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Abstract: Subtraction microscopy has recently been promoted for its
compactness and simplicity of enhancing spatial resolution. However,
until now, the subtraction factors used in such microscopes to process raw
images have been chosen experientially, and it has been impossible to
determine whether the resolved structures after subtraction are appropriate
or over-processed. Based on vector diffraction theory and two-dimensional
convolution, this paper presents numerical investigations of the parameters
that may offer the selection criterion of subtraction factors used in sub-
traction microscopy. It proposes two essential parameters for appropriately
evaluating the subtraction factor: the fluorescence peak intensity after
subtraction and resolution derivative.
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microscopy.
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1. Introduction

Various types of far-field optical microscopes with superresolution have been proposed and
realized for sub-diffraction-limit fluorescence imaging during the last decades, such as pho-
toactive localization microscopy (PALM) [1], stochastic optical reconstruction microscopy
(STORM) [2], structured illumination microscopy (SIM) [3], stimulated emission depletion
(STED) microscopy [4], and others [5–9]. In addition, mathematically calibrated microscopes
such as fluorescence emission difference (FED) microscopy [10], scanning laser mode mi-
croscopy (SLAM) [11], and others [12] have attracted much interest recently for the ease with
which they achieve superresolution. The essential key point of the latter methods is to subtract
two fluorescence images captured by two excitation lasers with the same wavelength but sepa-
rate solid and donut spots. However, the factors used in these microscopes to subtract the one
from the other of two images are experiential. If the factor is too large, an exaggerated size
reduction leading to even smaller than the real sample size may result. Meanwhile, some of
the sample’s important information may be missed due to over-processing. Therefore, a quan-
titative study of the parameters related to the subtraction factor must be conducted to obtain a
definite criterion for determining appropriate subtraction factor. Previous reports [10–12] have
mainly focused on the subtractions of the point spread function (PSF) without taking the sample
structure into consideration. In fact, due to the removal of the negative values in the subtracted
images, the data processing involved is nonlinear. As such, investigating only the PSF subtrac-
tions cannot sufficiently describe the real PSF of the subtraction microscope. In another case,
due to the complexity of the convolution between the donut spot and different sample sizes, it
is difficult to obtain an analytical description of the resolution in subtraction microscopes.

In this paper, a numerical investigation is carried out based on vector beam diffraction the-
ory (VBDT) and two-dimensional convolution calculations. Using the calculated focal PSFs,
the resolutions of the samples in the convoluted and subtracted images are analyzed and dis-
cussed along with the sample size, sample shape, numerical aperture (NA) of the microscope
objective, and excitation laser field polarizations. Combined with the subtraction threshold line
obtained from the simulation, the peak intensity after subtraction and resolution derivative ver-
sus the subtraction factor are found to be two useful parameters for evaluating the appropriate
subtraction.
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2. Principle and numerical models

Figure 1 shows the schematic principle of the fluorescence subtraction microscope. The sample
is excited with the same laser wavelength but with two different focal spot shapes, which are
usually a Gaussian distribution and a donut intensity distribution. The obtained fluorescence
image by the latter is subtracted from that by the former as follows: I = FIG − γFID, where
FIG and FID are the intensities of the two fluorescence images and γ is the subtraction fac-
tor. The produced image has a higher resolution compared with the conventional fluorescence
image FIG. The most important point of this method is to obtain two suitable spot shapes and
define a reasonable factor γ . Several combinations of spot shapes can be used for the subtrac-
tion microscope, such as the circular polarized Gaussian spot and vortex-phase-plate-generated
donut spot [10,11], or the vector beam radially polarized solid spot and azimuthally polarized
donut spot [12]. The subtraction factor γ , which should be related to both the parameters of the
two excitation lasers and the properties of the samples, plays a critical role in improving the
resolution power. However, it can also introduce uncertainties.

Fig. 1. Schematic of subtraction microscope.

