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Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation
based on conservational laws and constitutive equations of linear and nonlinear responses. However,
explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an
Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the
electrical potential φ in coupling to the other equations of FHD. The resulting φ-FHD equations then
serve as a platform for integrating the essential forces, including electrostatics in addition to hydro-
dynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that
govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of
φ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in
homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation.
Furthermore, we show that the field variables of φ-FHD can be mapped from the trajectory of an
all-atom molecular dynamics simulation such that model development and parametrization can be
based on the information obtained at a finer-grained scale. With the aforementioned multiscale capa-
bilities and a spatial resolution as high as 5 Å, the φ-FHD equations represent a useful semi-explicit
solvent model for the modeling and simulation of complex systems, such as biomolecular machines
and nanofluidics. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4900498]

I. INTRODUCTION

For complex systems encountered in physics, chemistry,
and biology, the behaviors of interest usually emerge from
molecular interactions at an intermediate scale that spans
from tens of nanometers to below the micrometer. Examples,
to name a few, include the biological machineries of gene ex-
pression and biopolymer synthesis,1, 2 devices of energy trans-
formation and storage,3, 4 as well as transporters of molecules
and information across phase boundaries.5, 6 In general, the
mesoscopic regime described above is too large for a fully
atomistic description of functional activities to be practical
but too small for systems to solely follow the averaged phe-
nomena dictated by continuum mechanics. The aspects of
molecular specificity and the constraints of physical laws thus
need to be put together to comprehend such systems. Further-
more, an essential property for unusual features to emerge at
the intermediate scale is thermal fluctuations that convolute
the effects of different forces. To enable joint consideration
of multifaceted factors, it is becoming increasingly clear that
computer simulation is demanded as an indispensable com-
plement to experimental methods.7–9 In this regard, we recog-
nize that a key objective of mesoscopic modeling and simu-
lation is providing a theoretical platform to integrate the rele-
vant mechanics for revealing how specific behaviors originate
from molecular structures and interactions. Another require-
ment is that the representation needs to be sufficiently coarse
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grained (CG) for the model to be practically useful in captur-
ing and explaining the main features of the system.

The commonly employed approaches of modeling a
complex system at an intermediate scale can generally be di-
vided into two categories. The first is coarse graining parti-
cles into particles.10, 11 Although the fundamental functional
forms of intra- and inter-molecular potentials may still be re-
tained at the level of united atoms, more drastic reduction of
details often obscures the parameterization and interpretation
of interaction potentials between CG particles.10, 11

The second approach is coarse graining particles into
fields for representing conservation laws and variational
principles.12, 13 Irreversible responses ubiquitously encoun-
tered at the intermediate scale can be incorporated via the
constitutive equations of the relevant types of fluxes, and the
transport coefficients of which may also be measured exper-
imentally. The effects of thermal noises can also be incor-
porated, for example, as in the fluctuating hydrodynamics
(FHD) of Landau.14, 15 In adopting the Lagrangian viewpoint,
conservational and constitutive laws may be translated into a
particle-like dynamics to facilitate representation of compli-
cated structures and non-uniform boundaries. Many methods
of mesoscopic simulations are in this category,16, 17 including
smoothed-particle hydrodynamics,18, 19 dissipative-particle
dynamics,20–22 and lattice-Boltzmann (LB) methods.23, 24

However, such forms of equations of motion often do not ex-
actly satisfy the original conservational laws. Moreover, inter-
preting the dynamics of field variables as the equations of mo-
tion of particles inevitably requires specific assumptions that
complicate generalization to more realistic scenarios such as
multi-phase and multi-component flows.

0021-9606/2014/141(17)/174105/13/$30.00 © 2014 AIP Publishing LLC141, 174105-1
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On the other hand, direct solution of FHD equations is
a straightforward approach to impose conservation laws and
linear response theories, especially with the recent advance-
ment in numerical discretization schemes that even a grid size
as small as 5 Å can be used to solve the FHD equations.25–27

With the mapping operator that projects the positions and ve-
locities of particles onto the field variables in different grid
cells in space,28, 29 it can be shown that the equation of state
and transport coefficients in the FHD equations can be calcu-
lated from the trajectories of all-atom MD simulations with
special care of the finite sizes of molecules when a small grid
size smaller than 10 Å is used for discretization.26, 27 This
multiscale mapping from atomistic MD also applies to non-
isothermal FHD equations.30 The ability of resolving fluid
flow at a small length scale also makes the FHD equations
suitable for modeling interfacial flows.31

For more complicated problems that are required to
resolve molecular structures, a hybrid FHD/MD scheme can
be deduced to represent solvation and solvent-mediated inter-
actions between particles.32 In this case, the time propagation
of field and particulate degrees of freedom are conducted
together. Therefore, the hybrid FHD/MD scheme provides
a platform to represent molecularly specific properties
together with the universally required conservation laws.
It was shown that using interaction potentials and forces
between particles and fields, the hybrid FHD/MD scheme
can simultaneously capture the behaviors of hydrodynamics
and hydrophobicity.32

To serve as a general framework of mesoscopic simu-
lation, though, an essential requirement is the ability to de-
scribe electrical forces. In the intermediate length scale, it
is generally not known a priori the relative roles of differ-
ent mechanics in contributing to the emergent behaviors of
interest, since the specific structures of the system and ther-
mal fluctuations tend to couple different forces in a highly
non-trivial manner. It is thus important for mesoscopic simu-
lation to jointly consider the impact of different physical in-
teractions on the dynamics. In deterministic continuum me-
chanics, hydrodynamic equations for polarizable fluids can
be derived rigorously33 and a simplified form has been ap-
plied to describe the electrokinetic motions of charged col-
loidal particles34–36 In the mesoscopic regime where stochas-
tic effects become essential, incorporation of electrical forces
in the FHD equations is yet to be developed for simulating
electrokinetic phenomena at the nanoscale.

In this work, we devise a set of FHD equations to simu-
late the spatial and temporal variation of the electric potential
(φ) due to fluctuating dipole moments and permanent charges
in the fluid, and the resulting electrical forces are fed back to
the momentum equations to affect the fluid flow. Unlike the
approaches based on Onsager’s reaction field37, 38 that treat
the solvent as a dielectric continuum without transient dielec-
tric responses, the φ-FHD equations developed here employ
an Ansatz for the temporal evolution of electrical dipole fields.
Therefore, in contrast to many of the fluid-dynamics based
approaches39 or the meanfield treatment,40 the dielectric con-
stant is not an input parameter to the φ-FHD model but an
emergent property from the resulting statistics of dipole fluc-
tuations.

