution model to stochastically generate a list of possible
foreground mattes and estimate the foreground possibility for
the matting layers.

The outline of this paper is organized as follows.
In Section II, the overview of the proposed method is pre-
sented. The details of the proposed framework are to be
presented in Section III. Finally, in Sections IV and V, exper-
imental results and conclusions are given.
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Fig. 1. Overview of the proposed framework.

II. HIERARCHICAL GRAPH MODEL

A. Pixel-Level Graph

The first stage in our framework is to condense image
pixels into compact cells in order to significantly reduce
the required computations in the subsequent stages. Here, to
“condense” image pixels means to spatially gather similar
image pixels together. To condense pixels, we propose a local
contraction process based on the minimization of a graph-
based energy function. The formulation of the graph-based
energy function is inspired by one of our previous works
in [27], where a graph-based prior model was proposed to
achieve spatially coherent inference. We adopt the concept
of spatial coherence prior and use it to guide the contraction
process while maintaining the image structure. The details of
the contraction process are to be explained as follows.

In the local contraction process, the input image is first
represented as a graph, where the vertices represent the pixel-
wise intensity data and the edge between a pair of vertices
represents the affinity between the corresponding pixel pair.
Here, we adopt the affinity definition used in [1], where the
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affinity between two pixels i and j within a local window
wq is defined as

-1

1
A,,(i,j):m 1+ (Li—py) (): +‘ q‘ ) (L — )|
2

In (2), I; and I; are the color values of the input image I at
and j, pq is the 3 x 1 mean color vector in the window g,
24 is a 3 x 3 covariance matrix, |og| is the number of pixels
in the window, U is the 3 x 3 identity matrix, and ¢ is a
regularization term to avoid over-fitting in smooth regions [1].
In a smooth region, the entries in X, would be quite small
so that a small deviation caused by noise may induce a large
variation of the affinity value. By properly adding a small value
of ¢, fluctuations of the affinity value in smooth regions can
be effectively suppressed.

Based on (2), if two pixels have similar color appearance,
their affinity value is expected to be large. In our approach,
we place the local window at every image pixel to estimate
the edge strength in the pixel-level graph. For a local window
containing » X r pixels, we can estimate the affinity value for
C; = r(rT”) edges in the graph. Due to the overlapping of
the local windows, the affinity value between a pixel pair is
estimated several time. By averaging these affinity estimates
for each pixel pair, we build a pixel-level graph model. The
computational complexity for calculating the graph edges
based on the r x r local window is O(r2N), where N is the
total number of pixels. In practice, we use a 3 x 3 window.
The computational complexity is relatively light if compared
with the complexity of the following analyses.

After the construction of pixel-level graph model, we imag-
ine the affinity value of each edge as some kind of cohesion
force which tries to pull the corresponding vertex pair closer
to one another. A larger affinity value indicates a stronger
cohesion force, and vice versa. These cohesion forces cause
a spatial contraction of the graph model and can be modeled
as follows. For the image I, we first assume the x-coordinate
and y-coordinate of its image pixels have been normalized to
the range of [0,1]. Here, we denote (x;,y;) as the original
spatial coordinates of the i™ pixel and denote (%;, 7;) as the
spatial coordinates after the contraction process. Moreover, we
represent these 2-D image coordinates in terms of 1-D vectors:
a1ty =Iyya...oonl’s ],
and§ = [5172... iN]T, where N denotes the total number of
pixels in the image. With the above notations, the contraction
process is formulated as the derivation of the optimal vectors
X and ¥ which minimize the following energy functions:

N
ST Al ) (i~ 7) 2 D G — )

X = [x1x2... i:[iliz...

E,®) =
wg i,jewy, k=1
3)
and
N
E® =D > Ay, ))Gi—5) + 2y > G — w)*.

0 i,jew, k=1

“)
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In (3) and (4), the first term corresponds to the pair-wise
cohesion forces that tend to pull pixels spatially closer, while
the second term corresponds to the deviation cost that tries to
preserve the original image structure. The two parameters A,
and A, are used to control the strength of contraction.

To find the optimal vectors X and y, we rewrite (3) and (4)
as

E.X) = 2X"Lx + A, (X — x)T (X — x), and (5)
E\§ =2"Ly+2.G-y" G —y. (6)

Here, L. denotes the graph Laplacian whose off-diagonal
entries are defined as L(i, j) = wq‘(”)ew A, G, )
and the diagonal entries are defined as L(, 1) =
2 qu|(i,j)ewq A, (i, j). By taking the differentiation of (5)
and (6) with respect to X and ¥, we can construct the following
linear system:

QL + A,Dx = A,x, and @)
QL + 4,Dy = Ayy. ®)

The optimal solutions are then solved based on (7) and (8) by
using the conjugate gradient method [28].

In Fig. 1(al) and (a3), we show an image and its data dis-
tribution with respect to the original spatial coordinates (x, y).
In Fig. 1(a2) and (a4), we show the image after the contraction
process and the data distribution with respect to (x, y). Here,
we use the gray color to represent vacant regions. It can be
seen that pixels with similar appearance converge toward each
other after the contraction process, while pixels with dissimilar
appearance tend to depart from each other.

