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Abstract: We experimentally demonstrate the propagation of the conical 
second harmonic fields generated from a nonlinear crystal with extended 
defects to investigate their pattern formation. The generated second 
harmonic waves are found to be the interference of multiple Bessel-like 
beams that originate from distinct longitudinal layers inside the crystal. To 
reconstruct the experimental results, we model the individual Bessel-like 
beam to be the superposition of an ensemble of identical decentered 
Gaussian waves with random phases. We present that the randomness of the 
phases leads the Bessel-like beams to show wave profiles with different 
extent of localization. Moreover, we use the coherent superposition of the 
developed wave functions with a phase factor to manifest the interference 
of multiple Bessel-like beams. The relative phases among the Bessel-like 
beams are shown to be closely related to the near and far-field patterns. 
With the experimental observations and the theoretical model, the relative 
phases are decided to successfully reconstruct the propagation 
characteristics of the multiple Bessel-like beams. 
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1. Introduction 

Second harmonic generation (SHG) is one of the parametric processes that have been 
intensively studied in nonlinear optics [1]. It has been realized by a variety of methods 
involving with the phase-matching relations between interacting waves, and the types of 
nonlinear media. The most usual scheme of SHG is regarded to be collinear which signifies 
that all contributing light beams are pointing approximately into the same direction [1]. The 
advantage of such collinear geometries is the large interaction lengths which significantly 
enhance the efficiency of the frequency conversion. However, SHG is not restricted to the 
collinear interactions; non-collinear schemes can be realized as well. Though the non-
collinear geometries are not suitable for efficient frequency doubling, scientists have taken 
great interests in their physics and applications on material characterization [2–13]. 

Several kinds of non-collinear parametric interactions have been recently demonstrated, 
such as a conical third-harmonic emission generated in an isotropic material [2], a hollow 
beam generated by the frequency difference in a periodically poled LiNbO3 crystal [7], and a 
conical SH beam discovered in a two-dimensional (2D) hexagonally poled LiTaO3 crystal [8]. 
Studies have shown that the conical SH beams can be generated from nonlinear media with 
different order photonic structures through the quasi-phase-matching technique [7–12]. 
However, it is not necessary to work with order photonic structures; the conical SH patterns 
can even be produced in a disordered nonlinear crystal [4]. More recently, the near-field 
conical patterns in a nonlinear crystal with extended defects have been measured to manifest 
the weak localization and long-range correlation in disordered wave functions [5]. The 
conical patterns have recorded the spatial distribution of the scattering signal and disclosed 
the structure information and symmetry of the random medium. This indicates that the pattern 
formation of the conical beams deserves profound investigation to understand the topological 
characteristics of the medium. Nevertheless, so far there have been few studies focused on the 
pattern formation of the conical beams due to the lack of accessibility. 

In this work, we present the first experimental results of the propagation of the conical SH 
fields generated from a nonlinear crystal with extended defects to systematically explore their 
pattern formation. The experimental setup is the same as [5] where a GdCa4O(BO3)3 
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(GdCOB) sample is used as the nonlinear crystal to perform the intra-cavity SHG in a Q-
switched Nd:YAG laser. We generate various conical patterns by thoroughly scanning 
different transverse positions in the GdCOB crystal. We discover that the generated SH waves 
are composed of multiple Bessel-like beams that originate from distinct longitudinal layers 
inside the crystal. Each Bessel-like beam is found to preserve its profile for a certain distance, 
which enables the generated SH waves to exhibit interference in the near and far-field 
regimes. Furthermore, we theoretically prove that the individual Bessel-like field can be 
expressed as an ensemble of identical decentered Gaussian waves [14,15] with random 
phases. We model the interference of multiple Bessel-like beams to be a coherent 
superposition of the developed wave functions with a phase factor. With the experimental 
results and the developed model, we determine the relative phases between the wave 
functions to successfully reconstruct the near-field patterns and their propagation behavior. 
The present results manifest the significance of the relative phases in the pattern formation 
due to the longitudinal separations and might provide some useful insights into the 
localization phenomena of scattered waves passing through random media [16–19]. 