Compared to the explicit41, 42 and implicit solvent43–48

approaches, both widely used in all-atom based simulations,49

φ-FHD can be regarded as a “semi-explicit” solvent with the
mass, charge, and polarization densities of the solvent situat-
ing on grid cells of 5 Å as the default value. This length-scale
of discretization can be changed depending on the specific
needs of modeling but 5 Å is sufficiently large for the solvent
flow to follow the continuum dynamics of the FHD equations
and also adequately small to represent interfacial flows.31

For fluid flows at a charged or dipolar interface, responses
to fluctuations in the electric field in the solvent would cou-
ple to changes in molecular structures at the surface in de-
termining the overall dynamics. For molecular systems at the
nanoscale, the fluctuations of charged or dipolar particles also
depend on those of the solvent electric fields. In addition to
electrostatics, other forces of hydrodynamics and thermody-
namics jointly apply in giving rise to these phenomena. The
introduction of φ-FHD equations presented in this work aims
to develop a theoretical framework for integrating the physi-
cal forces relevant to mesoscopic simulation. In the presence
of explicit charge densities and mass transfer equations, the φ-
FHD equations can be readily applied to model electrokinetic
processes.

In the following, the equations of φ-FHD we developed
will first be discussed in detail. Magnetic effects33 are not
considered as in most molecular simulations. Next, the merit
of combining electrical and other essential forces in a meso-
scopic simulation model is illustrated by several non-trivial
test cases. We also analyze the coarse graining of all-atom
MD simulation to the field variables of φ-FHD for establish-
ing that the model parametrization and development of which
can incorporate information from a finer grained scale. Fi-
nally, the conclusion is presented.

II. FLUCTUATING HYDRODYNAMICS EQUATIONS
FOR A DIELECTRIC SOLVENT (φ-FHD)

We let t denote time and x a location in space in the
laboratory (Eulerian) frame associated with the solvent. For
brevity, explicit labeling of the dependence of a symbol on its
arguments is only done when extra clarity is needed. Apart
from the occasional Cartesian index and “0” for vacuum per-
mitivity, symbols pertaining to the solvent do not carry sub-
scripts. We only employ subscripts on symbols related to
dissolved components. Furthermore, we denote the absolute
temperature by T and the Boltzmann constant by kB.

The fluid system satisfies the continuity equation of mass
density ρ:

∂ρ

∂t
= −∇ · g. (1)

Here, g is the momentum density and it is related to the ve-
locity field v through g = ρv. The law of conservation of mo-
mentum dictates the dynamics of g as

∂g
∂t

= −∇ · (gv) − ∇ · (R + D + Ds). (2)

In Eq. (2), R is the reversible stress tensor, D is the dissipative
stress tensor, and Ds is the fluctuating stress tensor mandated
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by the fluctuation-dissipation (FD) theorem. Using a simple
equation of state with the speed of sound as the parameter
(more complicated equation of state can be used if necessary)
and denoting the electrostatic potential by φ, it can be shown
that R is

∇ · R = c2∇ρ + ñ∇φ. (3)

A formal derivation for the second term is outlined in the Ap-
pendix. In Eq. (3), ñ is the charge density. For the dissipative
stress tensor, we assume that the fluid is Newtonian although
more complicated constitutive equations can also be imple-
mented if desired. As a result,

D = ηS(∇v + (∇v)T) +
(

ηB − 2

3
ηS

)
(∇ · v)I. (4)

Here, ηB and ηS are coefficients of bulk and shear viscosity,
respectively. The symbol I represents the identity tensor. The
fluctuating stress tensor describes thermal fluctuations in mo-
mentum fields according to the mathematical form of D to
achieve the fluctuation-dissipation balance. From Eq. (4), we
have 〈

Ds
ij (t, x)Ds

kl(t
′, x′)

〉 = 2kBT δ(t − t ′)δ(x − x′)

×
[
ηS(δikδjl + δilδjk)

+
(

ηB − 2

3
ηS

)
δij δkl

]
. (5)

In this equation, the covariances between each element of the
second-rank tensor Ds at times t, t′ and locations x, x′ are
specified.

In an ideal dielectric solvent, the presence of external
electric fields do not induce net electric currents but polarizes
the solvent to gain the polarization charge density as

ñ = −∇ · p. (6)

In this equation, p denotes the density of the induced dipole
moment, and the assumption that no higher-order electrostatic
moments from the quadrupole and up contribute to the polar-
ization density has been made. As such, the fluid responds
only to the local electrostatic field ∇φ. Introducing the dipole
polarizability α, the local electrostatic energy density can be
defined up to an arbitrary constant as

u(p) = p · ∇φ + p · p
2nα

. (7)

Here, n is the solvent number density. Minimizing this elec-
trostatic energy density with respect to p yields the equilib-
rium polarization density as the following expression that is
defined as the constitutive equation of polarization:

p(x) = −αn(x)∇φ(x). (8)

For simplicity, we assume that α is constant with respect to
∇φ(x), but this treatment is not a strict limitation and an ex-
pansion of α in hyperpolarizabilities may be implemented
straightforwardly. The polarization charge densities resulting
from Eq. (6) are then used to determine φ through the Poisson

equation:

∇2φ = − ñ

ε0

. (9)

Here and in the following, we denote the vacuum permittivity
by ε0.

The local polarization density p is a continuum represen-
tation of the charge distributions in the fluid. However, since
the continuum is discretized over minute fluid cells of 5 Å in
solving the φ-FHD equations, p can only be resolved as the
average in each grid cell. This average fluctuates under the
thermal motion of the contributing molecules which in a fully
atomistic MD simulation is determined by the equations of
motion and the parameters of the potential energy function. In
the mesoscopic model of φ-FHD, the resolution of resolving
forces is limited by the grid cell size of choice. In this case,
we employ random thermal noises to represent the effects of
the missing details in each grid cell on its dipole moment.
Equation (7) discussed earlier describes dipole-dipole interac-
tions between grid cells. This strategy is analogous to the ther-
mostatting of particle-based simulation methods,50 such as in
molecular dynamics and dissipative particle dynamics.20–22

Combining the considerations discussed above, we pro-
pose the following Ansatz that uses the form of an over-
damped Langevin equation for the dynamics of the dipole
moment densities in grid cells:(