After the contraction process, we merge these deformed
pixels into cells. Here, we represent each image pixel as a
feature vector in the five-dimensional space W defined by the
deformed spatial coordinates (x, y) and the RGB color values
(IR, 19, I8). In that feature space, spatially neighboring pixels
with different colors will be pulled away from each other and
will be less likely to get blended together.

The merging of image pixels into cells can be repre-
sented as a pixel-to-cell mapping process. Given the pixel i
with the deformed coordinates (X;, y;) and the RGB values
(IlR, IlG, IlB ), we map this pixel into the cell with the index
([%i x by, [3i x bsl, [IR x b1, [I€ x bel, [P x b.]). Here,
[ ] denotes the rounding operation, by represents the number
of spatial quantization intervals, and b, represents the number
of color quantization intervals. The pixel-to-cell mapping of
the whole image is recorded in terms of an N x P binary
matrix M, where N and P denote the total number of image
pixels and cells, respectively. Here, if the i™ pixel is classified
as an element of the j1 cell, we define M(i, j) = 1 while
M(i, k) = 0 for all k # j. In our experiments, we empirically
fix the values of b; and b, to be 15 so that the number of cells
P is roughly around 10k to 20k. In general cases, we found
an appropriate range for these two parameters is 10 ~ 20.

B. Cell-Level Graph

After merging pixels into cells, we aim to construct a cell-
level graph model. Here, we denote Q as the set of cells,
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which contains P cells in total. In our design, the cell-level
graph model is to be constructed by assembling multiple sub-
graph models, with each sub-graph model being learned from
an image patch in the image. In the following paragraphs, we
will first present a learning method to estimate the affinity
values among these cells mapped by the image pixels in a
given image patch. After that, we will introduce a sampling
method to obtain a set of multi-resolution image patches.
By integrating the sub-graph models generated from the set
of multi-resolution image patches, we will explain how to
integrate these sub-graph models into a cell-level graph model.

In image matting, it is usually assumed that the alpha matte
values of the pixels within an image patch can be roughly
expressed as an affine transformation of the corresponding
image features inside the patch [3]. In [2], Singaraju et al.
have specifically presented a few geometric interpretation
models for the affine transformation of the RGB color-alpha
compositing model within a patch. These models have covered
four major kinds of color distributions: 1) a color plane and
a color point; 2) two color points and a single color line;
3) two color lines; and 4) four color points. The coefficients
of the affine transformation are assumed to be constant for
one image patch, but can be varying across different patches.
Since in the pixel-to-cell mapping these pixels mapped to the
same cell typically share similar color appearance and spatial
location, we would expect that these pixels also share similar
alpha matte values. Hence, within an image patch, we assume
the alpha matte values of the referred cells can also be roughly
expressed as an affine transformation of the corresponding
image features.

For an r x r patch in the image, centered at the pixel g, we
can inspect its image pixels and use the pixel-to-cell mapping
to get the set of mapped cells €, which is a subset of €. Here,
we denote N, as the number of cells in €. Since some pixels
in the image patch may map to the same cell, N,would be a
value between 1 and r2. For a cell i in Q,, we use the notation
@, = [rik, gll‘, bf.‘]T to represent its color feature, which is
computed by averaging the RGB color values of all the related
pixels of that cell. As aforementioned, within the patch, we
assume the alpha value of the cell i can be estimated by an
affine transformation of the feature vector ¢;. That is, we have

w=lol 11 1] ©

where B = [B, Bs, Bp]T and By is a scalar. Since we have
assumed that the affine transformation coefficients {8, fo} are
locally constant, we can further derive an affine model for
the alpha matte values of all the cells in €. Let a, be an
Ny x 1 vector of alpha matte values of the N, cells and
o, =[¢],.. .,(b,T\,q]T be a matrix stacked by @; =[] 1].
Based on the above notations, the alpha matte prediction for all
the cells corresponding to the image patch can be expressed as

ocq:<I>q|:£O:|.

Equation (10) relates the alpha matte values of all the cells
in Q, with the corresponding image features. If we assume

(10)
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both &, and @, are given, then the optimal 8 and Sy can be
derived by minimizing the following quadratic function:

aq—<I>q|:£Oi|

where cp is a parameter for regularization. For the cost
function in (11), the optimal solution of B8 and fy can be
derived to be

B T ler
[ﬁo = (o] @, +csDp) @),
In (12), we denote
_|Is O
»=[5 o]

as a 4 x 4 matrix, where I3 is the 3 x 3 identity matrix. By
substituting (12) back to (10), a local constraint over e, can
be formulated as

2
E(B, po) = +cpBT B, (11)

12)

o, = W;ocq, (13)

where
T ler
W, =&, (®]®, +csDy) @],

In (13), W, is an N; x N, transformation matrix. In this
equation, each entry in the left-hand-side e, is expressed as
a linear combination of the entries in the right-hand-side a,.
This means that, the alpha matte value of each cell in Q, can
actually be expressed as a linear combination of the alpha val-
ues of the cells in €. This local constraint over e, can be fur-
ther formulated as a squared error function with respect to a:

o2
Jyloy) = Hocq -W, oy H
= “g (I, — W) (1, — Wq)T oy

= ochqocq. (14)

In (14), I, is the N4 x N, identity matrix. The local Laplacian
matrix for the cells in Q is an N; x N, matrix defined as

Ly =(Ig = W) (I, - Wq)T- (15)