2. Experimental observations 

Figure 1 shows the experimental setup of a diode-pumped actively Q-switched Nd:YAG laser 
with intracavity SHG in a GdCOB crystal. The same experimental scheme has been presented 
in [5,13]. The active medium is a 0.8-at. % Nd3+:YAG crystal with a length of 10 mm. The 
GdCOB crystal was cut for type I frequency doubling in the XY planes (θ = 90°, φ = 46°) 
with a length of 2 mm and a cross section of 3 mm × 3 mm. All crystals were coated for 
antireflection (R<2%) at 1064 nm on their both sides. The radius of curvature of the concave-
front mirror is 50 cm with coating of antireflection (R<0.2%) at 808 nm, high-reflection 
(R>99.8%) at 1064 nm, and 532 nm on the entrance side and high-transmission (T>90%) at 
808 nm on the other side. The output coupler is a plane mirror with coating of high-reflection 
(R>99.8%) at 1064 nm and high-transmission at 532 nm (T>85%). The pump source is a 10 
W 808 nm fiber-coupled laser diode with a core diameter of 800 µm. A focusing lens with a 
focal length of 2.5 cm and 90% coupling efficiency was employed to reimage the pump beam 
into the laser gain medium. The acoustic-optic Q switch (NEOS Model 33027-15-2-1) with a 
length of 30 mm has coating of antireflection at 1064 nm on both sides and was driven at a 
27.12-MHz center frequency with 15.0 W of rf power. A high-resolution microscope was 
used to reimage the near-field patterns on the screen. The SH field is formed by both the 

collinear ( 1 1 2k k k+ =
  

) and non-collinear interactions. Therefore, there are two components 
including an on-axis beam and a conical beam in the resulting pattern. To clearly observe the 
conical beam without the influence of the on-axis one, we stuck a circular object on the center 
of the microscope to obstruct the propagation of the on-axis beam. 

Since the nonlinear GdCOB crystal possesses extended defect domains [20], the 
fundamental wave is randomly scattered by numerous defects. When an axial fundamental 

field 1k


 and a scattered field 1k ′


 satisfy the phase-matching condition 1 1 2k k k′+ =
  

, a 

decentered SH field with wave vector 2k


 can be generated to form a conical SHG process. 
Figure 2(a) indicates the phase-matching diagram for the conical SHG process, where the 
cone angle β  with respect to the z axis is decided by the effective refractive indices and κ  is 

the transverse component of the wave vector 2k


 with 2 sinkκ β= . Localization of the 
fundamental wave scattered by the defects in the crystal leads to the so-called hot-spots [21], 
the tiny areas with greatly enhanced electromagnetic field and cause the SH field to reveal the 
features of disordered wave functions [22]. 
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Fig. 1. Experimental setup for the generation of conical SH waves in a diode-pumped Q-
switched Nd:YAG laser. 

Since the distribution of the random defects significantly depends on the transverse 
position of the nonlinear crystal, a variety of SH waves can be observed by scanning different 
transverse positions [5]. The simplest wave pattern in the SH field is like a single multi-ringed 
wave whose spatial structure is similar to a zero-order Bessel beam with a Gaussian envelope, 
as shown in Fig. 2(b). The propagation evolution and far-field pattern for the Bessel-like 
beam are shown in Figs. 2(c)-2(e). Previous works have shown that the free-space 
propagation of lasing modes can be employed to analogously study the quantum transient 
dynamics for the diffraction-in-time effect in matter waves [23–26]. The propagation of the 
wave field presented in Figs. 2(c)-2(e) could provide some insight into the investigation on 
the quantum transient phenomenon. Moreover, the cone angle β of the far-field pattern shown 
in Fig. 2(f) is directly related to the phase-matching angle which is determined by the 
effective refractive indices of the nonlinear crystal. It is worth mentioning that there should be 
an on-axis beam resulting from the collinear interaction in Fig. 2(f). However, a circular 
object was employed to block the on-axis beam, preventing its influence on the observation of 
the conical one. Thus, one can see a circular shadow in the center. Light around the circular 
shadow is also observed since the on-axis beam is not completely obscured by the object. 
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Fig. 2. (a) Schematic diagram for the phase-matching condition of the conical SHG process, 

where 1k


 and 1k ′


 are the wave vectors for the axial and scattered off-axis fundamental fields, 

and 2k


 is the wave vector for the phase-matched decentered SH field. (b)-(f) Experimental 

results for the propagation of the generated SH wave. 