In the paper, an approximate numerical model is applied to investigate the image subtraction
procedure and the factor γ . Because the sample is assumed to be very thin and excited without
saturation, its structural shape along the axial direction can be disregarded. Thus, the intensity
of the fluorescence is linearly proportional to the excitation laser intensity and to the density
distribution of the fluorophores in the sample. The fluorescence excited by the two spots is as-
sumed to have the same emission luminosity and collection efficiencies, and the detection PSFs
and emission Stokes shifts of the fluorophores are not considered. Therefore, the fluorescence
images can be described as the two-dimensional convolution of the excitation PSFs with the
density distribution of the fluorophores in the sample. After the subtraction and the removal of
negative values, the final intensity I(x,y) of the subtracted image can be expressed as follows:

IRAW (x,y) = IG(x,y)∗Ob(x,y)− γ · ID(x,y)∗Ob(x,y)

I(x,y) =

{
IRAW (x,y) IRAW (x,y)≥ 0
0 IRAW (x,y)< 0

(1)

where IG and ID are the intensity-normalized PSFs of the excitation lasers, Ob is the shape
(fluorophore density distribution) of the sample, γ is the subtraction factor, and ∗ is the convo-
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lution. The PSFs are derived from the focal spots of the objective lens calculated by the VBDT
[13-20] and expressed as follows:

IG,D(x,y,0) = |Ex|2 + |Ey|2 + |Ez|2 (2)

Ex,y,z(x,y,0) =
iC
λ

∫ 2π

0

∫ arcsin(NA/n)

0
AAMP ·APhase ·AL

⎛
⎝ Px

Py

Pz

⎞
⎠

sinθ · eikn
√

x2+y2 sinθ cos(ϕ−arctan(y/x))dθdϕ (3)

where C is the normalization constant, NA=1.4 for the oil-immersion type objective, n is the
refractive index of the immersion medium of the objective, which usually has the value of
1.518 for oil and 1 for air, respectively, and AAMP and APHASE are the real amplitude and phase
terms of the input beams, respectively. If the plane wave is used, then AAMP=1. Furthermore,
APHASE = eiϕ or APHASE = 1 where a vortex phase plate is present or absent, respectively. Two
groups of IG and ID are calculated according to the setting values listed in Table 1. The second
group is used only in Section 3.5.

Table 1. Setting values of IG and ID.

IPSF Polarization AAMP APHASE Polarization AAMP APHASE

IG Right Circular 1 1 Radial 1 1
ID Left Circular 1 eiϕ Azimuthal 1 1

AL is the vector weight matrix of the lens, calculated as follows:

AL =
√

cosθ

⎛
⎝ 1+(cosθ −1)cos2 ϕ (cosθ −1)cosϕ sinϕ −sinθ cosϕ

(cosθ −1)cosϕ sinϕ 1+(cosθ −1)sin2 ϕ −sinθ sinϕ
sinθ cosϕ sinθ sinϕ cosθ

⎞
⎠ (4)

The [Px, Py, Pz] is the polarization unit vector matrix, and has the values shown in Table 2.

Table 2. Polarization unit vector matrix.
Right Circular Left Circular Radial Azimuthal⎛

⎝ Px

Py

Pz

⎞
⎠ 1√

2

⎛
⎝ 1

−i
0

⎞
⎠ 1√

2

⎛
⎝ 1

i
0

⎞
⎠

⎛
⎝ cosϕ

sinϕ
0

⎞
⎠

⎛
⎝ −sinϕ

cosϕ
0

⎞
⎠

Table 3. Numerical models for the sample in Equation (1).

Gauss Circ Rect

Ob(x,y) C0e−(4ln2) x2+y2

r2

{
C0

√
x2 + y2

√
x2 + y2 ≤ r

0
√

x2 + y2 ≥ r

{
C0

√
x2 + y2 ≤ r

0
√

x2 + y2 ≥ r

The fluorophore density of the sample Ob is assumed to have a Gaussian distribution, and the
densities with semicircular and rectangular types are also calculated for comparison. Table 3
describes their numerical models. C0 is the intensity normalization constant, and r is the full
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width at half maximum (FWHM), radius, and half width of the fluorophore density distributions
(“Gauss”, “Circ”, and “Rect”), respectively.