To interpret the local graph Laplacian matrix, we may refer
to the spectral graph theory in [25] and [26]. Assume we
define a graph I'j, in which the vertices represent the cells
in Q, and the edge between a pair of vertices represents
the affinity between the corresponding cell pair. For I'y, its
corresponding graph Laplacian matrix is defined as

L,=D, —A,, (16)

where D, is the degree matrix and A, is the affinity matrix.
The entry A,(ij) represents the affinity value between the
cells i and j, while the degree matrix D, is a diagonal matrix
with its diagonal term being defined as

N‘I
DG, i) =D Ay, j). (17)
j=1
In our approach, we do not explicitly define the affinity
matrix for the cell-level graph. Instead, the affinity information

is derived based on the local learning scheme expressed
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Pixel-based
approach

Cell-based

Image & sampling pattern approach

Fig. 2.
computation.

in (14). Furthermore, the local cost function in (14) can also
be interpreted as

T
Jalag) = o, Lgay
N‘I Nq

I I NI

i=1 j=1

)

where a; denotes the i’ element of the vector a,.

After having introduced how we can learn a local graph
Laplacian matrix L, based on a single image patch, now we
present the proposed multi-scale approach for the construction
of the cell-level graph model. In the following paragraphs,
we will first explain the benefit of the proposed multi-scale
approach. After that, we will explain how to learn the cell-
level graph based on a set of multi-resolution image patches
sampled from an image pyramid, as illustrated in Fig. 1(bl)
and (b2).

In Fig. 2, we use an example to compare the estimation of
the affinity value at different spatial ranges. In the left image
of Fig. 2(a), we show an image that contains a pink circular
object with a square hole, together with a small blue triangular
object. In the middle and right of Fig. 2(a), we illustrate the
corresponding feature distribution in the pixel level and the cell
level, respectively. Here, we use circles and cubes to represent
pixels and cells. In Fig. 2(b) and 2(c), we illustrate the use
of a local window at an image pixel, with 3 x 3 sampling
pixels to explore the affinity information around that pixel.
Here, each @ symbol in the left image represents a pixel in
a sampling pattern. Based on Equation (2), we calculate the
affinity value for each pairing of the 9 sampling pixels. In the
middle of Fig. 2(b), we show the corresponding coverage of
pixel pairs in the feature space in terms of red edges. In this
case, only the affinity values of adjacent sampling pixels are
explored and there is no way to find the affinity between the
light green pixels within the hole and the dark green pixels
outside the pink object. In contrast, in the case of Fig. 2(c),
where we explore the affinity among distant sampling pixels,
some details may get lost, like the relation between the small
blue triangle and the pink circle. To explore the affinity for
both near and far ranges, we propose the multi-scale approach
as illustrated in Fig. 2(d), where a small-scale window is
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Ilustration of affinity computation. (a) Image. (b) Near-range affinity computation. (c) Far-range affinity computation. (d) Two-scale affinity

additionally placed around the blue triangle to recover the
missed affinity information in Fig. 2(c).

In the right column of Fig. 2, we show the estimation
of affinity values in the cell level. It can be seen that both
the near-range and far-range affinity information among cells
can be explored based on the multi-scale sampling scheme
illustrated in Fig. 2(d). Nevertheless, in the cell level, a lot of
redundant affinity computations can be saved as compared to
the case of pixel-level affinity estimation.

The concept of multi-scale affinity estimation is imple-
mented by computing affinity over a set of multi-resolution
image patches. These multi-resolution image patches are sam-
pled from a Gaussian image pyramid as shown in Fig. 1(bl).
Here, we construct a J-level image pyramid from the input
image by recursively performing a down-sampling process
with the sampling rate d; along both x and y directions.
Starting from the coarsest image, we use a sliding window
to extract image patches. For these image paths, we perform a
local affinity learning process, which is to be explained later,
to estimate the affinity values among cells. At this stage, the
estimation of the affinity information is like the far-range case
illustrated in Fig. 2(c) and some detailed affinity information
may be missing. However, as we progressively scan the
image from low-resolution to high-resolution, more and more
details get revealed and we can achieve multi-scale affinity
estimation as illustrated in Fig. 2(d). In general, most affinity
information can be extracted from the low-resolution image;
only a small percentage of detailed affinity information needs
to be extracted from the higher-resolution images. Hence, in
practice, we use a local window to completely scan through the
lowest-resolution image while only sample some of the image
patches in the higher-resolution images to learn the cell-level
affinity.

For the sampling of image patches in the higher-resolution
images, we adopt a residual-based scheme to compensate for
the missing details caused by the down-sampling process.
More precisely, we map individually low-resolution pixels and
high-resolution pixels into grid cells to form two sets of cells.
The difference between these two sets of cells indicates the
missing parts after the down sampling process. Based on the
residual cells, we identify the corresponding pixels and place
sampling patches around these pixels.
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Assume we denote Spych as the set of multi-resolution
image patches. For each image patch in Spach, We construct
a local Laplacian matrix L, based on (14) and (15). With the
set of L;s, now we introduce a global cost function for the
construction of the cell-level graph model. Here, we re-express
Equation (14) as

Jyle) =o' L. (19)

