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Article history: Visual decoding and encoding are crucial aspects in investigating the representation of visual information in the
Accepted 22 July 2014 human brain. This paper proposes a bidirectional model for decoding and encoding of visual stimulus based on

Available online 27 july 2014 manifold representation of the temporal and spatial information extracted from magnetoencephalographic

data. In the proposed decoding process, principal component analysis is applied to extract temporal principal
components (TPCs) from the visual cortical activity estimated by a beamforming method. The spatial distribution
of each TPC is in a high-dimensional space and can be mapped to the corresponding spatiotemporal component
(STC) on a low-dimensional manifold. Once the linear mapping between the STC and the wavelet coefficients of
the stimulus image is determined, the decoding process can synthesize an image resembling the stimulus image.
The encoding process is performed by reversing the mapping or transformation in the decoding model and can
predict the spatiotemporal brain activity from a stimulus image. In our experiments using visual stimuli contain-
ing eleven combinations of checkerboard patches, the information of spatial layout in the stimulus image was
revealed in the embedded manifold. The correlation between the reconstructed and original images was 0.71
and the correlation map between the predicted and original brain activity was highly correlated to the map be-
tween the original brain activity for different stimuli (r = 0.89). These results suggest that the temporal compo-
nent is important in visual processing and manifolds can well represent the information related to visual
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Introduction

Decoding brain activity evoked in the visual cortices and encoding
visual stimuli are challenging yet worthwhile endeavors. Modeling the
visual processes in the brain can help to establish the connection be-
tween visual stimuli and brain activity. This connection can be described
using decoding and encoding models (Kriegeskorte, 2011; Naselaris
etal.,2011). Once the model parameters are obtained via a training pro-
cedure, a decoding model can be used to recognize events from specific
patterns of brain activity or even reconstruct the contents of the stimuli.
In contrast, an encoding model can be used to predict brain responses
corresponding to perceived environmental events. Numerous studies
have investigated decoding and encoding models by conducting exper-
iments using sensory stimuli (Brouwer and Heeger, 2009; Cox and
Savoy, 2003; Formisano et al., 2008; Haxby et al., 2001; Haynes and
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Rees, 2005; Kamitani and Tong, 2005; Kay et al., 2008; Mitchell et al.,
2008; Miyawaki et al., 2008; Naselaris et al., 2009; Nishimoto et al.,
2011; Ramkumar et al., 2013; Schoenmakers et al., 2013; Thirion et al.,
2006), mental imagery (Reddy et al, 2010), and movement
(Bradberry et al., 2010; Gallivan et al., 2011). By correlating the data/
feature space of neural responses and that of the stimuli, decoding and
encoding models can be constructed for the classification of perceptual
data or the reconstruction of the stimuli (Fujiwara et al., 2013; Naselaris
et al.,, 2011). Classification is achieved by identifying the most likely
stimulus according to brain response patterns whereas reconstruction
is an attempt to reproduce the perceived stimuli.

In studies on functional magnetic resonance imaging (fMRI), con-
ventional classifier was used as a simple decoding method to differenti-
ate the brain response patterns represented in a discriminative feature
space (Brouwer and Heeger, 2009; Cox and Savoy, 2003; De Martino
et al, 2008; Haynes and Rees, 2006; Kamitani and Tong, 2005;
LaConte et al., 2007; Norman et al., 2006; Reddy et al., 2010). This
kind of method is data-driven and is restricted to the classification of a
fixed set of categories. Another approach is to identify novel stimuli by
predicting its corresponding brain responses, usually achieved by a gen-
eral encoding model. Kay et al. (2008) proposed a method to identify
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novel natural images according to the brain activity predicted by a
receptive-field model. Mitchell et al. (2008) constructed a computation-
al model to map semantic features to brain responses in order to predict
brain activity and identify new words viewed by subjects. Furthermore,
visual stimuli can be reconstructed using blood oxygenation level-
dependent (BOLD) signals in the visual cortex. Multi-voxel decoders
and multi-scale image representation have been used to reconstruct vi-
sual symbols and characters (Miyawaki et al., 2008). Combining models
with different Bayesian priors can help to rebuild natural images
(Naselaris et al., 2009). Recently, visual experiences of natural movies
have been reconstructed by a stimulus-response encoding model
(Nishimoto et al., 2011).

Retinotopic mapping has been measured and defined from visual
input to the neurons in the primary visual cortex by fMRI-based exper-
imentation (Brewer et al., 2005; Engel et al., 1997; Sereno et al., 1995;
Wandell et al., 2007). Because of the relationship between visual stimu-
lus and the invoked neural activity, the decoding of visual processing
depends largely on the spatial distribution of neuronal activation in
the visual cortex. When modeling this relationship, therefore, multivar-
iate analysis of functional neuroimaging data can be adopted to ensure a
comprehensive consideration of the information related to all voxels in
the visual cortex. Multi-voxel pattern analysis (MVPA) was demonstrat-
ed to be capable of distinguishing among activity patterns revealed by
multiple voxels and estimating the contribution of voxels to specific
stimuli (De Martino et al., 2008; Haynes and Rees, 2006; Liang et al.,
2013; Norman et al., 2006; Parkes et al., 2009). Voxels with high dis-
criminative ability were regarded as important features spanning the
subspace of task-related brain responses and were obtained by a super-
vised learning process in MVPA.

Manifold learning is an unsupervised learning method and can be
used to find an embedded non-linear manifold on which the data lie
in the original higher-dimensional space. Manifold can well organize
the data in a lower-dimensional space by preserving the neighborhood
relationship between proximal data points in the original space. Intrin-
sic structure of data organization unveiled by a manifold can be further
analyzed or visualized for exploring its underlying characteristics.
Previous studies applied manifold-based learning methods to the
image data and obtained manifolds revealing the organization of
image data in various aspects, for example, object poses, facial expres-
sions, or lighting directions (Roweis and Saul, 2000; Tenenbaum et al.,
2000). In neuroscience field, applying manifold learning method to
functional neuroimaging data is an emerging research direction. Seung
and Lee (2000) suggested that patterns of neural activity form a mani-
fold while observing faces with various orientations or scales. Because
the dimensionality of perceptual inputs is enormous, they speculated
that the brain might use an efficient way to represent the complex
input of neuronal signals from sensory receptors. Adoption of a model
similar to the representation in the brain may facilitate the recognition
of novel stimuli (Kriegeskorte, 2011). Ogmen and Herzog (2010) re-
cently investigated the limitations of retinotopic mapping and sug-
gested that local manifold representations should be considered.
Furthermore, studies suggested that such high-dimensional neural
data can be concisely represented using a low-dimensional nonlinear
manifold (Miikkulainen et al., 2005; Ritter et al., 1992; Roweis and
Saul, 2000; Tenenbaum et al,, 2000). When represented by a manifold,
its subspace might convey perceptual meanings or higher-level con-
cepts of neural activity.

Taking advantage of high temporal resolution, electroencephalogra-
phy (EEG) and magnetoencephalography (MEG) have been used to
reconstruct rapidly changing stimuli or movements. From the acquired
MEG signals, natural speech can be identified using classical canonical
correlation analysis (Koskinen et al., 2013). Three-dimensional hand
movements were also reconstructed using EEG signals (Bradberry
et al., 2010). In the studies of visual decoding, MEG responses evoked
by visual stimuli of different orientation columns were identified
using multivariate classifiers (Duncan et al., 2010). Rapid visual

information processing of low-level visual features can be decoded
from MEG signals (Ramkumar et al., 2013). Multivariate analysis meth-
od was applied on source-space MEG data for the decoding of different
image categories (van de Nieuwenhuijzen et al., 2013). Although spatial
patterns are known to be an essential element in visual processing, the
spatiotemporal components (STCs) are also very important (Ahlfors
et al., 1999; Ayzenshtat et al., 2010; loannides et al., 2012; van de
Nieuwenhuijzen et al., 2013) and might be beneficial for the decoding
of visual processing.