The subtraction image I of the sample can be obtained by numerically calculating the PSFs
and determining the convolution. The obtained FWHM(r, γ) of the sample in the subtraction
images can be compared with the preset sample width r to evaluate the subtraction factor. In
addition, the density types of the fluorohpore distributions, the NA of the objective lens, and
the polarization combinations of the excitation lasers can also be investigated.

3. Simulation results

3.1. Sample size.

Fig. 2. (a)Convoluted images with sample sizes r=0, 0.2λ , 0.3λ . (b)The sample illustraction
of Gaussian shape. The cross sections of the convoluted (c)Gaussian, (d)donut distributions,
subtracted images with (e)r=0.2λ and (f)r=0.3λ while γ=0, 0.3 and 1.0, and subtracted
images with (g)γ=0.3 and (h)γ=1.0 while r=0, 0.2λ , 0.3λ . (i)FWHM resolutions of the
sample versus the subtraction factor with r=0, 0.2λ , 0.3λ .

Figure 2 shows the convolution and subtraction results with different sample sizes. Due to
the convolution, the widths of the fluorescent distributions are broadened and the dark center
of the donut spot is flattened to be non-zero compared with the initial PSFs, as shown in the
2D convoluted images in Fig. 2(a) and their central cut lines in Figs. 2(c)–2(d). The sample
is illustrated in Fig. 2(b). This illustrates that the donut center is sensitive to the sample sizes,
and that the subtraction factor cannot be infinitely large because the FIG can be totally erased
with some specific subtraction factors. This conclusion conflicts with the situation where only
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the PSFs are subtracted [10-12], in which case the subtraction factor γ can be infinitely large.
Subtracting the PSFs and setting the negative values to be zero introduces additional nonlinear-
ity and derivation, making the situation inappropriate. When subtracting with factors γ=0, 0.3,
and 1.0, the obtained FWHM resolutions are 0.44λ , 0.33λ and 0.2λ with r=0.2λ ; and 0.49λ ,
0.35λ and 0.13λ with r=0.3λ , respectively, as shown in Figs. 2(e) and 2(f). This not only sim-
ply shows that a large subtraction factor leads to a better resolution, but also indicates that the
FWHM decreases more rapidly as the subtraction factor increases in case of a large-radius sam-
ple. This can also be seen when the evolution of the FWHM resolution is compared with that
of the subtraction factors in Fig. 2(i). The resolution with a sample size of r=0.3λ has a sharper
slope than those with smaller sample sizes. Figures. 2(e)–2(i) also show that with a smaller
γ the sample may be resolved properly or below-subtraction. When the γ value is larger, the
subtracted FWHM resolution of a large-size sample has an even smaller value than that of a
small-size sample, which represents obvious over-subtraction.

3.2. Sample shape

The simulations with fluorophore densities of semicircular and rectangular types are carried out
in comparison with the Gaussian type. The convoluted images and their cut lines using three
sample shapes are shown in Figs. 3(a), 3(b), and 3(d), 3(e), 3(h), 3(i), and the sample sizes
are r=0.15λ and 0.25λ , respectively. The samples with semicircular and rectangular shapes are
illustrated in Fig. 3(c). They indicate that the contribution of three shapes to the FWHM reso-
lution is considered approximately to be same with each other if the sample widths are small.
When a sample size of r=0.15λ and factors of 0.3 and 1.0 are applied, the FWHM resolutions
after subtraction with three different shapes are all close to 0.32λ and 0.21λ , respectively, as
shown in Figs. 3(f) and 3(g). This synchronized evolution of the FWHM resolution versus sub-
traction factors for three different types can similarly be found in Fig. 3(l). When the sample
width increases to r=0.25λ , the FWHM curves of the three sample shapes are divergent, as
shown in Figs. 3(j), 3(k) and 3(m). The one with “Gauss” shape shows a smoother slope and it
with the “Rect” shape shows a sharp decrease in resolution with the increase of the subtraction
factors. Figures. 3(n) and (o) give the FWHM resolution evolutions with three sample shapes
versus the sample sizes with γ=0 and 0.4. They indicate that the FWHM resolution change with
the subtraction factor is more sensitive to the sample sizes than to the sample shapes. For the
sample sizes of r < 0.2λ in particular, the influence of the sample shapes on the resolution and
subtraction factor can be ignored.