In (19), « = [a1, a2, ...,ap] and LZI denotes a P x P local
Laplacian matrix, whose entries for the pairs of cells in Q, are
equal to the corresponding ones in L,, while the remaining
entries are set to zero. Based on (19), the global cost function
is defined as a weighted sum of J,(e) with the weighting
function w(ly). That is

T = wiy) (aTL;u).

qeQ

(20)

The weighting function w(l,) in (20) reflects the importance of
each image patch according to the corresponding image level
in the pyramid. Here, /,; denotes the level index. In the image
pyramid, the number of pixels in the jth level is (dsz)j ~1 times
smaller than that of the original image after being scaled down
(j—1) times in both x and y directions with the downsampling
rate d;. By assuming that each pixel in the jth-level image is
(dsz)j ~! times more important than that of the original image

pixel, the weighting w(l,) is defined as
w(ly) = (d)la=1. 1)

Moreover, we can reformulate Equation (20) in a more com-
pact form as

J(@) = a’La, (22)
where L = > w(,)L,. (23)
qeQ

The L in (22) is named the cell-level matting Laplacian (CML)
matrix for the cell-level graph model.

Since the CML generated by (23) is basically an unnormal-
ized Laplacian matrix, we need to normalize it before the task
of spectral clustering in order to avoid unbalanced clustering.
In our approach, we apply a symmetric normalization based
on [21] which modifies the affinity values between pairs of
cells based on the degree matrix of the cells. The normalized
CML L is computed as

L=DY2LDp /2 (24)

In (24), we use the diagonal matrix D to denote the P x P
degree matrix of the CML.

C. Component-Level Graph

After having obtained the cell-level graph, we decom-
pose it into a set of matting components and then form
the component-level graph for the estimation of foreground
mattes. During the construction of component-level graph,
some prior information about the foreground model will be
included. In the following subsections, we will first introduce
the generation of matting components and then present the
construction of the component-level graph.
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Input image Ground truth
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Fig. 3. An example of hard segment and alpha matte.

1) Cell-to-Component Mapping: To merge cells into com-
ponents, we perform spectral clustering, followed by an opti-
mization process to transform hard-decision matting segments
into soft-decision matting components. The concept of spectral
clustering is to transfer data into a high-dimensional space,
where data points with high affinity tend to share similar
coordinates, and then to perform clustering in that space.
To achieve that, we first generate a matrix E based on the
S normalized eigenvectors, e!, ..., eS, corresponding to the
S smallest eigenvalues of the P x P cell-level Laplacian
matrix L. In the P x S matrix E = [e!,...,e%], the /™
row vector represents the coordinates of the i cell in Q in
the space spanned by these S eigenvectors. By performing k-
means clustering over the row vectors of E, we cluster the P
cells into K different clusters. These K groups of cells are
treated as the initial matting segments. Here, we use K P x 1
binary vectors ¢k, where 1 <k < K, to represent the hard-
decision clustering result. If the k™ cluster contains the i
cell of Q, we set the i'" element of ¢f to 1; otherwise, the i'"
element of ¢f is set to 0.

To transform the hard-decision segments into soft-decision
matting components, we formulate a global optimization
process based on the cost function in (22). Here, we treat each
matting component as an assembly of cells and represent the
alpha matte information of the component k£ in terms of a
P x I alpha matte ok = [a]f,alz‘, e, a];,]T. The i™ element
of o* indicates the soft membership that the i™ cell belongs to
the k™ component. By expecting that the soft-decision matting
components shall not deviate too much from the hard-decision
matting segments, the alpha matte vector af corresponding
to the k' matting component is obtained by minimizing the
following equation:

J(ock) = (ock)T L (ak) + Ae ((xk — ck)T ((xk - ck), (25)

where A. is a constant to control the trade-off between the
matting Laplacin cost and the deviation from the matting
segments. Based on (25), the optimal &* can be found by
solving the following sparse system of linear equations:

(L 4 A L) af = A.ck, (26)

where I, denotes the P x P identity matrix. Fig. 3 illustrates
an example of comparison between the hard-decision matting
segment ¢* and the soft-decision matting component . It can
be seen that more detailed matting values can be recovered in
the matting component.

2) Component-Level Graph Construction: In our design,
the component-level graph is built based on two perspectives:
one is a condensed graph from the cell-level graph, while
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the other is a divergence-based graph. In the cell level, we
have already introduced a cell-level matting Laplacian L. This
matting Laplacian can be further condensed into a component-
level matting Laplacian. Here, we define a P x K matrix
T = [o!,...,aX], formed by the alpha matte vectors of the
K matting components, as the cell-to-component condensing
function to calculate the component-level matting Laplacian
Leondensed:

Leondensed = TTET~ (27)

Since the cell-level matting Laplacian L is constructed based
on local affinity learning, the lack of knowledge between
spatially isolated components will be a barrier to handle
more complicated scenes. To address this problem, we further
introduce a divergence-based graph, which is constructed by
explicitly estimating the affinity value between every compo-
nent pair. For each pairing of components, we measure the
Kullback-Leibler (KL) divergence between the color distrib-
utions of the two components. For the matting component k,
we use a Z x 1 vector h* = [hk, o, th]T to denote its color
distribution, where Z is the number of color bins. Here, we
use hi‘ to denote the probability value in the i™ bin. Since
we only consider color features in the divergence measure,
we group cells with similar color values into a color bin. For
the i"" color bin of the k' matting component, we denote p;
as the set of cells belonging to this bin. Based on the above
notations, we define hi‘ to be