∂p
∂t

)
= −η

{
∇φ + p

nα

}
+ b(x, t). (10)

Terms in the parenthesis of the RHS of Eq. (10) represent the
deterministic forces for the responses of the dipole moment
densities. The time scale for the forces to affect dynamics is
determined by the mobility coefficient η, which in the anal-
ogy of particle dynamics is related to solvent viscosity.51 De-
termination of this transport coefficient for the dipole moment
densities will be discussed later. For the deterministic forces
to govern the static properties of p as in the over-damped
Langevin dynamics of particles, b(x, t) takes the form as pre-
scribed by the fluctuation-dissipation theorem:

〈bi(x, t)bi ′ (x
′, t ′)〉 = 2kBT ηδii ′δ(x − x′)δ(t − t ′). (11)

Therefore, the average polarization density will follow the
constitutive equation of Eq. (8) if ∇φ is a steady external
electric field given sufficient time for the noise due to ther-
mal fluctuations to average out. The η parameter, on the other
hand, determines the time scale of reaching the equilibrium.

Equation (10) is coupled to the rest of the FHD equations
through the reversible stress tensor R and is thus consistent
with the principles of the conservation laws of FHD. Further-
more, in the presence of fluid flow, an advection term may be
added to Eq. (3):

∂p
∂t

= −∇ · (pv) − η
{
∇φ + p

nα

}
+ b(x, t). (12)

Nevertheless, numerical calculations indicate that the advec-
tive term does not play a significant role in the regime of φ-
FHD of small grid size and high solvent viscosity, i.e., low
Reynolds number, as expected.
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FIG. 1. Schematic illustration of the staggered discretization scheme. Scalars
(denoted generically by S in the figure) are calculated and stored at cell cen-
ters, whereas vectors (components denoted by v

x
and v

y
in the figure) are

calculated and stored at cell faces, one for each Cartesian component.

A. Numerical solution of the φ-FHD equations

The φ-FHD equations presented above can be solved by
discretizing the simulation space into Nc cubic grid cells, and
each cell has the volume of Vc = d3

c . Periodic boundary con-
ditions were applied in all three directions. The “staggered”
scheme of finite differences26 was employed, in which scalar
fields such as mass densities, electrostatic potential, etc., are
calculated and stored at cell centers, whereas vector fields
such as the gradients of scalar fields are calculated by finite
differences at cell faces. A schematic illustration is shown in
Figure 1.

In this work, we consider water as the solvent and un-
less noted otherwise, the following parameters are used:
c = 13.937 ps−1 Å, ηB = 19.204 amu ps−1 Å−1, and ηS

= 53.858 amu ps−1 Å−1.32 A second-order Euler predictor-
corrector integrator was employed in all simulations with a
time step of 5 fs. The electrostatic potential was obtained by a
fast Fourier solver of Poisson’s equation using the Singleton52

algorithm. In all simulations that include thermal fluctuations,
the temperature was set to 300 K. Averages were sampled
over 2 ns trajectories.

Since the electrostatic coupling in Eq. (3) stems from the
stochastic variable ñ, the combination of a finite system and
finite resolution gives rise to a non-zero stochastic contribu-
tion to the total electrical force acting on the entire system
even if it is charge neutral. If unchecked, this minute residual
force will lead to a very small but nonzero Brownian drift of
the system during the simulation. To ensure the conservation
of total linear momentum, we impose the explicit constraint

∂

∂t

∫
V

g(x)d3x = 0 (13)

by adding a constraint force λ(t) to the equation of motion, so
that it reads

∂g
∂t

= −∇ · (gv) − ∇ · (
R + D + Ds

) + λ(t). (14)

By combining this augmented equation of motion with the
constraint of Eq. (13), we find the explicit form of the con-
straint force:

λ(t) = − 1

V

∫
V

{−∇ · (gv) − ∇ · (R + D + Ds)}d3x. (15)

It is important to stress that Eqs. (13)–(15) are a numerical
correction to the non-zero noise in a finite stochastic sys-
tem that decays square-rootly with system size. Similar pro-
cedures are also common in molecular dynamics simulations.

The system state of a FHD simulation is specified by the
mass, momentum, and polarization densities of all grid cells
according to Figure 1. With the thermodynamic temperature
set at value T, the numerical algorithm propagates the φ-FHD
equations presented above in time. For clarity, the predictor-
corrector scheme of moving forward a small time incre-
ment 
t is presented for the equations of the system in the
following:

1. Calculate ñ from p by finite differences between nearest
neighbors through Eq. (6). Since p is a vector stored at
cell faces as the momentum density vectors, ñ is calcu-
lated at cell centers like the mass densities.

2. Calculate ∇ · g via finite differences; calculate the non-
electrostatic part of the reversible stress tensor R and
the dissipative stress tensor D via the equation of state,
Eq. (3) and the constitutive equation, Eq. (4), respec-
tively.

3. Generate a random tensor Ds subject to the fluctuation-
dissipation conditions stated above at the temperature T
via Eq. (5).

4. Calculate φ by solving Eq. (9); φ is stored at cell centers,
collocated with ñ.

5. Generate a random vector b subject to the fluctuation-
dissipation conditions stated above at the temperature T
via Eq. (11).

6. Calculate ∂p/∂t according to Eq. (10), ∂g/∂t according
to Eq. (2), and ∂ρ/∂t according to Eq. (1).

7. Calculate the predictors of state variables: p′ = p
+ 
t∂p/∂t ; g′ = g + 
t∂g/∂t ; ρ ′ = ρ + 
t∂ρ/∂t. The
number density n′ is proportional to the mass density ρ ′

through the solvent molecular weight.
8. Calculate ∂p′/∂t , ∂g′/∂t, and ∂ρ ′/∂t by repeating steps

1–10 with p′, g′, and ρ ′.
9. Calculate state variables in the next time step

via the corrector: p ← p + 0.5(∂p′/∂t + ∂p/∂t)
t ; g
← g + 0.5(∂g′/∂t + ∂p/∂t)
t ; ρ ← ρ + 0.5(∂ρ ′/∂t
+ ∂ρ/∂t)
t. The number density n is then determined
from the newly calculated ρ.

Therefore, all different physical quantities are updated to-
gether with time.