3.3. Subtraction factor

The principal criterion for evaluating the appropriate subtraction factor is that the obtained
FWHM resolution in the subtracted images can be matched with the sample’s real size. Fig-
ures. 4(a)–4(c) give the 2D FWHM resolutions versus different sample sizes and subtraction
factors with three sample shapes. In terms of the Gaussian-type samples, the obtained FWHM
should be equal to the preset sample FWHM according to the subtraction criterion, which is
displayed as the dotted black line in Fig. 4(a). The subtraction factors on this line are critical
values for obtaining the right subtracted resolutions. The separate left and right regions are the
below- and over-subtraction regions, respectively. This line can be picked out and plotted in
Fig. 4(d) with the solid blue curve. We call it subtraction threshold line or γ0–r0 line. With a
specific subtraction factor γ0, the sample structures with sizes below the corresponding value r0

can be imaged properly, and the sizes of r > r0 are over-subtracted. The dotted blue threshold
line in Fig. 4(d) is estimated simply by enhancing the FWHM with a factor of 1.4 for the confo-
cal microscope case. However, using the unknown sample size to define the subtraction factor
suitable for resolving the sample is not rational. Therefore, additional parameters combined
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Fig. 3. The (a), (d)–(g) and (l) are simulated with sample r=0.15λ , while (b), (h)–(k) and
(m) with sample r=0.25λ . The (a) and (b) are convoluted images of PSFs of Gaussian and
donut shape with sample shapes of “Circ”, “Rect” and “Gauss”. (c)The sample illustration
of semicircular shape (Circ) and rectangular shape (Rect). The cross sections of (d) and (h)
Gaussian-PSF convolutions, (e) and (i) Donut-PSF convolutions, (f) and (j) subtracted im-
ages with γ=0.3, (g) and (k) subtracted images with γ=1.0. The FWHM resolutions versus
(l) and (m) sample r, versus (n) and (o) γ with three sample shapes.
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Fig. 4. (a)–(c)FWHM(r,γ) with sample shape of “Gauss”, “Circ” and “Rect”. (d)Value of
subtraction factors on the line of FWHM=r in (a). (e)FWHM(γ ,r) with shape of “Gauss”.
(f)Derivative of FWHM resolution to the subtraction factor. (g)Peak intensity after subtrac-
tion versus subtraction factor and object radius. (h)PSF intensity when r=0.3λ , γ=0.5.

with the threshold line are needed to evaluate the proper subtraction. On the one hand, when
Fig. 4(a) is coordinate transformed to Fig. 4(e), which is similar to Fig. 2(i), the FWHM slopes
for the different sample sizes are clearly different and could be useful for identifying the real
sample sizes. The absolute values of the slopes, defined as ΔFWHM/Δγ , are plotted with the
threshold line (dotted black curve) in Fig. 4(f) with sample sizes of r=0.1λ , 0.2λ , 0.3λ , 0.4λ
and 0.5λ . Although the threshold line is not systematic in the ΔFWHM/Δγ figure, relative
sample sizes can still be compared among them. The larger the absolute value of ΔFWHM/Δγ ,
the larger the sample size is. On the other hand, the peak intensities of the sample in subtracted
images decrease as the subtraction factor increases. Figure 4(g) shows the evolution map of the
peak intensities, which are normalized to the initial peak intensities. The shape of the sample
is also assumed to be Gaussian. The γ0–r0 threshold line is plotted in Fig. 4(g). It is interesting
to see that the γ0–r0 line can horizontally and almost smoothly separate the below- and over-
subtraction regions. The critical value associated with the peak intensity status for appropriate
subtraction is around 0.6 even for different object sizes. This means that if the fluorescence
peak intensity of the sample after subtraction drops below 60% of its initial value, the possibil-
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ity that it will be over-subtracted increases. It can be simply called IP factor. Although the best
subtraction factor for the specific sample size varies, the decrease in peak intensity can be used
to determine whether the factor is proper. The Fig. 4(h) gives an example to show that, when
the γ=0.5 is used for r=0.3λ , the fluorescence peak intensity slightly drops below 0.6 and a pre-
liminary over-subtraction appears. The corresponding fluorescence peak intensity and FWHM
resolution after subtraction is 0.59 and 0.28λ , respectively. Similarly, the FWHM values after
subtraction with semicircular and rectangular sample shapes should be approaches their preset
FWHM sizes of