In general, the observed SH waves can be decomposed into the coherent superposition of 
several Bessel-like beams. Figure 3 displays the SH wave patterns that consist of two, four, 
and six Bessel-like beams which stem from the hot-spots at distinct longitudinal and 
transverse positions inside the nonlinear crystal, as illustrated schematically in Fig. 3(a). The 
longitudinal distances for the hot-spots can be estimated by employing the high-resolution 
microscope to observe the separations between the optimal focal planes of the Bessel-like 
beams. Distances among the hot-spots are measured to be around 10-20 μm. The coherence 
phenomenon can exhibit between the Bessel-like beams since the longitudinal separations are 
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rather short to be compared to the Rayleigh range of the individual one, as seen in Fig. 3. The 
Rayleigh range for the Bessel-like beam is calculated to be about 4 cm in length with the 
formula of Rayleigh range 2

2 2R oz k ω= , where 2 2k π λ=  is the wave number with the 

optical wavelength 0.532 μmλ =  and ~ 80 μmoω  is the beam waist of the generated SH 
wave. The multiple Bessel-like beams nearly preserve their profiles through a certain 
longitudinal distance to interfere in the near-field regime, which enables the generated SH 
waves to exhibit complex interference patterns. The interference is simultaneously observed 
in the far-field patterns which display single-ringed profiles with fringes corresponding to the 
varying near-field distributions, as shown in Figs. 3(f), 3(k), and 3(p). 

Infrared
Green

0 mmz = 1.48 mm 2.03 mm 3.03 mm

0.
14

6 
z 

+
 2

.4
 ω

o

(h)

(f)

(g) (i) (j)

0.
14

6 
z 

+
 3

.4
 ω

o

0 mmz = 1.33 mm 1.88 mm 3.55 mm

0.
14

6 
z 

+
 3

.4
 ω

o

0 mmz = 1.46 mm 3.02 mm 3.55 mm Far Field

Far Field

Far Field
(k)

(l) (m) (n) (o)

3
2
1
0
1−
2−
3−

β
(d

eg
.)

3
2
1
0
1−
2−
3−

β
(d

eg
.)

3
2
1
0
1−
2−
3−

β
(d

eg
.)

(p)

(b) (c) (d) (e)

(a)

 

Fig. 3. (a) Schematic diagram for the fundamental input beam passing through scatters to form 
two hot-spots located on different layers, where the dashed arrows and the solid arrows signify 
the wave vectors of the fundamental and the SH fields. (b)-(p) Propagation of various 
experimental SH waves. 

Figure 4 demonstrates another kind of SH wave pattern formed by the interference of 
dozens of Bessel-like beams that originate randomly from different layers inside the crystal. 
This SH wave pattern has been called the extended state which has its intensity distribution 
widely spreading over the space [5,13]. It is clear seen that the extended state displays the 
propagation behavior of the random pattern associated with the quasi-linear ridge structure 
[27]. In the following section we construct an analytical model to make a further 
understanding for the morphologies of these SH fields and the coherence phenomena between 
the composite Bessel-like beams. 
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Fig. 4. Propagation of the experimental extended state. 
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3. Analytical model for conical beams 

To develop an analytical model for the generated SH fields, we use decentered Gaussian 
beams as basis to reconstruct the wave functions that form the SH patterns. The near-field 
wave function ou  of the decentered SH Gaussian beam in terms of the cylindrical coordinates 

( , )r φ  can be expressed as [28] 

 ( ) ( )
2

, ; exp exp cos ,o
o

r
u r i rφ α κ α φ

ω

  
 = − −       

 (1) 

where oω  is the beam waist of ou  at plane 0z =  and α  is the azimuthal angle between κ  
and the positive x axis. In terms of the first kind Bessel function of zero order [29], the 
integration of the wave function ou  over the entire azimuthal angle α  is the so-called 
Bessel-Gauss (BG) beam: 