This paper proposes a bidirectional decoding/encoding model that
can be used to reconstruct visual patterns containing eleven different
combinations of checkerboard patches from spatiotemporal brain activ-
ity. This model can also be used to predict the brain activity for a given
visual stimulus. The proposed model uses two-dimensional wavelets for
the representation of image stimuli and manifold for the representation
of the brain activity in the visual cortex. These two representations are
both reversible and hence we can establish forward and inverse connec-
tions between brain activity and image stimulus by calculating two-way
mappings between the two representations. Based on the previous
hypothesis regarding the manifold representation of sensory neurons,
this study investigated whether manifold representation can benefit
the reconstruction of visual patterns. We also utilized the temporal
information of brain activity and derived the STCs for both decoding
and encoding processes. Unlike the previous studies which used fMRI
for visual reconstruction, we examined the possibility of reconstructing
elementary visual patterns from temporal brain activity measured by
MEG.

Materials and methods
Subjects and recordings

Seven subjects (five males and two females, aged 22-26) with nor-
mal or corrected-to-normal vision participated in this study. During
data acquisition, the subjects sat in a comfortable chair in front of a
screen which was 1 m away from their eyes and were instructed to
look at the center of the visual stimulus passively while keeping their
heads steady. Each subject participated in five sessions, each of which
consisted of 220 trials. As shown in Fig. 1(a), each trial began with a fix-
ation cross displayed on the screen for a random duration between 650
ms and 850 ms. Following fixation, an image was randomly selected
from the set of visual stimuli containing eleven different combinations
of checkerboard patches. Four stimulus images containing only one
patch were categorized as the basic image set, and the rest of the stim-
ulus images as the composite image set, as shown in Fig. 1(b). The field
of view of each image was 26° x 26° and that of each checkerboard
patch was 6.5° x 6.5°. The eccentricity was 10.5° from the center of
the checkerboard patch to the center of the screen. Each stimulus
image was statically displayed on the screen for 250 ms, as shown in
Fig. 1(a). A 5-min break was given between each session to prevent
the subjects from fatigue.

MEG data were recorded in a magnetically shielded room using
a 306-channel whole-head system (Vectorview system, Neuromag
Ltd., Finland) at a sampling rate of 1001.6 Hz and were filtered with
passband 0.03 to 330 Hz. Among the set of channels, MEG data from
204 gradiometers were used for further processing. Vertical and
horizontal electrooculograms (EOGs) were also recorded to detect
eye blinking. Three-dimensional T1-weighted magnetic resonance
imaging (MRI) with the MP-RAGE sequence was performed using a
Siemens scanner with TR = 2530 ms, TE = 3.03 ms, TI = 1100 ms,
FOV = 224 x 256 x 192 mm?, matrix size = 224 x 256 x 192, and
voxel size = 1 x 1 x 1 mm°. Coordinate systems between the MRI
volume and MEG device were co-registered by locating three land-
marks (nasion, left and right pre-auricular points) in both systems.
This study was approved by the Institutional Review Board of
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(a)

(b)

Basic image set

Composite image set

Fig. 1. (a) Timeline in an epoch of MEG experiment in this study. A stimulus randomly selected from eleven images was displayed for 250 ms after a fixation cross with random time in-
terval between 650 ms and 850 ms. One epoch included a 250-ms pre-stimulus fixation cross, a 250-ms static stimulus image, and a 250-ms post-stimulus fixation cross. (b) There were
eleven combinations of checkerboard patches in the stimulus images, including four images in the basic image set and seven images in the composite image set. The fields of view of stim-
ulus image and checkerboard patch were 26° x 26° and 6.5° x 6.5°, respectively. The eccentricity was 10.5° from the center of the checkerboard patch to the center of the screen.

Taipei Veterans General Hospital and written informed consents
were obtained from all subjects.

Data preprocessing

Trials were excluded from our analysis if they contained gradiome-
ter signals with amplitudes exceeding 2000 fT/cm or EOG signals with
amplitudes greater than 250 pV. MEG signals were projected onto a sig-
nal subspace by the signal space projection method (Uusitalo and
[Imoniemi, 1997) and passed through a band-pass filter (2-50 Hz).
For baseline correction, the mean amplitude of the pre-stimulus interval
[—250 ms, —50 ms] was subtracted from the signal of each trial. EOG-
free epochs of 750 ms starting from 250 ms prior to the stimulus onset
were extracted for further analysis.

Bidirectional model for decoding and encoding

Fig. 2 presents the proposed bidirectional model for decoding and
encoding. The cortical activity for the position located at the center of
each MRI voxel within the primary visual cortex (V1) was estimated
from the MEG signals using the source estimation method described
in the following section. In the proposed manifold representation of cor-
tical activity, we first applied principal component analysis (PCA) to ex-
tract temporal principal components (TPCs) from all trials of cortical
activity in V1. To reduce the spatial dimensionality of the TPCs, we ap-
plied the locally linear embedding (LLE) method (Roweis and Saul,
2000) to map the TPC data to its corresponding STC in a lower-

dimensional space, while preserving the neighborhood relationship be-
tween the TPC data in the original space. The STCs form a manifold as es-
sential features representing the cortical activity. Through linear
mapping, the STCs were used to calculate the wavelet coefficients for
the reconstruction of stimulus images represented by a wavelet basis.
In contrast with the above-mentioned decoding process, the encoding
process can be engaged to predict brain activity for a given visual stim-
ulus, as shown in Fig. 2. For a given image, we first calculated its wavelet
coefficients and converted them into STC. Reverse LLE was applied to
map the STC to its corresponding TPCs. Finally, inverse PCA was applied
to back-project the TPCs to the predicted brain activity of each position.
The details of the proposed model are described in the following
sections.

Estimation of cortical activation

This study applied the maximum contrast beamformer (MCB) meth-
od (Chen et al,, 2006) to estimate brain activity in V1 from the measure-
ments b(t) recorded by MEG sensors, where t = 1, ..., T and T is the total
number of sample points. The segmentation of V1 was achieved by regis-
tering the MRI of each subject to the template containing Brodmann area
labels provided by MRIcro (Chris Rorden, University of Nottingham, UK).
The number of voxels in V1 ranged from 20,035 to 26,378 for the seven
subjects. For each targeted position p at the center of each MRI voxel in
V1, I was defined as the lead field vector containing the predicted mea-
surements of N MEG sensors for a unit dipole. For the given S different
kinds of stimuli and P positions, MCB was used to calculate a spatial filter
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Fig. 2. The proposed bidirectional model for decoding and encoding. The model contains manifold and wavelet representation for brain activity and stimulus image, respectively. In the
decoding process, TPCs are calculated by applying PCA to the time course of brain activity. LLE is then applied to the spatial distribution of each TPC to obtain STC lying on a manifold. Fol-
lowing linear mapping, STC is transformed into wavelet coefficients, which are used to reconstruct the stimulus image through the weighted summation of wavelet functions. In the
encoding process, a test stimulus image is decomposed into wavelet coefficients according to the wavelet representation. The coefficients are then transformed into STCs using the inverse
of linear mapping. Then reverse LLE is applied to the STC to obtain TPCs and the brain activity is predicted by applying inverse PCA to the TPCs.
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the variance of the output signal x,s(f)
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where E{*} denotes the expectation value and « is the parameter of
Tikhonov regularization for restricting the norm of the spatial filter w.
The use of Lagrange multipliers enabled us to solve this constrained opti-
mization problem in order to obtain the analytical solution of w ;:

Wy wpsT(C +al)w, | subject to wp_STl =1

= arg min
Wp.s

~(C+an'l
“MC+an '’

where C = E{(b(t) — E{b(t)})?} is the N x N covariance matrix of
MEG measurements b(t) for stimulus s and I'is the N x N identity ma-

trix. We then averaged the S spatial filters, w,, s = 1, ..., S, of all
stimuli to obtain the spatial filter w, at position p:
s
gzl 3

After passing MEG measurements of i-th trial b(t), i = 1.0,
through the spatial filter wj,, we calculated the brain activity xp(t) of
the i-th trial at position p:

Xp(6) =W, 'b'(0). @)
Here U is the total number of MEG trials comprising the data for all
stimuli.