√
3r and 2r [illustrated in Fig. 3(c)]. The threshold lines of them are shown

in Figs. 4(b) and 4(c) as the dotted black lines. Because these two types are rarely used in the
imaging analysis, the results of them are not going to be shown in details. The resolution slopes
of them are also identical for different sample sizes while their IP factors are found around 0.75
and 0.83, respectively.

Fig. 5. (a)Gaussian and (b)donut spot convoluted images with (c)sample. (Laser wave-
length: 488 nm; NA=1.4). (d)ΔFWHM/Δγ . (e)Normalized peak intensity of four beads
versus the subtraction factor. (f)–(j) Subtracted images with γ=0.2, 0.4, 0.6, 0.8 and 1.0.

To inspect the effectiveness of the IP factor and the ΔFWHM/Δγ factor, further simulations
are carried out with a laser wavelength of 488 nm, NA=1.4, and bead FWHMs of 200, 150, 100,
and 50 nm with the Gaussian shape, respectively, shown in Fig. 5. After the 2D convolution with
an intensity-normalized PSF, the FWHMs of them in the fluorescence image become 278, 244,
219, and 204 nm as shown in Fig. 5(a); the FID and the sample is shown in Figs. 5(b) and 5(c),
respectively. With five different subtraction factors of γ=0.2, 0.4, 0.6, 0.8, and 1.0, the FWHM
values of the four beads in the subtracted images decrease nonlinearly. Figure 5(d) displays the
evolutions of their ΔFWHM/Δγ factors. That the sample with a larger absolute ΔFWHM/Δγ
factor gets a larger size is in agreement with the prediction. Figure 5(e) shows the evolutions of
their peak intensities after subtraction with the variation of the subtraction factor. The imaging
with a sample width of 200 nm can be taken as an example. Its IP after subtraction drops below
0.6 when the subtraction factor goes further than 0.4. The FWHM resolution in the image
reaches 163 nm as shown in Fig. 5(g) and this value decreases even further in Figs. 5(h)–5(j)
where they are all below the real width of this model sample. The resolutions of the other
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three samples are over-subtracted when their peak intensities drop below 60%. Therefore, the
over-subtraction of the sample is predicted and demonstrated based on the peak intensity after
subtraction. The over-subtracted areas are marked with dotted white circles in Figs. 5(f)–5(j).

3.4. Numerical aperture

Fig. 6. Simulated results with NA=0.9. (a)–(c)FWHM(r,γ) with sample shape of “Gauss”,
“Circ” and “Rect”. (d)Value of subtraction factors on the line of FWHM=r in (a).
(e)FWHM(γ ,r) with shape of “Gauss”. (f)Derivative of FWHM resolution to the subtrac-
tion factor. (g)Peak intensity after subtraction versus subtraction factor and object radius.
(h)Fluorescence intensity when r=0.3λ , γ=0.5.

As shown in Fig. 6, the simulations with an objective lens of NA=0.9 are also carried out
using the same procedure. Because of the coarse resolution, the maps of the FWHM(r, γ) are
upward shifted, and the threshold lines are also right shifted compared with Fig. 4(d). The
value of the threshold line is also around 0.6. Therefore, the value of 0.6 could also be used
as a criterion to inspect the over-subtraction. Figure 6(h) describes a critical subtraction with
a Gaussian shape, sample radius of 0.3λ , and subtraction factor of 0.5. After subtraction, the
peak intensity drops to 60% of the initial intensity, and the achieved resolution is around 0.3λ .