 ( ) ( ) ( )
2

2

020
0

, , ; 2 exp .BG o

r
U r u r d J r

π
φ φ α α π κ

ω
 

= = − 
 

  (2) 

The BG beam is first proposed by Gori and Guattari to overcome the difficulties of the 
realization of diffraction-free beams [30]. The wave function BGU  can be treated as the 

coherent superposition of an ensemble of the Gaussian beams ou  with identical phase. 
Although the BG beam can display profile similar to the experimental result in Fig. 2(b), the 
asymmetric SH pattern due to the random scattering process cannot be manifested. In this 
case, we add a random phase factor to the wave function ou  to closely model the asymmetric 
feature in the pattern. The assumption of the random phase can be traced back to the previous 
work by O’Connor, Gehlen, and Heller [27], in which they investigate the random 
eigenfunctions of a classically chaotic system. The behaviors of the random eigenfunctions 
are found to be well interpreted as the superposition of monochromatic plane waves with 
random directions, amplitudes, and phases. Riemann sum is exploited to obtain the total field 
since definite integral cannot be solved with the random phases. The total field is thus given 
by 

 ( ) ( ) ( )
1

0

2
, ; exp , ; ,

M

o q o q
q

U r i u r
M

πφ θ φ α
−

=

Δ =   (3) 

where 2q q Mα π= , 0 1q M= − , 2qθ ≤ Δ , Δ  is an arbitrary constant to define the 

range of the random phases qθ  with 2πΔ ≤ , and M is the total number of the composite 

Gaussian beams. The random phases qθ  corresponding to each Gaussian beams are generated 

in the range from 2− Δ  to 2Δ  by the method of simple random sampling. The deviation 
of the random phases is simultaneously decided by the range Δ  and the number of composite 
Gaussian waves, M. As M → ∞  and 0Δ = , the wave function oU  reduces to BGU . 

Figures 5(a)-5(e) display various simulated results of oU  by changing the values of Δ  for 
the random phases. Since numerical analyses exhibit that a superposition of 300 Gaussian 
waves is already sufficient to reconstruct the wave features of the wave function oU , the 
presented results are all simulated by the number of Gaussian waves, each with the beam 
waist of 80 μmoω =  according to the experimental configuration. Due to the relation 

2 sinkκ β= , we estimate the magnitude of 0.618κ ≈ rad. with 1
2 11.81 umk −=  and 
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0.052β ≈ rad. (3 deg.), which are obtained from the phase-matching condition and the 
experimental observations in Figs. 2-4, respectively. It can be seen that the simulated patterns 
transform from a symmetric BG beam to a chaotic pattern of a network of quasi-linear ridge 
structure [27] as Δ  becomes larger. The simulated near-field distribution in Fig. 5(b) 
successfully manifests the experimental result in Fig. 2(b). The investigation suggests that the 
random phase plays a dominant role in reconstructing the morphologies of the wave 
functions. 

2πΔ =1.5πΔ =πΔ =0.75πΔ =0Δ =

2.
2 
ω

o

(e)(a) (b) (c) (d)

 

Fig. 5. (a)-(e) Theoretical simulations of ( , ; )oU r φ Δ  with Δ  varying from 0 to 2π . 

With the near-field distribution oU , the z-dependent wave function ( , , ; )U r zφ Δ  can be 
expressed in terms of the Fresnel diffraction integral [28]: 

 ( ) ( ) ( )
2

2 22 2

0 0

exp
, , ; , ; exp .