Temporal PCA

To represent the temporal information of brain activity in a more
condensed manner, temporal PCA was applied to the estimated brain
activity across all stimuli, trials, and positions. The resulting principal
components Z are given by the following:

T
Z=AX, (5)
where the ((p — 1) x U + i)-th column of Xr . py contains the T mean cen-
tered sample points of brain activity datax,(t),t = 1, .., T, for the i-th trial

(i=1, ..., U) at the p-th position (p = 1, ..., P), as defined below:
x(H)=x(1) = X (1)=x(1) xp(1)=X(1) =~ xp(1)=%(1)
x- [ H@-x2 - do-x2) T @)-XQ) - %p(2)-X(Q2)

xp(T)—X(T) = xp(T)—X(T)

0=p5 30 S X0

X1 (T)—%(T) . *¥(T) —X(T)
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Each column of the obtained matrix Zy . py contains V TPCs in the
formz,(v),v=1,..,V:

zi(l zy(1 z%(l) zg(l
z-| a2 22 7 @) 52 (7)
(V) - (V) (V) - z(V)

Matrix A is a transformation matrix, the columns of which contain V ei-
genvectors corresponding to the V largest eigenvalues of the unbiased
covariance matrix 3 = PUI—_leX.

Using transformation matrix A enabled us to reduce temporal di-
mensionality from T to V and transform the original data into corre-
sponding TPCs lying on the linear space spanned by A. Data related to
brain activity under examination ) = [x5(1), X(2), ..., xp(T)]" at
position p was also transformed using matrix A into its correspond-
ing TPC z = [2)(1), Z5(2), ... , Zp(V)]":

Z)=A' (xﬁ —&) , (8)

where X = [x(1), X(2),..., ?(T)]T.
LLE with correlation as distance metrics

For each position p in V1, we calculated its TPCs using the method
described in the previous section. For each TPC, the LLE method
(Roweis and Saul, 2000) was used to determine the manifold embedded
in the spatial distribution of brain activation. LLE is an unsupervised
method capable of reducing dimensionality according to the similarity
between data in the original space, without the prior knowledge of
stimulus type. For the v-th TPC, the values for all P positions in V1
form a spatial distribution and also can be considered as point z' =
[Zi(v), Zo(v), ..., zb(V)]",i =1, ..., U, in a P-dimensional space. Let A de-
note the set of all TPCs: A = {z', -, 2V}. For each of these U points in A in
the P-dimensional space, z, the goal of LLE was to transform it to a low-
dimensional (d-dimensional) vector g = [¢}(v), ¢b(V), ..., qy(V)],i=
1,...,U:

ZeRP—g'=R?, where d<P. 9

The LLE algorithm first finds the K-nearest neighbors for point Z, de-
noted as 2/ € A — {Z'},j = 1,..., K. The algorithm then represents z' as a
linear combination of these neighbors, >_ ¥_ 1B; Y, where By, j = 1....,
K, are the weightings determined through the minimization of the error
function:

ACEDIN

Instead of the Euclidean distance in the original LLE method (Roweis
and Saul, 2000), this study adopted the spatial correlation coefficient as
the distance measure for finding neighbors in the P-dimensional space
of TPC spatial distribution. For point Z, its K-nearest neighbors, 2/, j =
1,..., K, were identified as those having the K-highest correlation coeffi-
cients with z'. Weightings Bjj were solved in a least-squares manner as
in (Roweis and Saul, 2000). Once the weightings By, j = 1...., K, for all
data points 2, i = 1, ..., U, were obtained, the corresponding data points
q.i=1,..., U in the d-dimensional embedded space were calculated
through the minimization of the cost function:

K i, 2
B2 (10)

&(8) = Y [la =32 Byl (11)

where A = {g', -, ¢} and q” € A is the data point in the d-dimensional
space corresponding to zV. By combining the low-dimensional vectors

for all of the V TPCs, vector ' with V x d dimensions was constructed
as the STC for the i-th trial:

Y= [d), G () @) Bt Q@) GV BV G
(12)

In the classification or reconstruction process, the spatial distribu-
tion of the v-th TPC under examination, 2 = [Z{(v), Z(V), ..., zZs(V)]T,
was linearly represented by its K-nearest neighbors 2% € A, j = 1...., K,
using weightings By, j = 1...., K, determined through the minimization
of function &3(By) = ||l — 3_ K_ 1Bg; 2%|[%. With the same coefficients in
the linear combination of 2%, we obtained a low-dimensional represen-
tation ¢° = [¢1(v), @), ..., qa(v)]" = X ¥_ 1B4q”, where ¢ € A'is
the point in the d-dimensional embedded space corresponding to z%
in the original P-dimensional space.

Stimulus image reconstruction

Wavelet representation was used to reconstruct the grayscale stimulus
image observed by the subject, as shown in the right part of Fig. 2. First, the
estimated wavelet coefficients ¢4, ¢5 ..., ¢; were calculated by the inner
product of the STC y and the L weighting vectors my, | = 1,..., L:

¥
$=|%
b

-M"y, (13)

where M = [m; m, m; ]. Next, we calculated the reconstructed
image I(x, y) by superimposing the L wavelet functions s(x, y) weighted
by the estimated coefficients ¢/, [ = 1, ..., L:

I(xy) =" d1(x.y). (14)

Finally, thresholding was applied on pixels to zero negative intensity values
caused by the small fluctuation in wavelet functions.

In this work, we used single-trial MEG data to calculate STC for
reconstructing images of size 80 x 80. Four-level 2D Haar wavelet trans-
formation was applied to stimulus images. For comparison, Gabor
wavelets were also used because they are well suited to modeling the
receptive field in visual cortices (Jones and Palmer, 1987). Because an
image can be completely represented by a set of wavelets only when
they form a frame (Lee, 1996), this study used Gabor wavelets with
eight orientations, two phases, and three scales for the reconstruction
of the stimulus images. As in Lee (1996), the mother wavelet of the
2D Gabor is defined as:

P(x,y) = \/%efé(uhryz)~ {eikx_e 2] 7 (15)

where k = 2.5. Then the 2D admissible wavelet family is given by:

lpa,[i‘u.w(xry) = ao_ad’e (ao_aX—Bbm agay—,uboag), (16)

Yo(x,y) = aj;(xcos(%w) +ysin(gw), —xsin(%w) +ycos<gw)),
(17)

where ag = 2.0, « = 0, 1, 2 is the dilation in scale, bo = 1.0 is the unit
spatial interval, w = 1,..., 8 is the step size of each rotation, 3 = — 20,
...,20,and u = —20....,20.