1
k kAt
h; = NF E ajN s
JEpi

(28)

where N¥ = Z}D:l a’j‘.Nj is the normalization term. In (28),
N;j is the number of pixels in cell j, alj‘. is the alpha value

of the cell j for the k'" matting component. Based on the
above definitions, the KL divergence between the two matting
components m and n is defined as

D, (0™ |h") + D, (h" |h™)
2 b
where Dy, (p llq) = 2. p(@) log (p())/q(i)).
For any pair of comlponents, a high divergence value would
correspond to a low affinity value. Hence, we use the sigmoid

function o (x) = 1/(1 + exp(—x)) to define the affinity
A, (m, n) between Components m and n as

Ve, (m,n) =

(29)

A, (mn)=o0 (VKL - VKL(m,n)). (30)

In (30), we use v, to denote the mean of the KL divergence
values over all component pairs. After having obtained the
K x K divergence-based affinity matrix A the diagonal
degree matrix D, is computed as

KL>

K
Dy, (i) =D Ay, G, ).

j=1

€19

Finally, the divergence-based Laplacian matrix L, is defined
as

L, =D, —A,,. (32)

KL
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By combining the divergence-based Laplacian L, with
the condensed matting Laplacian Lcondensed, We define the
component-level graph Laplacian Leomp to be

Lcomp = Lcondensed + j~1<LL[<L' (33)

In (33), 1, is a parameter to balance the contribution between
Lcondensea and L., . Here, we define this parameter based on
the ratio between the sum of the condensed matting affinity
degrees and the sum of the KL affinity degrees. That is

K K
AKL = ZLcondensed(i, i) ZLKL (i, i) . (34)
i=1 i=1

3) Component-to-Layer Mapping: Once we have derived
the component-level matting Laplacian Le¢opp, we further
introduce a component-to-layer mapping procedure based
on component-level spectral clustering. Similar to the cell-
to-component mapping introduced in Section C-1, the
component-to-layer mapping is also performed based on spec-
tral clustering. Here, a component-level matrix Ec,, is gener-
ated based on the normalized eigenvectors, eéomp, cees efomp
of the K x K component-level Laplacian matrix Leomp. By
performing k-means clustering over the row vectors of E¢opp,
we cluster the K matting components into Q clusters, where
Q is an integer ranging from 2 to K. Besides, we use QK x 1
binary vectors d?, where 1 < g < (, to represent the
clustering result. If the ¢! cluster contains the i’ matting
component, we set the i th element of d to 1; otherwise, the
i" element of d? is set to 0. With d?, we can represent the
alpha matte information of the ¢ matting layer in terms of
the P x 1 vector a;fayer, which is defined as

7 —la' ... «X]d.

otlayer (35)

In our framework, instead of directly clustering cells into
matting layers, we perform spectral clustering twice. We first
cluster cells into components, as mentioned in Subsection C-1,
and then cluster components into layers, as mentioned above.
In the cell-level graph, the adjacency of the graph nodes is
locally computed. Even though the multi-resolution learning
scheme may expand the range of local analysis, the affinity
values among distant cells are still not fully explored. On the
other hand, in the component-level graph, since the number
of matting components is relatively small, we can estimate
the affinity between every pair of components and build a
fully connected graph. This fully connected graph provides
the component-level analysis a more global view as compared
to the cell-level analysis. In Fig. 4, we show the clustering
results when we directly cluster the P cells into two, three,
four, and five clusters. As a comparison, we show the two-
stage clustering results in Fig. 5 and Fig. 6. By decomposing
an image into a larger number of components first, followed
by the component-to-layer mapping, we can obtain much more
reasonable results.

Actually, in the plotting of the alpha matte layers in
Figs. 4 and 5, we have applied a cell-to-pixel mapping to
convert the cell-level information a* back to the pixel domain.
For any pixel i, we usej to denote the corresponding cell of i
and denote u(j) as the set of cells within a neighborhood of j.
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Fig. 4. Results of directly clustering cells into layers.
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Fig. 6. Example of two-stage spectral clustering.

The pixel-level data o” ixel

using the cell-level data values
on the following formula:

of the pixel i can be interpolated by
oce”of the cells in u(j) based

pzxel

Z OC(:‘H pk|l (36)
keu(i)
where
2
b = (Y e p( | fi — fil )}—1ex ( Ifi — fk||)
ken()) i of
(37)

In (37), we use f; to denote the image feature of the pixel i in
the five-dimensional space W defined by the deformed spatial
coordinates (¥, 7) and the RGB color values (IX, 1, I5),
as described in Section II-A. On the other hand, we denote
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fr as the average of the feature vectors related to the cell k.
The conditional probability in (37) models how likely the pixel
i belongs to the cell k, based on the distance between f; and
fx in the feature space. A shorter distance indicates a higher
probability.