2 2o

k r rk i k z
U r z U r i r d dr

i z z

π
φ φ φ

π
∞  ′−

′ ′ ′ ′ ′ Δ = Δ
 
 

 
 

 (4) 

Substituting Eq. (3) into Eq. (4), we obtain 

 ( ) ( ) ( )
1

0

2
, , ; exp , , ; ,

M

q q
q

U r z i u r z
M

πφ θ φ α
−

=

Δ =   (5) 

with 

 

( ) ( ) ( )

( ) ( )

( )

2

2
2

2

2

2 2

, , ; exp
2

exp 2 cos ,

exp cos

o
q

q

q

z
u r z i k z z

z k

z z r
F z r

k k

i r

ω κφ α
ω

κ κ α φ

κ α φ

   = − − Φ  
   

     × − + − −  
     

 × − 

                        

                        

 (6) 

where 2( ) 1 ( cos )o Rz z zω ω β= +  is the beam radius at plane z, 
1( ) tan ( cos )Rz z z β−Φ =  is the Gouy phase, 2

2( ) [1 ( ) ] [ 2 ( )]F z z i k R zω= − , and 
2( ) [ cos ] [ cos ]RR z z z zβ β= +  is the radius of curvature. The wave function u  is the z-

dependent expression of the decentered SH Gaussian beam propagating at an angle β  with 
respect to the z axis. Figure 6 demonstrates the simulations of the propagation for the wave 
function in Fig. 5(b), where the theoretical results display good agreement with the 
experimental observations in Figs. 2(b)-2(f). The transverse patterns are shown to diverge 
radially along the longitudinal direction and finally form the ring structure in the far-field 
regime. 
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Fig. 6. (a)-(e) Reconstructed patterns ( , , ; )U r zφ Δ  for the propagation of the experimental 

results in Figs. 2(b)-2(f). 

To reconstruct the SH field that consist of multiple Bessel-like beams, we model the near-
field distribution of the SH wave to be the coherent superposition of oU : 

 ( ) ( ) ( )
1

0

, exp , ; ,
N

o n o n n n
n

V r i U r rφ δ φ
−

=

= − Δ  
 (7) 

where nδ  is a phase factor for the nth Bessel-like beam o nU , 2n nk lδ = , nl  is the 

longitudinal displacement from the reference plane at 0z =  to where o nU  is originated. The 

reference plane is defined at the beam waist of o oU , and therefore oδ  is equal to zero. 

nr = ( , )n nx y  is the transverse coordinates relative to the beam axis for the position o nU  is 

originated, and N is the total number of the composite Bessel-like beams. With Eq. (4), the 
propagation of the distribution oV  can be expressed as 

 ( ) ( ) ( )
1

0

, , exp , , ; .
N

n n n n
n

V r z i U r r zφ δ φ
−

=

= − Δ  
 (8) 

The influence of nδ  on the interference phenomena between two Bessel-like beams nU  is 

illustrated in Fig. 7, where Figs. 7(a)-7(e) are the near-field distributions for different 1δ , and 

Figs. 7(f)-7(j) are their far-field counterparts. It is clearly seen that the varying 1δ  are related 

to distinct near and far-field patterns. The investigation indicates that the best fits for the 
relative phases 1δ  can be determined by the experimental observations of the wave patterns. 

 

Fig. 7. (a)-(e) Theoretical simulations of ( , )oV r φ  for two Bessel-like beams that originate 

from different layers. (f)-(j) Corresponding far-field simulations of the distributions 

( , , )V r zφ . 

#223077 - $15.00 USD Received 15 Sep 2014; revised 24 Oct 2014; accepted 26 Oct 2014; published 3 Nov 2014
(C) 2014 OSA 17 November 2014 | Vol. 22,  No. 23 | DOI:10.1364/OE.22.027859 | OPTICS EXPRESS  27866



Computed with the wave function V  in Eq. (8), the SH waves in Fig. 3 are successfully 
reconstructed, as depicted in Fig. 8. The composite wave functions nU  are all simulated by 
the superposition of 300 Gaussian waves, each with a random phase generated in the range of 

0.25 ~ 0.25π π− , i.e. 0.5n πΔ = . From careful observations of the experimental patterns, the 

best fits for nδ  are 1 0.26δ π=  for the two Bessel-like beams in Fig. 8(a), 1 0.4δ π= , 

2 0δ = , and 3 0.7δ π=  for the ones from the left to the right in Fig. 8(f), and 