The weighting matrix My, . ; for transforming STC into wavelet
coefficients was obtained by minimizing the cost function &4(M)
with the minimum norm criterion in a least-squares regression.
Function &4(M) is defined by the residual between wavelet
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coefficients ¢ of the presented image and the estimated wavelet
coefficients ¢’ = M™y:

4)] (I(va)’llfl(xvy»
£4(M) = Hd’/_d’Hz-, where ¢ = ‘1’2 (I(XvY)al:/fz(XJD . (18)

b 1(%,Y), ¥, (%))

For image reconstruction, the MEG signals evoked by four basic im-
ages were converted into STCs and employed in the training process de-
scribed above to obtain the weighting matrix My, » ; in the wavelet-
based reconstruction. Tenfold cross validation was used to assess the
performance of image reconstruction. In the training procedure of
image reconstruction, we randomly selected nine-tenths of the MEG tri-
als evoked by basic image set as the training data and used these data to
estimate all parameters in our model. Then the rest of the MEG trials
evoked by basic image set and the trials evoked by composite image
set constituted the testing data for image reconstruction. For perfor-
mance evaluation, this study evaluated the similarity between the pre-
sented images and the reconstructed ones by calculating the averaged
spatial correlation coefficients between images.

Encoding process

The encoding process in the proposed bidirectional model can be
used to predict brain activity when a subject observes an image. As
shown in Fig. 2, the processing units in the encoding process are the
same as those in the decoding process, except with reverse flow.
Using the wavelet representation, wavelet decomposition was applied
to calculate the wavelet coefficients ¢ of a given stimulus image. As in
the training process for the estimation of M, transformation matrix M’
was also calculated using the least-squares method with the minimum
norm criterion and then was used to map the wavelet coefficients of im-
ages onto STC:

v =M"¢. (19)

Once the STC were obtained in manifold representation, the follow-
ing reverse LLE procedure was applied to map STC in low-dimensional
manifold space to TPCs in the original high-dimensional space. This re-
verse mapping was performed by applying the locally linear combina-
tion estimated in the manifold space to the data in the original space.
First, each segment of STC y’ was represented by a point q' = [g{(v),
qs(v), ..., q4(v)]', v =1, ...V, in d-dimensional space corresponding to
the v-th TPC. The weightings B}, j = 1...., K, for linearly approximating
q’ from its K-nearest neighbors g/, j = 1...., K, were calculated by mini-
mizing the following error function:

/

£5(B) = |

/2
q-y 7 Bl (20)

where ¢’ € A belongs to the training set. Once obtained, the same set of
weightings Bj was applied in computing the v-th TPC 2’ = [z{(v), z4(v),
., zy(»)]" in the original P-dimensional space:

I K /
Z=3% " B (21)
whereZ € A,j = 1,..., K, is a training data in P-dimensional space corre-

sponding to ¢ in d-dimensional space. Finally, inverse PCA was used to
calculate the predicted brain activity X’ from all of the V obtained TPCs:

z;,@)}
2 (22)

where X’ can be regarded as a single-trial spatiotemporal brain activity
in V1.

We applied tenfold cross validation to evaluate the performance of
encoding model. Nine-tenths of the MEG signals for eleven stimuli
were used for model parameter estimation. Each of the eleven stimulus
images was used to calculate activity profile by using the trained
encoding model and the obtained activity was compared with the
brain activity estimated by MCB from the remaining one-tenth of the ac-
quired MEG signals.

Classification

The overall performance of the proposed decoding/encoding model
was evaluated according to the reconstructed images and predicted
brain activity patterns. Furthermore, we performed classification analy-
sis to evaluate the discriminative capability of STC alone, excluding the
influences of image representation using wavelets and interconnection
between STC and wavelets. The STCs obtained in the decoding process
were used by a classifier to assess their discriminative property in dif-
ferentiating brain activity of different visual stimuli. Moreover, the
STCs calculated for all of the brain regions and time intervals were eval-
uated through classification to determine a set of STCs with high classi-
fication accuracy to be used in the decoding process. We also evaluated
various combinations of the model parameters V, d, and K within the
ranges V € [1,10],d € [1, 20], and K € [2, 20], and determined the pa-
rameter values to achieve high classification accuracy. We found that
the classification performance did not change drastically when V > 2,
d > 8, and K > 12. The lower bound of V was chosen to ensure that
the cumulative contribution rate of eigenvalues was larger than 60%.

Before STC calculation, in classification, MEG data with the same
number of trials for each kind of stimulus were first averaged across
four trials for noise reduction. Support vector machine (Chang and
Lin, 2011) with a linear kernel was used as the classifier and y with
two temporal components and eight manifold dimensions (V = 2 and
d = 8) was used as the input data. The size of neighborhood, K, was
set to be 14 in the LLE algorithm. The classification performance of
four or eleven kinds of stimuli was evaluated using tenfold cross valida-
tion. In each evaluation step, recorded MEG signals evoked by each kind
of stimulus images were divided into training and testing data sets be-
fore applying temporal PCA and LLE. Only the training data were used
to determine the transformation matrix A and the sets of A and A for
TPC/STC calculation. Total accuracy was calculated by averaging accura-
cy values across tenfolds.

We also compared the classification accuracy obtained by applying
LLE to the spatial domain with that obtained by applying PCA. In this
case, the dimensionality of spatial principal component was also set to
be eight, which was the same as the manifold dimension using LLE.
The original TPC data of all positions in V1 without applying spatial pro-
cessing were also included in the comparison. Moreover, when compar-
ing the results obtained by applying PCA on temporal domain with
those without applying temporal PCA, the signal powers were calculat-
ed by using brain activity estimated from the 2-50 Hz MEG signals in
the period between 60 ms and 160 ms after the stimulus onset.

Manifold representation

It is essential to investigate whether manifold can provide a compact
representation of brain activity manifesting high-level properties in the
embedded low-dimensional space. In this work, we examined how the
spatial layout information of checkerboard patches was revealed in the
embedded manifold constructed from the brain activity data evoked by
both basic and composite sets. For each subject, eight-dimensional
manifold (d = 8) with neighborhood size of fourteen (K = 14) was cal-
culated by LLE method from the averaged data for every four trials of
brain activity evoked by eleven types of stimuli. Moreover, we also
assessed the spatial linearity of the STCs to investigate whether the
STC of a composite stimulus can be well predicted by linearly combining
the STCs of its constituent basic stimuli. To be specific, we examined
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how well the combination of basic stimuli was related to the combina-
tion of the corresponding brain responses. For each composite stimulus,
its predicted STC was first calculated by averaging the STCs of its constit-
uent basic stimuli. The dissimilarity values between the predicted STC
and the STCs of the seven composite stimuli were then calculated by
Euclidean distance. The image dissimilarity values between the average

—
2
N

of the constituent basic stimuli and the seven composite stimuli were
also calculated by Euclidean distance. The correlation between STC dis-
similarity and stimulus dissimilarity values was calculated and averaged
across the seven composite stimuli. This averaged correlation was de-
fined as the spatial linearity index of the STCs. For comparison, we
also calculated the spatial linearity index of brain activity using the
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Fig. 3. MEG signals and estimated cortical activity. (a) Time courses of 204-channel MEG signals aligned to the onset of the stimulus (red line) and averaged across trials. The visual stim-
ulus image is presented in the top-right corner. The bold profile illustrates the averaged signals of Channel 2112 with its position shown by the circle on the topographic field map. The
topographic field maps depict the spatial distributions of magnetic fields at time points 49 ms, 94 ms, and 158 ms. (b) Brain activity estimated by MCB. Examples of estimated brain activity
are illustrated in blue, green, red, and cyan profiles for locations (—11, —88, —3), (—9, —69, 15), (10, —89, 5), and (7, — 74, — 15), respectively, shown on the MRI in MNI (Montreal

Neurological Institute) coordinate system.
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above procedure, in which the STC of each stimulus was replaced with
its spatiotemporal activity in V1 estimated from the 2-50 Hz MEG sig-
nals in the time interval from 60 ms to 160 ms after the stimulus onset.