3.5. Polarization

The combination of radial and azimuthal polarizations is demonstrated to have fewer nega-
tive sidebands for subtraction microscopes [12]. Simulations with this polarization combina-
tion and NA=1.4 are also realized here, as shown in Fig. 7. The FWHM resolution maps and
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Fig. 7. Simulated results with radial and azimuthal polarizations for excitation. (a)focal
PSFs and (b)cut lines of PSFs and subtractions with factor γ=0,0.3,1.0. (c)–(e)FWHM(r,γ)
with sample shape of “Gauss”, “Circ” and “Rect”. (f)Value of subtraction factors on the
line of FWHM=r in (c). (g)FWHM(γ ,r) with shape of “Gauss”. (h)Peak intensity after sub-
traction versus subtraction factor and object radius. (i)PSF intensity when r=0.3λ , γ=0.5.

ΔFWHM/Δγ factor are similar to those in Fig. 4 and are not discussed further. The IP factor
is a little smaller than 0.6 in Fig. 7(h) but can still be considered flat. Figure 7(i) shows the
right-subtraction status and implements the subtraction factor of 0.5 and sample FWHMs of
0.3λ . Although the polarization combination has changed, the criterion of the IP factor and
ΔFWHM/Δγ still works.

4. Discussion

The simulations in this paper are carried out under several assumptions. First, the assumption
of non-saturation allows the fluorescence obtained to be linearly proportional to the intensity of
the excitation laser and the density of the fluorophores in the sample. In this case, the direct con-
volution of laser PSFs and the sample can be used to describe the conventional laser scanning
fluorescence imaging. When a high excitation power is used, the fluorescence signals are inten-
sity saturated, at which point the additional saturation factor should be included. Second, the
detection PSF is assumed to be constant having the value of unity, which means that all of the
fluorescence in one scanning step is collected. For confocal microscopy with different detection
focal Airy disks and different fluorophores with different emission Stokes shifts, additional de-
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tection PSFs could be included to obtain more specific and accurate subtraction factors. Third,
the samples are simulated with simple structures. For the biological samples with complex
structures, the subtraction factors for the overlap regions still need to be addressed. In addition,
dynamic subtraction factors could be a good measure for obtaining an ideal resolving power,
but obtaining an accurate peak positioning requires the development of a complicated algo-
rithm. However, the numerical simulation in this paper can provide information of the FWHM
resolutions as a function of the subtraction factor relevant to the sample size, shapes, NA, and
polarizations in the subtraction microscope and to derive the appropriate subtraction threshold
line. Meanwhile, this paper demonstrates that combined with the threshold line, the peak in-
tensity after subtraction and the derivative of FWHM resolution are two useful parameters for
evaluating the subtraction factor and estimating the real size of a sample. The samples with
larger sizes are found to be sensitive to the subtraction factor and easily over-subtracted while
the ones with smaller sizes can endure larger subtraction factor without over-processing. For
the sample sizes of r < 0.2λ , the sample shapes do not play an important role in affecting the
resolutions and determining the subtraction factors. When the fluorescence peak intensity in the
subtracted image drops to 60% of the initial value, the corresponding subtraction factor is found
to be properly chosen for the imaging even with different sample sizes. This criterion is also
valid when a smaller NA is used, and can also roughly work when the radial and azimuthally
polarized lights are used. The sample sizes can also be relatively compared according to the
resolution derivative versus the subtraction factor. In summary, based on vector beam diffrac-
tion theory and two dimentional convolution, we have numerically invesigated the parameters
that may affect the selection of subtraction factors in the subtraction microscopes and proposed
that the fluorescence peak intensity after subtraction and resolution derivative can be possibly
used as the key parameters for determing the appropriate subtraction factors and obtaining the
sample sizes in the subtraction microscopes.
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