1 2 3 4 5 0δ δ δ δ δ= = = = =  in Fig. 8(k). The similarity between the experimental results in 

Fig. 3 and the simulation in Fig. 8 can be quantified by the overlap integral having the form 

 ( ) ( )exp , , ,simS I x y I x y dx dy=   (9) 

where expI  and simI  are the normalized intensity distributions for the experimental and 

simulated near-field patterns, respectively. For ideal case of exp simI I= , S can be directly 

evaluated to be 1. The larger the value of S is, the better the similarity is. The values of S are 
calculated to be 0.87, 0.84, and 0.82 for near-field patterns in Figs. 3(b) and 8(a), Figs. 3(g) 
and 8(f), and Figs. 3(l) and 8(k), respectively. The good agreement suggest the possibility of 
measuring the far-field (momentum) distribution to diagnose the topological characterization 
of the 3D random medium in which Bessel-like beams are formed naturally at distinct layers. 
The exploration might also provide condensed matter physicists some useful insight into 
exploring the coherence properties [31] between condensates in the 3D scheme by the direct 
measurement of the momentum distributions. 

0 mmz = 1.48 mm 2.03 mm 3.03 mm

0 mmz = 1.33 mm 1.88 mm 3.55 mm

(h)(f) (g) (i)

(a) (b) (c) (d) (e)

0 mmz = 1.46 mm 3.02 mm 3.55 mm

(k) (l) (m) (n) (o)

Far Field

Far Field

Far Field

0.
14

6 
z 

+
 2

.4
 ω

o
0.

14
6 

z 
+

 3
.4

 ω
o

0.
14

6 
z 

+
 3

.4
 ω

o

3
2
1
0
1−
2−
3−

β
(d

eg
.)

3
2
1
0
1−
2−
3−

β
(d

eg
.)

3
2
1
0
1−
2−
3−

β
(d

eg
.)

(j)

 

Fig. 8. Theoretical simulations for the experimental results in Fig. 3. 

Furthermore, we reconstruct the extended state in Fig. 4 by the superposition of dozens of 
Bessel-like beams that stem from distinct positions inside the nonlinear crystal, as illustrated 
schematically in Fig. 9(a). It is clearly seen that the numerical results in Figs. 9(b)-9(f) 
successfully manifest the propagation characteristics of the extended state. For simplicity, all 
the wave functions nU  that contribute to V  in Eq. (8) are simulated with the identical 

parameters 300M =  and 0.5n πΔ = . Since the spatial interference for the diffraction of light 

has good analogy to the quantum interference for the diffraction-in-time effect of matter 
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waves [23–26], the presented results could also be employed to analogously study the 
transient dynamics of matter waves diffracted with time-varying obstacles 
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Fig. 9. (a) Schematic diagram for the hot-spots that randomly spread in the 3D nonlinear 
medium. (b)-(f) Corresponding theoretical simulations of the extended state in Fig. 4. 

4. Conclusions 

In summary, we have experimentally and theoretically manifested the propagation behavior 
of conical SH beams to systematically investigate their pattern formation in the nonlinear 
crystal with extended defects. We have constructed an analytical model to make a 
comprehensive study of the morphologies and coherence properties for the multiple Bessel-
like beams. With the developed model, we have shown that the individual wave function 

( , , ; )U r zφ Δ  can be expressed as a superposition of identical decentered Gaussian beams 

( , , )u r zφ  with random phases θ  in the range from / 2−Δ  to / 2Δ . Furthermore, we have 

employed the coherent superposition of the individual wave functions ( , , ; )U r zφ Δ  with the 

phase factor δ  to model the multiple Bessel-like beams. The phase factor δ  was shown to 
be closely connected to the near and far-field patterns. With the theoretical model and the 
experimental observations, the phases δ  were precisely determined to reconstruct the near-

field distributions ( ),oV r φ . The propagation of the wave function ( ),oV r φ  has been obtained 

to show good agreement with the various SH waves. The good agreement indicates that the 
developed wave functions can be exploited to analyze the topological characterization of a 3D 
random medium and to analogously study the localization phenomena of scattered waves 
passing through the random media. 
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