Results
MEG sensor signals and estimated cortical activity

Fig. 3(a) illustrates the MEG signals acquired from Subject ST when
presented with the stimulus image shown in the upper right corner.
The bold line in the figure indicates a signal at channel 2112 in the oc-
cipital area. All trials were aligned to the stimulus onset (0 ms) and

Presented
Reconstructed
image

then averaged. The first peak of the visual evoked magnetic field (VEF)
was found at 94 ms after the stimulus onset. Fig. 3(a) also shows the to-
pographic fields at 49 ms, 94 ms, and 158 ms, in which the position of
channel 2112 is indicated by a black circle. Fig. 3(b) presents the tempo-
ral profiles and locations of four estimated sources of cortical activity
plotted in standardized MNI (Montreal Neurological Institute) space
for Subject S1, which are depicted in blue, green, red, and cyan.

Reconstruction of stimulus image

As shown in Fig. 4(a), the proposed method reconstructed a visual
stimulus image containing checkerboard patches from a single trial of

1 second

(b)

Reconstructed image

Presented image

Single trial

Averaged Binarized
— —

Time

(c) Corr. map between presented and reconstructed images
Presented image

-
S A -
: E EEEEE BN -
§ w.?w
S REEEE = if
' HEEEE EE 2l
is}
7| l A ot —
M EEEEE . o
E w?§
2 . ..... .u B | 030 045 031
5
S AR BN e ? wis 01028 .
s| H HEEEE NN . :
B EEEEE S T ©
| 04 05 06 07 08
R
d (e) Corr. map between presented images [=4
(d) 8
TTTITETTI T
. 1.00 =
o " 1o 047
E [
E B 048
7 E m 047 047068
H . 046 047 [0.68
. .0 H 047 047 068
BE 8 046 0.47 04
Subject . 5
)
e

P I Y e O \

Basic set Composite set Average

0 0.2 04 06 08 1

Fig. 4. Results of stimulus image reconstruction. (a) Presented and reconstructed images of each single trial data for Subject S1. Each stimulus image was presented for 250 ms and MEG
data from 60 ms to 160 ms after the stimulus onset were used to reconstruct the image. (b) Reconstructed stimulus images after averaging and binarization. Presented are the single trial
results of eleven stimulus images. The averaged image was obtained from five reconstructed images and the results after binarization are presented in the rightmost column.
(c) Correlation map showing the similarity between the presented and reconstructed images. Similarity value was calculated as the spatial correlation coefficient of presented and recon-
structed images for each subject followed by averaging across seven subjects. (d) Similarity between the presented and reconstructed images for each subject. Similarity values for the
basic and composite image sets are indicated by black and gray bars, respectively, and the white bars present mean similarity values across all stimulus images. (e) Correlation coefficient
map between the presented stimulus images. The correlation coefficient between the correlation maps shown in (c¢) and (e) was 0.92 (p < 0.0001).


image of Fig.�4

P.-C. Kuo et al. / Neurolmage 102 (2014) 435-450 443

Presented image

Reconstructed image

Mean
similarity

037 033 032 037 031 028 035 031 031 033

Gabor

Mean
similarity

0.77 0.69 0.68 0.78 0.67

!'-l Avg.
082 078 076 071 0

.57 0.71

0.29 0.32

Fig. 5. Results of stimulus image reconstruction using Haar and Gabor wavelets. Reconstructed images were the single-trial results for Subject S1. The mean similarity values were averaged

across all trials and all subjects.

100-ms MEG data. Fig. 4(b) presents the image averaged from the re-
construction results of five trials of MEG data acquired for Subject S1.
Averaged and then binarized images are also presented in the two right-
most columns. Fig. 4(c) shows the averaged similarity values calculated
by spatial correlation coefficients between the presented images and
the reconstructed ones for seven subjects. Fig. 4(d) outlines the similar-
ity for each kind of stimulus from either basic or composite image sets.
The averaged similarity among the composite image set was also high,
despite the fact that the model was trained using the basic image set.
As shown by the white bars in Fig. 4(d), this study calculated the
mean similarity averaged across eleven stimulus images for each of
the seven subjects. The overall reconstruction result shows considerable
promise according to the high mean similarity (r = 0.59-0.83).
Fig. 4(e) presents the correlation map in which each value is the corre-
lation coefficient between each pair of stimulus images. In addition to
values on diagonal, there are high correlation values in some of non-
diagonal elements because of the high similarity between stimulus im-
ages. The correlation coefficient between the two maps in Figs. 4(c) and
4(e) was 0.92 (p < 0.0001). Fig. 5 illustrates the presented images and
those reconstructed from one single-trial MEG data of Subject S1 using
either Haar or Gabor wavelets. The mean values of similarity between
the presented and reconstructed images were averaged across all trials
and all subjects.

Encoding of stimulus image

Fig. 6(a) illustrates the spatial distribution of the original and pre-
dicted brain activity for Subject S1, at seven time points ranging from
90 ms to 150 ms following the stimulus onset. Here the original brain
activity means the cortical activity estimated by MCB from MEG mea-
surements. The first row depicts the predicted brain activity for the
stimulus image shown in the leftmost column, as calculated in the
encoding process of the proposed bidirectional model. The following
eleven rows depict the original brain activity for all of the eleven stimuli
presented in the leftmost column. The rightmost column shows the spa-
tiotemporal correlation values between the predicted activity and the
original ones. The activity evoked by the same stimulus presented the
highest correlation value (r = 0.82, p < 0.001).

Fig. 6(b) presents three correlation maps for predicted/original brain
activity, original brain activity, and stimulus images. Each value in the
predicted/original brain activity correlation map was the average of
the correlation coefficients between the predicted and the original
brain activity across all trials and all subjects. The diagonal values in
this map ranged from 0.19 to 0.58, demonstrating a positive correlation
between the predicted and original activity. In the original brain activity
correlation map, each element shows the averaged correlation coeffi-
cient value of original brain activity across all trials and all subjects.
Moreover, the correlation coefficients between these three correlation

maps are also shown in Fig. 6(b). First, the correlation value was signif-
icantly positive (r = 0.84, p < 0.0001) between the correlation maps of
stimulus images and original brain activity. Second, the correlation map
of original brain activity was also significantly correlated to the correla-
tion map between predicted and original activity (r = 0.89, p < 0.0001).
Last, there was a highly positive correlation between the predicted/orig-
inal brain activity correlation map and stimulus image correlation map
(r=0.74, p < 0.0001). Fig. 6(c) shows the similarity between original
and predicted spatiotemporal activity with respect to the same stimuli.
For each subject, the similarity values are indicated by black and gray
bars for basic and composite image sets, respectively, and the white
bars indicate mean similarity values across all kinds of stimulus images.