III. RESULTS AND DISCUSSION

In this section, the φ-FHD equations are applied to sev-
eral model systems to illustrate the capability of integrating
essential forces in mesoscopic scale simulation. First, the sol-
vent dielectric function of φ-FHD is characterized and com-
pared with the results of experimental measurements. Second,

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.113.38.11 On: Tue, 21 Jul 2015 10:02:34



174105-5 Persson, Voulgarakis, and Chu J. Chem. Phys. 141, 174105 (2014)

we calculate the solvation free energy of ions to examine the
accuracy that can be achieved by putting together the relevant
interactions in simulation. We also simulate the distribution
of ions of different sizes in a nanoscale droplet to illustrate
that the φ-FHD framework has the potential as a general tool
in modeling complex systems. Finally, coarse graining from
all-atom MD simulations is analyzed to show that the infor-
mation obtained in a finer grained scale can also be utilized to
develop the φ-FHD model.

A. Solvent dielectric function

The complex dielectric function quantifies the dielectric
response of the solvent to a time-varying external electric
field. The zero-frequency value of this function represents the
equilibrium response and is typically referred to as the static
dielectric constant. If the polarization density p along an axis
has been achieved due to an externally applied electric field
E, the static dielectric constant is defined as

ε̂(0) = 1 + p

ε0E
. (16)

In general, the dielectric function ε̂(ν) is frequency (ν) de-
pendent. Here, we show that the φ-FHD equations presented
in the last section quantitatively describe the profiles of ε̂(ν)
of water measured experimentally. Direct calculations of ε̂(ν)
from all-atom MD simulations would suffer from high noise-
to-signal ratio and are yet to appear to the best of our
knowledge.

We consider a simulation box of 61.5 × 61.5 × 61.5 Å3

divided into Nc = 123 cubic grid cells. Each grid cell thus has
a size of dc = 5.125 Å. The results reported here are insen-
sitive to the values of Nc used in the simulation within the
sampled range of 83 to 163. The equilibrium density of water
is ρ = 0.998 g/cm3 in the φ-FHD simulations, and the tem-
perature of the thermal fluctuations in the fluid flow was set
to 300 K. To determine ε̂(ν), a constant electric field E along
the z direction is applied and the resulting p value along this
direction is tracked in time. In these calculations, the thermal
fluctuations of the polarization density are turned off (b ≡ 0
in Eq. (10)) so as to directly approach the value of the statisti-
cal average. In the presence of the external field, the equation
of motion for the polarization density is modified to

∂p
∂t

= −∇ · (pv) − η
(
∇φ − Eext + p

nα

)
+ b. (17)

The other FHD equations remain unchanged. Here, Eext
is the homogeneous (i.e., constant) external electric field. Af-
ter equilibration in this constant field, it is turned off to ob-
serve the dielectric relaxation of the fluid. All other equations
are the same as those described in Sec. II.

After a sufficiently long time, the polarization density
in the fluid equilibrates and satisfies Eq. (16). By matching
the experimental value53 of the static dielectric constant, the
value of α can be determined unambiguously. This proce-
dure yielded α = 1.325 × 10−3 amu−1 e2 ps2. Keeping α

fixed at this value, the calculations were repeated at various
solvent densities to explore if the density dependency of the
static dielectric constant of water can be captured by the φ-

FIG. 2. Comparison of the calculated and experimental density dependence
of ε̂(0) for water for densities corresponding to pressures from 0.1 up to
500 MPa. The experimental curve is from the fit of Ref. 54.

FHD model. Comparison with experimental data54 in Figure 2
indicates that the ε̂(0) versus ρ trend is well captured without
any additional fitting. Since the α value is fit only at the lowest
density, this result indicates that Eq. (8) is a good approxima-
tion for modeling the static dielectric response of water.

The other φ-FHD parameter in Eq. (10) or the numer-
ically equivalent in Eq. (12) that governs solvent polariza-
tion is η. To assess its effects, the external field E was in-
stantly switched off after the steady value of p was reached
and the time dependence of the polarization density p(t) de-
caying to zero was tracked at intervals of 2 ps. The Fourier
transform of p(t) yielded the frequency-dependent complex
susceptibility function χ̂ (ν) = ε̂(ν) − 1 up to a normalization
constant that was found through the continuity of ε̂(ν) in the
limit ν → 0. A fit of the calculated ε̂(ν) with the parameter
η = 4.90 × 10−6 amu−1 e2 ps Å−4 compared with an ac-
curate multiparameter representation fitted to experiments53

is shown in Figure 3. The comparison is focused in the

FIG. 3. Comparison of the experimental complex dielectric function of pure
water and the calculated one. The experimental curves are taken from the
multiparameter experimental fit of Ref. 53.
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microwave region of the dielectric spectrum where the
experimental data in Ref. 53 is the most reliable. For both
the real and imaginary parts of ε̂(ν), the agreement of φ-FHD
simulations with experimental profiles is clear. The deviation
only becomes noticeable at higher frequencies, for which the
overdamped Langevin Ansatz is slightly less tenable. There-
fore, the dynamics Ansatz for dipole moment densities is
consistent with the dielectric responses of water and can
capture the frequency-dependent behaviors of the dielectric
function up to the microwave region. Expanding the model by
introducing an extra parameter of effective mass to describe
inertial effects, i.e., higher-frequency responses, is thus not
considered. This consistency forms the basis of determining
the transport coefficient η from the observed phenomena, fol-
lowing the convention in the analysis of other types of trans-
port phenomena. Based on this result, we also anticipate that
the dynamic dielectric response of the solvent due to interac-
tions with solutes may be captured by the φ-FHD model.

B. Simulation of ion hydration with the
φ-FHD equations

The equations of φ-FHD presented in Sec. II describe
fluid flow coupled with the dynamics of polarization densi-
ties, hence capturing both the hydrodynamic and electrostatic
responses of the solvent. Since hydrophobic couplings can
also be incorporated, an important test case is whether the
interactions of solute particles such as ions with the solvent
can be described under the φ-FHD framework. In particular,
we calculate the solvation free energies of ions of different
sizes and compare the values obtained in experiments. We
first present the theory of solute-solvent couplings in φ-FHD
equations and then the simulation details and results. For no-
tational simplicity, the formulae are presented for monatomic
solutes. Nevertheless, it is straightforward to generalize the
simulation framework to flexible polyatomic solutes.