D. Foreground Estimation

After having presented the formation of matting layers, we
further address a probability-based description of the matting
layers. Here, we present each matting layer in terms of matting
components and propose a scheme to estimate for each matting
component the probability of being a portion of the foreground
objects. In this probability-based approach, we derive the
probability distribution model p(b) = p(by, ..., bk), where
by € {0,1} for 1 < k < K. For the matting component &,
we have by = 1 when this component is assigned as a
foreground component; otherwise, by = 0. Based on the above
definition, each b represents a foreground matte hypothesis
and corresponds to an assembly of matting components. Once
we have derived the probability distribution p(b) for all
possible b’s, we can pick up a few b’s that are more likely to
represent a foreground matte.

In the proposed framework for foreground estimation, the
distribution model is based on the consistency assumption that
any pair of components with higher graph affinity tends to
share the same foreground index; that is, these two compo-
nents tend to be either both foreground or both background.
Taking the image in Fig. 1 as an example, here we assume
the two purple flowers have been divided into two matting
components. Once one of them is classified as a part of the
foreground set, the other would have a higher probability to be
a foreground component too. With the consistency assumption,
we evaluate a given vector b based on the component-level
graph Leomp and a measure of “inconsistency” is defined as

dfp(b) = b Leompb. (38)
Based on the definition in (38), a vector b with a low value of
dmp(b) indicates the corresponding assembly of matting com-
ponents has a high probability to be a part of the foreground
matte. However, this does not imply that a proper foreground
vector can thus be found simply based on this measure. One
example is that the b vector whose entries are all ones (or
all zeros) corresponds to zero inconsistency. In order to avoid
this problem, we further introduce a balancing weight based
on the assumption that the ratio between the foreground area
and the background area should not be overly unbalanced. The
balancing weight #(b) is defined as

1 1
n(b) = + N (39)
where N, = Zle N¥by and N; = Zle N¥(1 — by) denote
the sum of matting values in the foreground area and the back-
ground area, respectively. The term N¥ has been defined before
in Equation (28). Under an unbalanced circumstance, one of
Ny and Nj is small and the ratio weight #(b) becomes large.

By including this balancing weight #7(b) into the inconsistency
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Fig. 7. Illustration of foreground analysis with the 10 leading partitions and
the corresponding foreground possibility map.

measure, we redefine dp,(b) as

djp(®) = 1) (b Leonyb). (40)

With this inconsistency measure, the probability distribution
model is defined as

1
1+ exp (c (dp() —dyp))’
dpy =Y dsp(b).

bel ¢

pr(b) x

where 41)

In (41), Iy is a set of foreground vectors, which have the
smallest values of dg(b) over all feasible b’s. On the other
hand, @ is the mean of the inconsistency measures of the
vectors in Iy and the parameter ¢ is a constant, which is
empirically chosen to be 0.02. In practice, the number of com-
ponents is typically small (about 10 to 20) and we can generate
all feasible vectors b’s and check the corresponding dy,(b) for
each b. For the sake of computational efficiency, we simply
ignore most b’s which have a rather large value of d,(b) and
focus only over a few b’s that have small values of dg,(b). With
the formulation in (40) and (41), if a combination of matting
components is consistent with respect to the component-level
graph Lcomp and is balanced with respect to the remaining
components, the corresponding pg(b) will have a larger value.
However, for any b and its complement (1 — b), the values of
pr(b) and pr(1 — b) are actually equal. That is, we cannot
discriminate foreground from background simply based on the
inconsistency measure in (40). Hence, we further evaluate the
convexity of a matte and that of its complement by assuming
that a foreground matte usually tends to be convex. Here, the
convexity is measured based on the ratio of the areas between
a matte and its corresponding convex hull. By comparing the
convexity between any pair of b and (1 —b), we eliminate the
one with lower convexity.

Fig. 7 shows some leading mattes which correspond to these
ten b’s with the largest values of pr(b). It can be seen that
these leading mattes typically have a large overlap with the
foreground area: the flower regions. Hence, if we denote & as
the set of leading foreground vectors with the largest values
of pr(b), we can estimate the foreground vector b, as the
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Fig. 8. Comparison of affinity measures. (a) Spectral matting [3], (b) coarse-
to-fine spectral matting [3], (c) Proposed multi-scale affinity analysis.

expectation of the b vectors in ¢. That is,

> pr(b)b

b _ bel
e Y prb)

beé

(42)

Based on (42), we define the foreground possibility map for
the foreground matte as a weighted sum of the component-
level alpha matte values:
o, =[a'...ak] b, (43)

As shown in the middle bottom of Fig. 7, the possibility map
reflects how likely an image pixel belongs to the foreground
region.

Finally, for the multi-layer decomposition shown in Figs. 5
and 6, we can evaluate the foreground factor for each alpha
matte layer oc?ay o+ Here, we define

T q
ot)r:(; otlayer

Fiayer (Ollqayer) = > (44)

1; “?ayer
where 1p denotes a Px1 all-one vector. In Fig. 5 and 6,
the number listed below each matting layer indicates the
foreground factor of that layer. Basically, a matting layer with
a larger foreground factor is more likely to be a portion of the
foreground region.