Classification

Fig. 7(a) presents the classification accuracy for all subjects using the
basic set of images (black bars) and all images (white bars) containing
both the basic and composite sets as visual stimuli. The brain activity
in V1 with 100-ms time window from 60 ms to 160 ms was used for
classification. The horizontal lines indicate the chance levels (25% for
the basic image set containing four types of stimuli and 9.09% for
all images containing eleven types of stimuli). Fig. 7(b) depicts the
classification accuracy (averaged over seven subjects) for brain ac-
tivity estimated in various Brodmann areas using the MEG measure-
ments within 100-ms time window (60-160 ms) evoked by the basic
image set. This study achieved 72.4%, 70%, and 67.3% classification
accuracy for the primary (BA17), secondary (BA18), and associative
visual cortices (BA19), respectively. The dashed line indicates the
chance level (25%). For regions BA7, BA37, and BA39, which are relat-
ed to visual processing, classification accuracy was approximately
50%. For areas apart from the visual cortices and the areas unrelated
to visual processing, classification accuracy fell to approximately
chance level (25%).

As shown in Fig. 7(c), the classification accuracy using brain activity
in V1 evoked by four types of basic images was evaluated for a 100-ms
time window moving from — 150 ms to 430 ms. The dashed line indi-
cates the chance level (25%). For all of the seven subjects, the accuracy
was relatively high within the range from 70 ms to 190 ms, compared
with those values obtained in other time intervals.

Fig. 7(d) presents the classification accuracy (averaged for seven
subjects) evaluated for brain activity in six visual-related areas within
the 100-ms sliding window. BA 17 and BA 18 had the longest duration
(from 50 to 270 ms) with a high degree of classification accuracy. In
contrast, BA 39 had a shorter interval (from 90 to 210 ms) with high ac-
curacy. The classification accuracy obtained from BA 17 or BA 18 rose at
an earlier stage than those obtained from other areas in the visual
pathway.
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Fig. 8 shows the classification results for evaluating the discrimina-
tive property of data after applying different methods on the spatial
and temporal domains of brain activity. When PCA was applied in the
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temporal domain, as indicated by the black bars in Fig. 8, the classifica-
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and none of both methods were applied in the spatial domain,
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respectively. Classification accuracy was significantly higher (p < 0.005)
when the LLE manifold was used to represent the spatial distribution of
brain activity, regardless of whether the temporal PCA was applied in
the temporal domain. We also compared the classification accuracy
with and without the application of PCA to the temporal information.
When signal powers were used instead of applying PCA, as shown by
the gray bars in Fig. 8, the accuracy values were 42.6, 28.7, and 28.9
when LLE, spatial PCA, and none of both methods were applied in the
spatial domain, respectively. Classification accuracy was significantly
higher (p < 0.005) when temporal PCA was applied than using signal
powers.

Manifold representation in low dimensional space

Fig. 9(a) shows a two-dimensional subspace (obtained by linear
discriminant analysis) of the eight-dimensional manifold for Subject
S1. Eight types of stimuli with checkerboard patches on the positions
that can be categorized into purely left, right, bottom, or top are
shown in this figure. This two-dimensional subspace of manifold em-
bedded the information related to the spatial layout (left/right and bot-
tom/top) of checkerboard patches. As shown in the left panel of
Fig. 9(a), one dimension of the manifold was highly correlated
with the horizontal layout of the checkerboard patches (r = 0.70,
p <0.001), whereas another dimension was highly correlated
with the vertical layout (r = 0.74, p < 0.001). Other four composite
stimuli are indicated on the same subspace of the manifold shown
in the right panel of Fig. 9(a). One dimension was also correlated
with the horizontal layout (0.62, p < 0.001) and another dimension
was correlated with the vertical layout (r = 0.93, p < 0.001).

Fig. 9(b) illustrates the distribution of the mean STCs, each of which
was the average of the STCs corresponding to the same stimulus, in a
two-dimensional subspace of the manifold calculated for Subject S1.
Mean STCs of the composite stimuli are depicted as colored solid circles,
whereas those of basic stimuli are depicted as open circles. Take the
stimulus with two checkerboard patches on the left as an example to
illustrate the spatial linearity property of STCs. Its predicted STC
calculated by averaging the two mean STCs of its constituent basic stim-
uli (linked with dashed lines), as indicated by the black solid circle, was
closest to the mean STC of the composite stimulus constituted by these
two basic stimuli (depicted with red solid circle). Fig. 9(c) presents
the spatial linearity index for each of the seven subjects. The spatial
linearity index calculated using STCs was significantly higher than
that calculated using brain activity in V1 (paired t-test: p < 0.001).
The spatial linearity indices for the seven subjects were positively
correlated with their mean similarity values of image reconstruction
presented in Fig. 4(d) (r = 0.75, p < 0.05).

Discussion

We obtained four main results from our bidirectional decoding/
encoding model. First, the brain activity in our experiments can be rep-
resented by STCs lying on manifolds, whose subspace reveals spatial
layout of checkerboard patches in the stimulus images. Second, STCs
possess high discriminative capability, particularly for those obtained
in V1 within the time interval of visual processing. Third, composite vi-
sual patterns can be reconstructed from single-trial MEG signals by

using the proposed decoding model based on the spatial linearity prop-
erty of brain activity. Last, the proposed encoding model can predict the
brain activity from a given stimulus image containing checkerboard
patches.

Manifold for the representation of neural activity

This study investigated the manifold as a representation of neural
activity. Manifold learning is capable of projecting data onto a topo-
logical space according to the distribution of the original data. With-
in this topological space, the data are distributed more regularly and
with lower dimensionality than in the original space. Seung and Lee
(2000) describe how the high-level concepts of visual perception can
be organized into low-dimensional manifolds. In their statement, N
photoreceptors form an N-dimensional space, and the responses of
all photoreceptors for each stimulus image are represented by a
point within this N-dimensional space. The brain may recognize
the same object within images presented with different views be-
longing to the same manifold. To investigate manifold modeling in
the human brain, this study applied LLE (Roweis and Saul, 2000) to
represent the cortical activation patterns in V1. Rather than Euclidi-
an distance, this study used spatial correlation as the distance metric
between two points in the original space in order to avoid the influ-
ence of the overall magnitude of brain activity. The modified LLE
method can be used to obtain a low-dimensional space embedded
with the spatial layout information of checkerboard patches. High
correlation coefficient was found between the spatial layout of stim-
ulus image and the distribution of the STCs in low-dimensional
space. In addition, for composite stimulus images with two checker-
board patches on the same sides, the corresponding STCs were locat-
ed between the two STC distributions of the constituent basic
stimulus images, as shown in the right panel of Fig. 9(a). These re-
sults suggest that the manifold-based model could be used to repre-
sent high-level visual information.

PCA is probably the most widely-used method for dimension reduc-
tion. PCA linearly transforms the data onto a subspace retaining the
maximum amount of data variation. However, data variation is inher-
ently a Euclidean distance metric and is not suitable as a similarity met-
ric for characterizing the global structure of data distributed on a
manifold. Because the spatial maps of brain activity in V1 were consid-
ered lying on a manifold, in this study LLE was chosen for dimension re-
duction. For comparison, we also applied PCA to extract spatial features
and demonstrated that the classification accuracy was significantly
lower than applying LLE, as shown in Fig. 8.