1. Solute-solvent couplings in φ-FHD

The interactions between particulate degrees of freedom
and field variables are composed of two parts for describing
the solvation phenomena. The first part accounts for the vol-
ume exclusion between particles and solvent fields through
the free energy functionals reported in Ref. 32. Briefly, the
non-electrostatic free energy density of the hybrid system is
modeled as a functional of the fluid mass density that depends
on the overlapped space between each particle and the sur-
rounding grid cells,

F [ρ(x)] =
∫ {

C

2
(ρ(x) − ρ0)2ρ(x)2 + m

2
(∇ρ(x))2

+
∑

i

k(Ri)

2
H (Ri − |x − ri |)2ρ(x)2

}
d3x. (18)

The first term in the integral is the two-phase equation of state
of a homogeneous fluid and C parameterizes the barrier height
between the vapor and the liquid states. The second term rep-
resents the surface tension contribution to free energy of an
inhomogeneous fluid and m is the proportional constant of the

TABLE I. Values k(R) in units of amu−1 ps−2 Å2 employed in this work.32

R/Å k(R)

1.25 1023.75
1.50 1012.50
1.75 1001.25
2.00 990.00
2.25 879.55

square gradient term. H in the third term is the Heaviside step
function representing the volume occupied by the ith parti-
cle around its center ri . Ri is the radius of the particle and
k(Ri) denotes the strength of free-energy cost for particles of
the size to overlap with the solvent. When discretized, H turns
into the fractional extent to which the grid cell at x is occupied
by the sphere of radius Ri centered on the ri . The values of C
= 900 amu−3 ps−2 Å8, m = 1100 amu−1 Å4, and the k(Ri) pro-
file (Table I) parametrized by reproducing the solvation free
energies of neutral hard spheres that represent hydrophobic
solutes32 are employed in this work.

The second part of solute-solvent coupling is electrostatic
interactions. We introduce the solute charge density, formu-
lated for the charges {zi} and the corresponding positions {ri}
of the ionic species indexed by i as

ñ±(x) =
∑

i

ziδ(x − ri). (19)

The subscript ± indicates that ñ± comes from ionic species in
contrast to the solvent polarization charge density of Eq. (6).
The contribution of ionic particles to the total electric poten-
tial is then obtained by solving

∇2φ± = − ñ±
ε0

. (20)

With these additions, the divergence of the solvent reversible
stress tensor of Eq. (3) is modified to become

∇ · R = c2∇ρ + ñ(∇φ + ∇φ±) + ρ∇
(

δF

δρ

)
, (21)

where δ/δρ indicates a functional derivative with respect to ρ.

2. Hydration free energies of ions

To illustrate the unique feature of φ-FHD equations in in-
tegrating electrostatics with other relevant physical forces in
a coarse grained, hybrid particle-field simulation, we consider
the hydration of an ion in the φ-FHD water model with the po-
larizability value of α = 1.325 × 10−3 amu−1 e2 ps2 reported
in Sec. III A based on the experimental data of the water di-
electric function. An ion i of charge zi and radius Ri is placed
in a box of this water of 61.5 × 61.5 × 61.5 Å3 in size with
the grid spacing of dc = 5.125 Å. We start by considering the
solvation of a point particle that only interacts with the polar-
izable solvent electrostatically. For particles with a finite size,
the effects described by the terms in Eq. (18) of the solvent
will then be coupled with electrical polarizability in determin-
ing the behaviors of solvation. The thermodynamic condition
is 300 K and 1 atm in all of the calculations reported here.
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The free energy of hydration as a function of (zi, ki) is
calculated through the perturbation formula,55


Ai(zi, ki) = −kT ln〈e−

0,0
z
i
,k

i
U/kT 〉1. (22)

Here, 〈.〉1 denotes an average in the reference ensemble of the
solvated ion and 


0,0
z
i
,k

i
U is the energy cost of decoupling the

ion from interacting with the solvent,



0,0
z
i
,k

i
U = −

∫ (
Vcki

2
H (Ri − |x − ri |)2ρ(x)2

+ziφ(x)δ(x − ri)

)
d3x, ki ≡ k(Ri). (23)

In other words, the Gedanken process of letting zi and ki going
to zero is employed for calculating the solvation free energy.
This process was subdivided into 10 separate steps, and av-
eraged for a 2 ns trajectory at each step. Further refinement
of step number does not alter the resulting values of the free
energy. In all calculations, the ion was kept fixed.

In the φ-FHD model, the solvent and solute charge den-
sities are resolved on grid cells and the Poisson equation is
solved on the discrete points to obtain the electrical poten-
tial. Therefore, to properly interpret the contributions from
the electrostatic interactions to the free energy of hydration,
comparison of the value of the numerical solution with an an-
alytical theory is beneficial. With a zero radius, a monova-
lent ion is found to have a free energy of hydration of (159.4
± 0.5)kBT at T = 300 K. This value corresponds to the solva-
tion free energy of an ion of 1.8 Å Born radius according to
the Born solvation model.56 Even though the ion is treated as
a point particle, the finite resolution of discretization imposes
an effective size. This size is expected to be smaller than the
grid size, since the polarization density in the grid cell with
the staggered discretization shown in Figure 1 will respond to
the charge of the particle. The empirical value of 1.8 Å Born
radius with the point-particle ion is thus consistent with the
numerical scheme we devised for solving the φ-FHD equa-
tions.

Since ions have finite sizes, excluded volume and inter-
facial effects also contribute to the solvation free energy and
these essential forces can be included in φ-FHD equations
as in the functional of Eq. (18) to couple with the electrical
forces due to charges and dipole moments. Combining these
universal physical interactions not only makes the origin of
peculiar behaviors transparent; it also provides a solid foun-
dation for transferability of model parametrization across dif-
ferent cases. In the following, we illustrate that the solvent po-
larizability obtained in Sec. III A based on the experimental
dielectric function of water and the non-electrostatic param-
eters obtained from capturing the solvation free energies of
neutral solutes via Eq. (18)32 can be put together to describe
ion hydration free energies without adding new terms to the
free energy functional.

After specifying the radius of an ion, the free-energy
functional of solute-solvent interactions in Eq. (18) can be
combined with the electrical part to compute the hydration
free energy via Eqs. (22) and (23). Figure 4 plots the result-
ing value as a function of the ion radius used in solving the
φ-FHD equations. In this figure, the loci of the experimental

FIG. 4. Plot of the free energy of hydration of a select number of monovalent
ions as a function of their radius for the φ-FHD simulations and experimen-
tal results using crystallographic radii.57–60 The uncertainty in the crystal-
lographic radii stems from the choice of radius for the O2− ion by which
the data is normalized. The uncertainty for the free energies of hydration is
the standard deviation of three independent measurements. Following earlier
authors,57, 61 all of these measurements have been adjusted to the scale where
the hydrogen ion has a free energy of hydration of 1050 kJ/mol, to be inter-
nally consistent.

values of the hydration free energies of common ions are also
labeled at the crystallographic radii reported by Shannon60 to
represent a reference distribution of hydration free energy ver-
sus ion size that purely based on experiments without refer-
ring to a theory. It can be seen in Figure 4 that the φ-FHD pro-
file agrees well with experimental values. Therefore, without
fine-tuning, the balance of electrostatic and non-electrostatic
interactions in the φ-FHD equations can capture the behavior
of ion hydration semi-quantitatively.