II1. EXPERIMENTS

A. Evaluation of Alpha Matte Estimation

Since the multi-scale affinity estimation is a foundation in
our framework, we first compare in Fig. 8 how the leading
alpha mattes may look like if using different kinds of affinity
measures. Here, we compare the alpha measures defined in the
original spectral matting [3], in the coarse-to-fine scheme [3],
and in the proposed multi-scale approach. On the other hand,
the leading alpha mattes are chosen based on the value of
pr(b) defined in (41). It can be seen in Fig. 8(a) and (b) that
the spectral matting approach and the coarse-to-fine scheme
in [3] have difficulty in obtaining satisfactory results due to
the lack of multi-scale information. In contrast, by applying the
multi-scale learning scheme, the leading alpha mattes become
much more discriminative for the partitioning of foreground
and background.
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Comparison of leading alpha mattes and the foreground possibility map: (a) spectral matting [3], (b) coarse-to-fine spectral matting [3], (c) color

histogram based approach [22], (d) classification based approach [23], and (e) the proposed approach.

B. Evaluation of Foreground Analysis

To evaluate the performance of foreground estimation,
the proposed method is compared with the spectral matting
method in [3] and some modified approaches which
have addressed foreground matte extraction. The modified
approaches include the color histogram based approach in
[22] and the classification based approach in [23]. In Fig. 9,
we test two different cases. The horse image has a single
foreground object in a simple background, while the leaf
image has a single image in a cluttered background. A
number of leading alpha mattes are demonstrated. It shows
that due to the lack of the affinity information between
spatially disjoint components, the spectral matting method
[3] fails to produce consistent results. In the coarse-to-fine
scheme, the performance has been improved by introducing
far-range affinity information. However, it still fails to deal
with cluttered scenes. The color histogram based approach
in [22] has difficulty to deal with the regions where the
foreground color and the background color are not well
separated, like the horse image. On the other hand, the
classification based approach in [23] fails to deal with the leaf

image since this approach only relies on a simple background
color model. In comparison, the proposed approach has
demonstrated its capability in solving these problems and in
generating satisfactory results. Based on the leading alpha
mattes generated by these methods, we also present the
corresponding possibility maps. Since the proposed approach
generates more consistent matting components, the generated
possibility map is far more reasonable than the others.

In Fig. 10, we demonstrate a comparison when dealing
with multiple foreground objects. These conventional methods
which aim to find the best single alpha matte by using a binary
partition would have difficulty to handle this case. For multiple
foreground objects, there could be several reasonable combi-
nations of components to interpret the possible foreground.
However, we can find there are several unreasonable results in
the leading alpha mattes produced by conventional approaches.
In comparison, our approach can generate more consistent
foreground mattes based on the hierarchical graph model.
In Fig. 11, we demonstrate more foreground estimation results,
including some successful ones and some less successful
ones. Basically, our approach can achieve quite satisfactory
performance for various kinds of image contents.
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C. Multiple Matting Layers

Unlike conventional approaches which only address binary
foreground/background layers, our approach provides a more
general solution for multiple matting layers, as illustrated in
Fig. 12. Moreover, any matting layer can be evaluated by
a foreground factor and we can rank how likely a matting
layer belongs to the foreground region. As shown in Fig. 12,
there is an apparent gap in the values of the foreground factor.
By setting a threshold over the foreground factor values, we
can easily identify these foreground layers (framed in red).

A limitation of the proposed approach appears when dealing
with objects that contain several distinct components. For
example, the structures of the rightmost image (the plant)
in Fig. 12 are somewhat complicated and it is difficult to
obtain satisfactory results simply based on the color features.
However, even though the proposed approach does not identify
all parts of the foreground object, some salient parts of the
foreground object have been extracted.

D. Qualitative Evaluation

The proposed hierarchical approach provides improvement
in both matting quality and computational efficiency. Here, a
quantitative evaluation is presented to assess the improvement.
In this experiment, we focus on images which contain only one
foreground layer and one background layer in order to focus
mainly on the benefits of hierarchical decomposition. Table I
shows the test images and the matting results. The test images

and the ground truth are cropped from the image data in [7],
which are originally provided to evaluate supervised matting
algorithms. In this experiment, we apply unsupervised matting
approaches to decompose each test image into two components
and evaluate the corresponding foreground component with
the ground truth. Table I shows a quantitative comparison in
terms of the mean squared error (MSE) and running time. All
algorithms are implemented in Matlab on an AMD FX6100
3.3 GHz CPU with 4GB of memory. It shows that the proposed
method can efficiently obtain matting layers of reliable quality,
even when the foreground color and background color are
similar.

In Table II, we evaluate the performance of our approach
without using the pixel-level contraction process. It shows that
the contraction process can effectively reduce the number of
cells and thus improve the computational efficiency. We also
evaluate the matting performance without using multi-scale
learning. The experiment shows that the use of multi-scale
learning can greatly improve both accuracy and efficiency.