The spatial linearity or superposition of brain activity is an essential
property associated with the manifold representation space. Based on
the superposition principle, the brain activity evoked by a composite
image can be approximated by a linear combination of the brain re-
sponses evoked by the constituent basic images. One previous fMRI
study used wedges and rings as visual stimuli to demonstrate the spatial
linearity of BOLD responses (Hansen et al., 2004). This study investigat-
ed the spatial linearity in VEF. We compared the predicted STC with the
actual ones and the combination of basic stimuli with the composite
ones. Correlation coefficient between these two comparison results
was used to assess the spatial linearity property of STCs. Compared to
the spatiotemporal brain activity in V1, the significantly higher spatial

Fig. 6. Results of encoding visual stimulus into brain activity. (a) The spatial distribution of the original and predicted brain activity. Each row illustrates the spatiotemporal brain activity in
the left and right hemispheres at intervals between 90 ms and 150 ms after the stimulus onset. The first row presents an example of the predicted brain activity calculated by the proposed
encoding process using the stimulus image with two checkerboard patches appearing on top. The following rows depict the original brain activity estimated by MCB using MEG signals
evoked by eleven types of stimulus images. The rightmost column presents the spatiotemporal correlation coefficients between the predicted brain activity and the original ones. (b) Top
left: correlation map between the predicted and original spatiotemporal brain activity. The correlation coefficients were calculated for each combination of the predicted and original brain
activity resulting from eleven types of stimulus images. Each value of the correlation coefficient was averaged across all subjects and all trials. Top right: correlation map of original brain
activity. Each value of the correlation coefficient was averaged across all subjects and all trials. Bottom: correlation map between the presented stimulus images, reduced from Fig. 4(e).
These three correlation maps were all mutually correlated (r = 0.74, 0.84, and 0.89, p < 0.0001). (c) Similarity values between predicted and original spatiotemporal activity correspond-
ing to the same stimulus image. For each subject, the similarity values are indicated by black and gray bars for basic and composite image sets, respectively, and the average similarity

values across all kinds of stimulus images are indicated by white bars.
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Fig. 7. Accuracy of brain activity classification using STCs. (a) Classification accuracy for each subject presented with the basic set of images (black bars) and both basic and composite sets of
images (white bars). The dashed and solid lines indicate the chance levels when the stimulus image was chosen from the basic and the basic&composite image sets, respectively.
(b) Classification accuracy was averaged across the seven subjects using the brain activity in each single Brodmann area. The upper panel depicts the accuracy in the sagittal, coronal,
and axial views. The bottom panel presents accuracy values for all areas. Only the basic set of images was used and the dashed line indicates the chance level. (¢) Classification accuracy
was obtained for each subject sampled at intervals of 20 ms ranging from — 150 ms to 430 ms using a 100-ms time window. The dashed line indicates the chance level. (d) For Brodmann
areas 7,17, 18, 19, 37, and 39 related to visual processing, the classification accuracy averaged across the seven subjects was higher in visual-related time intervals than those in other
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Fig. 8. Classification accuracy using different methods of extracting temporal and spa-
tial features. Black bars depict the results with or without the use of LLE or spatial PCA
for the extraction of spatial features while using PCA for temporal feature extraction.
Gray bars depict the results obtained from three different spatial features using only
signal powers. In both cases, the accuracy was significantly higher when LLE was used
for spatial feature extraction than that when PCA or none was applied (paired t-test:
*p < 0.01, **p < 0.005, and ***p < 0.001). The dashed line indicates the chance level.

linearity index calculated for STCs implies the feasibility for the
proposed manifold representation to reconstruct a novel compos-
ite image from a set of basic images after finding the linear combi-
nation relationship among the associated STCs. The positive
correlation (r = 0.75, p <0.05) between the spatial linearity

Bottom-top position
4

indices for the seven subjects and the reconstruction similarity
values suggests that the spatial linearity property of STCs could
benefit the image reconstruction process.

Wavelets for the representation of image stimulus

Previous research used multi-voxel representation for the recon-
struction of visual patterns from fMRI activation (Miyawaki et al.,
2008). For voxel-based representation, Kamitani and Tong (2005) syn-
thesized fMRI responses in V1 by applying Gabor-like filters to visual
stimuli and successfully decoded the orientation information from
these synthesized responses. Kay et al. (2008) used Gabor wavelets to
construct a model for image identification. Naselaris et al. (2009)
adopted sparse Gabor prior for the reconstruction of the natural
images. Pasley et al. (2012) applied space-time Gabor filters to video se-
quences in an encoding model. Based on the reconstruction perfor-
mance in our experiments as shown in Fig. 5, this study selected Haar
wavelets to represent image stimuli, rather than Gabor wavelets. On
the average for all eleven types of stimuli, the similarity values for
Haar and Gabor wavelets were 0.71 and 0.32, respectively. One reason
for this discrepancy may be that the visual stimuli used in this work
comprised simple checkerboard patches, which can be sufficiently rep-
resented by Haar wavelets. Another reason for this choice is the fact that
alarge number of Gabor wavelets could increase the difficulty of estima-
tion and negatively affect the accuracy of linear mapping between the
wavelet and STC spaces. On the other hand, the insufficient number of
the Gabor wavelets cannot completely represent the image (Lee,
1996) and may degrade the reconstruction performance. We suggest
that the type of wavelets be chosen according to image content. Gabor
wavelets may outperform Haar wavelets when dealing with complex
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Fig. 9. (a) A two-dimensional subspace of the LLE manifold space. Each point indicates an STC calculated from MEG signals of Subject S1. The STCs evoked by four basic stimulus images are
presented in the left panel, whereas those evoked by four composite stimulus images are presented in the right panel. Both panels show the same subspace of manifold and the distribution
of STCs manifests the layout of checkerboard patches in the stimulus images. (b) Spatial distribution of mean STCs in the same two-dimensional subspace as in (a). Each mean STC was the
average of all STC points for each type of stimulus image. The open circles depict the mean STCs of basic stimulus images and colored solid circles depict the mean STCs for composite stim-
ulus images. The black solid circle depicts an example of the linear combination of two mean STCs linked by dashed lines. Solid lines show the distances between the predicted STC and the
mean STCs of all composite stimuli in this two-dimensional subspace. (c) Spatial linearity index calculated using STC was significantly larger than that calculated using brain activity in V1

(paired t-test: p < 0.001).
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images or those involving natural stimulus images. Another alternative
is to automatically determine an image basis from the stimulus images
per se. Instead of a fixed image representation, for example, Fujiwara
et al. (2013) used Bayesian canonical correlation analysis (BCCA) to cal-
culate image bases mapping from latent variables to image pixels.

Decoding the spatiotemporal information from MEG

Most previous studies have used fMRI to decode visual information
(Brouwer and Heeger, 2009; Haynes and Rees, 2005; Kamitani and
Tong, 2005; Kay et al., 2008; Miyawaki et al., 2008; Naselaris et al.,
2009; Nishimoto et al., 2011; Schoenmakers et al., 2013; Thirion et al.,
2006). Rather than the metabolic correlates of fMRI data, this study uti-
lized neural activity measurements of MEG to enable an accurate recon-
struction of visual patterns in a trial-by-trial manner.

Previous studies have demonstrated that brain source localization in
V1 can be precise to 2 mm using MEG (Poghosyan and Ioannides, 2007)
and the distances between peak locations identified by fMRI and MEG
can be in the range of 3 to 5 mm (Moradi et al., 2003). This study calculat-
ed visual cortical activity from MEG measurements using the MCB meth-
od (Chen et al., 2006). Adaptive MCB spatial filters were derived from the
MEG measurements of a particular stimulus in a data-driven manner.
However, a universal spatial filter was required to cope with unknown
situations in the decoding process. One approach to designing this kind
of universal spatial filter involves maximizing the inter-stimulus variance
while minimizing intra-stimulus variance (Muller-Gerking et al., 1999;
Xiang et al., 2007). This design emphasizes the differences between stim-
uli while disregarding common properties among stimuli, making it un-
suitable for image reconstruction. This study calculated the universal
spatial filter by averaging the spatial filters obtained from four basic
image stimuli. Spatial filters designed in this manner are capable of pre-
serving both common and event-specific characteristics in the estimated
brain activity.