To account for the incomplete ability of resolving the
molecular details of liquid structures in this CG scale and
make the results in quantitative agreement to the targeted val-
ues, additional forms of solvent-solute interactions may be in-
cluded in the φ-FHD framework. Another approach is using
parameters in the current free-energy functional to effectively
incorporate the effects of molecularly specific interactions.
For example, the size of ions used in the hybrid simulation
can be determined by the corresponding values of experimen-
tal hydration free energy to set the φ-FHD radii of ions. Com-
paring the values with other commonly used definitions of
atomic radius, such as the crystallographic and effective radii
of Shannon60 and the van der Waal radii of molecular me-
chanical force field, Table II indicates that the so-calculated
φ-FHD radii are in a similar range. Therefore, the strategy of
φ-FHD in integrating essential forces in the mesoscopic scale
simulation gives rise to physically reasonable parameters of
ionic species.

For a small ion such as fluoride, though, the electrostatic
coupling with the solvent is very strong and the solvation free
energy is under-predicted by the φ-FHD equations since the
grid cell size of 5 Å used for resolving the charge distribu-
tion is relatively coarse. As pointed out earlier, the finite-
size discretization in φ-FHD equations introduces an effective
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TABLE II. Effective ionic radii in units of Å.

Shannona φ-FHD

“Crystal” “Effective” (dc = 5.125 Å) Beglov and Rouxb

F− 1.19 1.33 . . . . . .
Cl− 1.67 1.81 1.89 2.27
Br− 1.82 1.96 1.94 . . .
Na− 1.16 1.02 1.57 1.36
K+ 1.52 1.38 1.94 1.76

a“Crystal” and “effective” ionic radii from Ref. 60.
bCHARMM27 Lennard-Jones radii fitted to solvation free energies.62

radius of 1.8 Å even for a point-particle ion. Furthermore, the
details of molecular structures are not explicitly represented.
In this case, the relatively moderate discrepancy to the exper-
imental observable can be overcome by increasing the appar-
ent charge of very small ions if necessary or incorporating an
additional term representing the effect of molecularly specific
solute-solvent interactions and liquid structures.

3. Radial dependence of ion hydration free energy
in a nano droplet

With the flexibility of particle-field coupling and versa-
tility of incorporating different interaction forces, the φ-FHD
equations can be readily applied to go beyond bulk simula-
tions. As an illustration, we consider the hydration free energy
of an ion as a function of its radial distance to the center of a
spherical water droplet of 25 Å. Since droplets of around this
size only exist transiently before merging into an extended
liquid region, it is difficult to study their properties such as
solvation that play important roles in determining the struc-
tures and dynamics observed at a larger and longer scale. In
φ-FHD, a droplet of this size can be formed with the follow-
ing free-energy functional.

Fdrop[ρ(x)] =
∫ {

C

2
(ρ(x) − ρ0)2ρ(x)2

+m

2
(∇ρ(x))2 + κ

2
f (x)2ρ(x)2

}
d3x. (24)

This equation is analogous to Eq. (18) with the only difference
in the third term that forms the cavity of the excluded volume
of a particle in Eq. (18). In Eq. (24), f (x) takes the following
form to keep the droplet around the origin of the simulation
cell with the size of 107.6253 Å3.

f (x) =
{

0 if |x| < 25

1 − e−0.04(|x|−25)2
otherwise

. (25)

Here, the values of C, m, κ in Eq. (24) are taken as the same as
those in Eq. (18) that were parametrized to reproduce the sol-
vation free energies of neutral hydrophobic particles.32 This
approach sets κ = 216 amu−1 ps−2 Å2. The dynamics of the
polarization density in grid cells of 5 Å and their electrostatic
effects are propagated by the φ-FHD equations along with
the dynamics of other fields in the droplet system at 300 K. A
plot of the averaged density profile is shown in Figure 5 that

FIG. 5. Density profile of the water droplet and its saturated vapor (solid
blue line, left ordinate axis) and free energy profile of a monovalent ion of
radius 1.5 Å (green squares, dashed connector, right ordinate axis), and 2.0 Å
(red triangles, dotted connector, right ordinate axis), all as a function of the
distance, r, from the droplet center at T = 300 K. The Gibbs dividing surface
is indicated by the dashed vertical black line.

illustrates the phase boundary of the droplet from which the
Gibbs dividing surface is determined to locate at r = 24.6 Å
from the droplet center. The hydration free energy of an ion is
computed at different positions in the droplet via the protocol
described in Sec. III B 2.

With dielectric responses mediated through the polariza-
tion density of the solvent, electrostatic interactions will im-
pose favorable hydration free energy of the particle. On the
other hand, the free energy cost of cavity formation and sur-
face tension for the solvent to surround the ion disfavors sol-
vation. Therefore, the free energy of hydration of the ion will
be a strong function of its radial distance from the droplet cen-
ter, r, especially when the ion is near the vapor-liquid inter-
face of the droplet. This dependence of hydration free energy
on r is also expected to be sensitive to the size of the parti-
cle that influences both the electrostatic and non-electrostatic
energies. For the droplet of 25 Å we found that for an ion
with the radius less than 1.5 Å, it prefers to stay inside of the
droplet as shown in Figure 5. For an ion with a larger radius
of 2.0 Å Figure 5 illustrates that the free energy of hydra-
tion can indeed be lower at the droplet interface. Therefore,
we conclude from φ-FHD simulation that ions of a sufficient
size can serve to stabilize the surface energy of a nano droplet.
Experimental observation of ion enrichment at a water-vapor
interface systems has also been reported.63 It is also recog-
nized that φ-FHD equations can be applied to inhomoge-
neous systems at the nanoscale to capture various specific
behaviors by putting together the relevant forms of physical
forces.