E. Complexity Evaluation

In our spectral matting experiments, we empirically fix
the number of quantization intervals bg and b, to be 15 so
that the number of cells P is roughly around 10k to 20k.
For conventional spectral matting [3], the complexity of the
Laplacian construction is O(r2N) and that of spectral analysis
is O(N 3), where N is the number of pixels. Additionally, both
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TABLE I

TESTING IMAGE SETS, OUTPUT MATTES, MEAN SQUARED ERROR (MSE), AND RUNNING TIME OF THE ESTIMATION

(a) Input image

Image size:
400x400

(b) Ground truth

(c) Levin’s
approach [3]

MSE: 0.0037 MSE: 0.051 MSE: 0.027 MSE:2.8e-04 MSE: 0.020 MSE: 0.32
66.6 sec 72.0_sec 71.7 sec 66.8 sec 68.0 sec 69.2 sec
/e

(d) Levin’s
approach with
coarse-to-fine

scheme [3]

MSE: 0.0039
16.5 sec

MSE: 0.0027

17.8 sec

MSE: 0.027

(e) Our approach

MSE:5.4e-04
16.3 sec

MSE: 0.024
16.8 sec

MSE: 6.3¢-4 MSE: 0.0019 MSE: 0.0081 MSE:5.0e-04 MSE: 0.018 MSE: 0.026
2.7 sec 2.6 sec 3.0 sec 2.6 sec 2.5 sec 2.7 sec
TABLE I
PERFORMANCE EVALUATION OF OUR APPROACH
Our approach Measurements #1 #2 #3 #4 #5 #6
With Contraction and P (number of cells) 5.3k 4.9k 7.4k 5.8k 4.9k 6.5k
Multi-scale Learning MSE (mean square error) 6.3e-4 0.0019 0.0081 5.0e-04 0.018 0.026
Run time 2.7 sec 2.6 sec 3.0 sec 2.6 sec 2.5 sec 2.7 sec
Without Contraction P (number of cells) 7.8k 7.2k 10.4k 8.1k 6.3k 8.9k
MSE (mean square error) 6.2e-4 0.0021 0.0084 5.0e-04 0.019 0.026
Run time 2.9 sec 2.9 sec 3.2 sec 2.9 sec 2.5 sec 3.0 sec
Without P (number of cells) 5.3k 4.9k 7.4k 5.8k 4.9k 6.5k
Multi-scale Learning MSE (mean square error) 0.010 0.011 0.12 3.8e-04 0.034 0.28
Run time 27.7 sec 26.4 sec 27.5 sec 26.3 sec 26.9 sec 27.2 sec
TABLE III
SUMMARY OF NOTATIONS
Symbol  Description Symbol  Description Symbol  Description
ai alpha matte value at pixel i M pixel-to-cell mapping function S number of leading eigenvectors
Wy local window centered at pixel ¢ Q set of total cells L cell-level Laplacian matrix
r width of local window Q, mapped cells from wq K number of matting components
I r,g,b color vector at pixel i Ny number of cells in Q cf binary vector clustering result of k" cluster
[TH mean color vector in window wq ®i color feature vector of cell o alpha matte of ™ component
£ regularization parameter B, Bo parameters of affine model h* color distribution of the component &
N total number of image pixels [ feature matrix in Qg 4 number of color bins
Xi, Vi original spatial coordinates of pixel i cp parameter for regularization Lz divergence-based Laplacian
.V spatial coordinates after contraction W, local transformation matrix Agr divergence-based affinity matrix
X,y vector of spatial coordinates T, local graph Dxe divergence-based degree matrix
X.V vector of contracted coordinates L, local graph Laplacian Lecomp component-level matting Laplacian
vand 4,  regularization parameters of the Ay local affinity matrix a? alpha matte of layer ¢
contraction process D, local degree matrix layer
L graph Laplacian Iy level index d? binary combination vector of layer g
by number of spatial discretization ay vector of alpha matte values of o interpolated alpha value of pixel i
intervals the Ng cells in Q i
be number of color discretization ds down-sampling rate B component-level combination vector
intervals P total number of cells 3 ; a set of foreground vectors

the approaches in [22] and [23] take spectral matting as the
core process in their algorithms. Since the computational com-
plexity of the remaining operations in these two algorithms is

relatively small, these two algorithms basically have the O(N?)
computational complexity. On the other hand, for the proposed
approach, the complexity of the construction of the cell-level
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Laplacian is O(|Spatch|) wWhere [Spaich| denotes the number of
multi-resolution patches. In general, [Spaccn| is around 20k,
which is much smaller than N. Besides, the complexity of
the cell-level spectral analysis is O(P3), and the complexity
of the cell-to-pixel mapping is O(N). Hence, the complexity
of the cell-based computations is O(P3? 4+ N), which is much
efficient than the conventional complexity O(N?). Table III is
the summary of notations.

IV. LIMITATIONS

Currently, our method uses color features only. This makes
it difficult to separate objects with very similar color appear-
ance or to merge components with very different color
appearance. Compared to local decision, the inclusion of
global information allows us to better discriminate objects
of similar color appearance with the leverage of relative
similarity measure. Taking the shadow problem as an example,
if there are some other relatively dissimilar objects around,
they would be a support for the merging of the shadowed
region with the unshadowed region. However, the use of global
information may still get confused when dealing with objects
with extremely similar color appearance. In the future, we
will discuss the inclusion of some extra features, like textures
or learning-based features, to better distinguish objects with
similar color appearance.

V. CONCLUSION

This paper presents an efficient and effective hierarchical
framework for unsupervised matting. This approach provide
a solution with multiple matting layers to interpret an image
containing more than one single foreground matte. Besides,
a probability based approach is present to evaluate the fore-
ground possibility for matting layers. To enhance the con-
sistency of foreground layers, a multi-scale graph learning
scheme is presented. Experimental results show that this
approach can greatly improve the performance for unsuper-
vised matting. Quantitative evaluation also shows that that
our approach is superior to state-of-the-art techniques in both
accuracy and efficiency.
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