The early response (N70m) between 50 ms and 100 ms following
stimulus onset (Carandini et al., 2005; Inui and Kakigi, 2006; Laskaris
et al,, 2003; Tzelepi et al., 2001; Vanni et al., 2001) plays an important
role in the classification of visual patterns because classification accura-
cy is far higher during the VEF period than during other intervals, as
shown in Fig. 7(c). The durations for above-chance decoding are consis-
tent with previous findings related to visual processing in which V1
neurons are attuned to patterns with spatial differences in early stages
(40 ms or further) (Tong, 2003). The similar time-resolved decoding re-
sults were also found in the previous study (Ramkumar et al., 2013).
These results suggest that the temporal resolution of MEG can help to
reveal the rapid visual perception process. It should be noted that, in
this study, the offset of the visual stimulus at 250 ms after the
onset also evoked a VEF at approximately 350 ms (Parker et al., 1982),
which tends to slightly enhance classification accuracy.

As shown in Fig. 7(b), classification accuracy was higher when in-
volving the regions along the dorsal and ventral visual pathways than
when using estimated brain activity in other regions. Fig. 7(d) shows
the time delay involved in classification accuracy in regions related to
visual processing. In the associative visual cortex (BA 19), classification
accuracy increased at a point approximately 20 ms later than in V1
(Bullier, 2001). Moreover, the intervals with high classification accuracy
were longer in V1 and V2 than in other visual cortices. These results sup-
port the integrated (interactive) model proposed in previous studies:
V1 has interactive connections with many extrastriate areas (V2, V3,
V3A, V4 and MT), and receives feedback signals during conscious per-
ception (Bullier, 2001; Lamme and Roelfsema, 2000; Tong, 2003).

From the brain activity estimated using MCB spatial filters, this study
extracted VEF components using temporal PCA. This procedure was
used to extract the event-related potential components mentioned in
previous EEG studies (Dien, 2012; Dien et al., 2005). To investigate the
importance of temporal information, we classified brain activity based
on the temporal and spatial information obtained using different

methods shown in Fig. 8. Regardless of whether LLE or spatial PCA
was used for extracting spatial features, the accuracy was higher when
the TPCs calculated with temporal PCA were used for classification
(black bars), compared to that when the powers of the estimated
brain activity were used (gray bars). This indicates that temporal infor-
mation in brain activity is helpful for the differentiation of brain re-
sponses corresponding to different experimental conditions.

From the reconstruction results of the seven subjects shown in
Fig. 4(d), we found that the mean similarity between the original and
reconstructed stimulus images with checkerboard patches in lower vi-
sual field was 0.80, which was significantly higher than the similarity
value 0.73 observed with patches in the upper visual field (Fisher's
transformation z = 7.78, p < 0.001). However, there was no significant
difference between the mean similarity values for the left (0.71) and
right (0.69) visual fields (Fisher's transformation z = 1.80, p = 0.07).
One possible explanation of this phenomenon is that visual perfor-
mance in the lower visual field is better than that in the upper visual
field, according to the visual field asymmetry (Berardi and Fiorentini,
1991; Levine and McAnany, 2005; Portin et al., 1998).

Encoding the visual stimulus image

Accurate encoding model can facilitate the investigation of computa-
tional theories of perception and cognition (Serences and Saproo, 2012).
The proposed encoding model can accurately predict the neural activity
in V1 for stimulus images containing checkerboard patches, as shown
by the high similarity values of diagonal elements in the correlation
map between the predicted and original brain activity. Moreover, the
whole predicted/original brain activity correlation map is highly correlat-
ed to the original brain activity correlation map (r = 0.89, p < 0.0001), as
shown in Fig. 6(b). That is, similar predicted brain signals for two different
image stimuli implied that similar brain signals were observed for these
two image stimuli.

As shown in Fig. 6(b), some non-diagonal elements in the three corre-
lation maps have large values. In the stimulus image correlation map, the
values on non-diagonal elements are large when checkerboard patches
exist in some common quadrants of the corresponding two stimulus im-
ages. In the original brain activity correlation map, non-diagonal elements
with large values indicate that the corresponding brain signals were
evoked by stimulus images with common checkerboard patches. The
highly positive correlation coefficient (r = 0.84, p < 0.0001) between
image stimulus correlation map and original brain activity correlation
map can be attributed to spatial linearity of retinotopic responses
(Hansen et al., 2004). That is, brain activity evoked by a composite stimu-
lus image is similar to those evoked by its composing basic stimulus
images.

More importantly, in the predicted/original brain activity correlation
map, the correlation coefficients are relatively large when there are
common checkerboard patches in some quadrants of the corresponding
stimulus images. For example, the correlation value of element (4, 9),
0.50, is close to that of the diagonal element (9, 9), 0.58, because the
stimulus images corresponding to these two elements both have the
checkerboard patch at the right-bottom quadrant. Conversely, the cor-
relation coefficient is relatively small when the checkerboard patches
are at different locations. For example, the correlation value of element
(10, 9) is —0.09. The significant positive correlation coefficient value
between the predicted/original brain activity correlation map and stim-
ulus image correlation map (r = 0.74, p < 0.0001) indicates that the
specificity of the predicted brain signals is caused by the dissimilarity
of the stimulus images.

Previous fMRI studies used encoding models to predict the BOLD re-
sponse patterns evoked by visual stimuli (Kay et al., 2008; Mitchell et al.,
2008). The 1-Hz BOLD signals with temporal information were predict-
ed in a previous study (Nishimoto et al.,, 2011). Sprague and Serences
(2013) used fMRI and encoding model to reconstruct spatial represen-
tation of visual stimuli. Fujiwara et al. (2013) also developed the BCCA
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method to derive a bidirectional model for visual stimuli. In addition to
the decoding of fMRI activity, they also demonstrated the results of
encoding visual stimulus by using latent variables, image bases, and
voxel weights. The main difference between this study and previous
ones is that the proposed encoding model can be used to predict spatio-
temporal neural activity. In other words, it is possible to predict tempo-
ral signals at the millisecond level for each position in the brain.
Although elementary checkerboard patches were used to constitute
test images, to the best of our knowledge, this is the first attempt to in-
vestigate the prediction of neural activity with high spatial as well as
temporal resolutions. The ability to reveal temporal changes in brain ac-
tivity from the encoding model is crucial to uncovering the means by
which visual processes are organized to produce visual perception.

Conclusions

Our results using MEG have demonstrated the efficacy of the pro-
posed bidirectional model in both decoding brain activity and encoding
visual stimuli using checkerboard image patches. Two-dimensional
wavelets can capture important image features to compactly represent
the stimulus images containing checkerboard patches. By mapping the
high-dimensional data of neural activity to a low-dimensional space,
manifold representation can effectively model the spatiotemporal dy-
namics of neural activity associated with visual processing. The
decoding model based on this manifold representation is generalizable,
such that a model trained using basic images can be used to reconstruct
composite stimulus images. The reconstruction results from single-trial
MEG data also suggest the possibility of real-time image reconstruction.
Furthermore, the spatiotemporal brain activity for a given stimulus
image containing checkerboard patches can be accurately predicted
using the encoding process of the proposed model.
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