C. Coarse graining an all-atom simulation
into the φ-FHD model

In previous examples, we show that experimental in-
formation like solvent dielectric function and hydration free
energies of ions can be employed to determine the model
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parameters of φ-FHD equations. Such fundamental proper-
ties may also be calculated from detailed molecular simula-
tions. The solvation free energies of neutral particles64 for
setting the parameters of the non-electrostatic free energy
functional of Eq. (18)32 is another clear example. Although
in these cases the properties averaged over the entire length-
scale of the system can be combined in the φ-FHD frame-
work to model the behaviors of more complex systems, it is
highly desirable if the mesoscopic model could also be inter-
faced at the fundamental length-scale of grid cells. In analo-
gous to the parametrization of all-atom molecular mechanical
forces fields for which quantum mechanical calculations play
a pivotal role in imposing the accuracy and predicability in
the coarser representation of molecular mechanics, it is im-
portant to establish whether the mesoscopic φ-FHD equations
could be bridged to simulation models with full atomistic de-
tails. This capability can help to develop and parametrize the
φ-FHD model at the finest possible scale by taking informa-
tion from a finer-grained model that resolves molecular de-
tails. With respect to all-atom molecular dynamics simulation,
the trans-scale connection can also serve as an analysis tool
for capturing the emergent properties at the mesoscopic scale
based on the φ-FHD equations.

In this section, we consider coarse graining an all-atom
MD simulation into the representation of φ-FHD equations.
For FHD equations without the electrical forces due to dipole
moments and charges, we have shown that the position and
velocity vectors of atoms in a molecular system can be
mapped to field variables in grid cells for direct comparison
with the results of a FHD simulation. The statistics of the
field variables computed from the all-atom MD simulation
can then be employed to determine the parameters of thermo-
dynamics and transport phenomena. When the two simulation
models at different resolutions use with the same parameters
of thermodynamics and dynamics and their resulting fluctua-
tions and relaxation of the corresponding field variables agree
with each other, it is established that all-atom MD and FHD is
compatible.

We found that the compatibility of FHD with all-atom
MD can be achieved with grid cells as small as 5 Å if the fi-
nite sizes of molecules are accounted for when mapping their
positions onto Eulerian grid cells. Each molecule such as a
water is assumed to have an effective volume in which the
mass density is uniformly distributed. Given the grid cells that
have an overlapped volume with the molecule, the field vari-
able due to its existence such as density, kinetic energy, and
velocity, etc. can be assigned to those grid cells according to
the fractional volumes of the particle that they contain. If the
grid cell size is sufficiently large with respect to the molecular
size (beyond 10–15 Å for water), this scheme of continuous
particle-to-field mapping does not affect the result and the par-
ticle can be treated as a point and assigned to whichever cell
it is within. When the size of grid cells becomes small and ap-
proaches to a molecular resolution, the statistics of field fluc-
tuations mapped from all-atom MD become sensitive to the
effective size of the particle. The particle size can thus be used
as an adjustable parameter to reach the aforementioned com-
patibility between all-atom MD and FHD. For example, using
the effective volume of a water molecule as a cubic of 2.4 Å

in each side to compute density fields from atomic positions
and masses can reach agreement in the density fluctuations
with FHD simulation at the grid cell size of 5 Å under the
same isothermal compressibility at 300 K and 1 atm. It was
also found for the statistics of various types of field variables
to reach compatibility, the optimal sizes of particle-to-filed
mapping are distinct in different cases.

For the φ-FHD equations that include electrical forces
due to solvent polarizability, we aim to utilize the statics of
dipole moment fluctuations calculated from the trajectory of
an all-atom MD simulation to analyze the effects of coarse
graining away molecular details. The core objective is to char-
acterize how the Ansatz of Eq. (10) and the electrical free en-
ergy functional of Eq. (7) capture the local dipole moment
fluctuations in a molecular fluid. Equation (7) involves a term
representing the energetic response of the dipole moment den-
sity in a grid cell to the local electrical field. Therefore, un-
like the other field variables in φ-FHD that the equation of
state or constitutive relationships are directly input to the dy-
namics equation, Eq. (7) and the concomitant dynamics of
Eq. (10) are coupled with the Poisson equation of Eq. (9)
in determining the electrical forces. The connection between
the constitutive parameters such as polarizability α and the
statistics of local dipole moment fluctuations is thus indirect
and nonlinear in the φ-FHD equations. This unique feature
of electrical responses represents a key challenge in com-
puting the model parameters of φ-FHD from all-atom MD
trajectories.

Another term in Eq. (7) is the electrical energy due to
the dipole moment vector in a grid cell assuming a non-zero
value that gives rises to the constitutive equation of the di-
electric response at equilibrium in Eq. (8). Therefore, the cor-
relation between dipole moments of different grid cells in φ-
FHD comes solely from electrostatic coupling, although it is
expected that molecular structures and interactions will also
contribute to couple local dipole moments. This issue will
be analyzed quantitatively based on the trajectory of an all-
atom simulation for which the details are presented first in the
following.

1. The details of all-atom MD for generating
the reference trajectory

We consider 7773 TIP3P65 water molecules in a cu-
bic box of 61.5 Å in length corresponding to the density
of liquid water at ambient conditions. The NVT simulation
of this system with periodic boundary conditions was per-
formed using the GROMACS 4.6.3 software.66 The leap-
frog integrator with a 2 fs time step was employed and the
bond lengths and angle of each water molecule were con-
strained at the parameter values using the LINCS algorithm.67

Lennard-Jones interactions were truncated and shifted with a
cutoff of 10 Å and a fourth-order particle mesh Ewald summa-
tion with a 1.0 Å grid spacing was used to calculate electro-
static interactions. After equilibration, a trajectory of 120 ns
was generated at 300 K using the Nosé-Hoover thermostat.
The center-of-mass velocity was reset to zero at intervals of
200 fs.
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2. Local dipole moment fluctuations in all-atom MD
and φ-FHD

By discretizing the simulation box of all-atom MD with
123 cubic grid cells of 5.125 Å, the density, velocity, and po-
larization density on these Eulerian grid cells can be calcu-
lated from the positions and velocities of atoms in the MD
trajectory. The dipole moment vector of each water molecule
is calculated from the atomic partial charges in the molec-
ular mechanical force field and the configuration of each
snapshot and is placed at the water center of mass. For elec-
trostatics, if each water molecule is coarse grained into a cu-
bic box centered at the center of mass with the length dmol,
the dipole moment density of each water molecule is calcu-
lated as the dipole moment vector divided by d3

mol. That is,
the water dipole moment is assumed to uniformly distribute
within the molecule volume specified by dmol. In the case of
dmol = 0, water molecules are coarse grained into point parti-
cles and the dipole moment vector calculated from molecular
structures and partial charges is a point dipole at the center
of mass. The dipole moment of each water molecule is then
assigned to the overlapping grid cells fixed in space in pro-
portional to the volume fractions of the d3

mol cubic of each
water in different grid cells. For dmol = 0, the point dipole of
a water molecule is assigned to the grid cell that contains its
center of mass. Therefore, after specifying dmol, the all-atom
MD trajectory is converted into a series of configurations for
the polarization density in Eulerian grid cells.

With the movements of atoms, the corresponding fluctu-
ations of the coarse-grained polarization density distributed in
Eulerian grid cells are calculated from the all-atom MD tra-
jectory according to the procedure described above. Given a
set of parameters in the φ-FHD equations with identical sizes
of the simulation system and grid cells as well as the same the
thermodynamic conditions, the fluctuations of dipole moment
density on grid cells can be calculated for the two models to
be compared and matched.

First, we consider the total polarization density of the en-
tire simulation box, ptot, which is the sum of all dipole mo-
ment densities in grid cells. The second moment of the fluc-
tuations of ptot, 〈p2

tot〉, is approximately related to the static
dielectric constant of the system68 as

ε̂(0) − 1 = ε̂(0)

2̂ε(0) + 1

V
〈
p2

tot

〉
ε0kBT

. (26)

Therefore, by adjusting α, we can match the value of 〈p2
tot〉

observed in φ-FHD to that calculated from the all-atom MD
trajectory. Since the value of 〈p2

tot〉 is independent of dmol
as the mapping procedure preserves the total dipole moment
in the simulation box, the value of α is unambiguously de-
termined in this approach. The resulting value of α is 1.71
× 10−3 amu−1 e2 ps2, larger than the value of fitting experi-
mental dielectric function in Sec. III A due to the 25% over-
estimation of the static dielectric constant of TIP3P water.69

Next, we compare the value of the variance of local polar-
ization density averaged over grid cells, 〈p2〉, of φ-FHD and
all-atom MD under the same α and hence the matched value
of 〈p2

tot〉.

The agreement in total dipole moment fluctuations
equates the α values of all-atom MD and φ-FHD. The com-
parison of 〈p2〉 at the length-scale of grid cells will thus in-
form the effects of the molecular details missed by Eq. (7).
This equation is formulated by letting the dielectric consti-
tutive equation of Eq. (8) emerge without considering the
potential effects of molecular details on local dipole mo-
ment fluctuations. The value of 〈p2〉 calculated from all-
atom MD depends on the dmol value used in the atom-to-field
mapping discussed earlier and the corresponding 〈p2〉 = 9.21
× 10−5 e2/Å4 at dmol = 0 is the upper bound of local fluctu-
ations of dipole moment densities estimated in all-atom MD.
The resulting value of 〈p2〉 in φ-FHD simulation at the same
α value, though, is significantly higher at 2.12 × 10−4 e2/Å4.
This difference cannot be remedied by adjusting dmol as a non-
zero value of which will only lower 〈p2〉 in the calculation
from all-atom MD and move it further away from the φ-FHD
value.

This result indicates that under the same values of 〈p2
tot〉

and solvent polarizability, the regularization of local dipole
moment fluctuations by the molecular details encoded in the
all-atom MD is higher than that described by Eq. (7). This
equation of local electrical energy density considers the static
dielectric response via α and can capture the solvent dielec-
tric function with the transport coefficient η in the equation of
motion of Eq. (10) as discussed in Sec. III A. However, the
static correlations between dipole moment densities in dif-
ferent cells are not explicitly accounted for. Coupling terms
between dipole moment densities thus need to be added to
Eq. (7). The parameters of this correlational energy Ucor[p]
will be determined by matching with the values of local fluc-
tuations observed in all-atom MD. The values of η and α will
remain unchanged to retain the frequency-dependent as well
as static dielectric responses of the solvent. For the range of
values of coupling parameters that we have investigated here,
simulation results indicate that the dielectric function of the
solvent is not affected by adding Ucor[p] to Eq. (7) as expected
from the equation of motion of Eq. (10).

For a grid cell i, its neighbors are categorized into three
groups. Since the simulation system and the grid cells are cu-
bic, the discretization forms a cubic lattice. For grid cell i,
NN(i) is the set of nearest neighbors (von Neumann neigh-
borhood) that the cell shares a common surface with; NNN(i)
is the set of the second-nearest neighbors that the cell shares
a common line with; and the set NNNN(i) constitutes the
third-nearest neighbors (which in union with the previous sets
makes up the Moore neighborhood) that the cell shares a com-
mon corner point with. The results of analysis shown in the
following indicate that involving the second shell correlations
of grid cells in generalizing the polarization free energy func-
tional is not necessary.

Table III lists the averaged values of 〈p2〉 and 〈(pi − pj )2〉
calculated in all-atom MD and φ-FHD simulations. It can be
seen clearly that the local dipole moment fluctuations and
correlations are overestimated by the φ-FHD equations with
Eq. (7) that is denoted as φ-FHD(s) in Table III. Since there
is no additional parameter in the equation to modulate the
values of local dipole moment fluctuations, Eq. (7) needs to
be augmented to capture the phenomena in all-atom MD.
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TABLE III. Values of characteristic equilibrium functions of the polariza-
tion density as given by AA-MD and φ-FHD simulations, both simple and
extended. Variances are given in units of e2/Å4. The grid cell spacing is
dc = 5.125 Å.

AA-MD φ-FHD(s) φ-FHD(e)

Var(p) 9.21 × 10−5 2.12 × 10−4 9.14 × 10−5

Var(p
i
− p

j
) . . .

i ∈ NN(j) 1.62 × 10−4 4.24 × 10−4 1.62 × 10−4

i ∈ NNN(j) 1.78 × 10−4 4.24 × 10−4 1.78 × 10−4

i ∈ NNNN(j) 1.82 × 10−4 4.24 × 10−4 1.82 × 10−4

Therefore, the correlational energy Ucor[p] is added to Eq.
(7) and the total free energy functional of the dipole moment
fields U [p] becomes

U [p] =
∫

u
(
p(x)

)
d3x + Ucor[p]. (27)

In principle, the local dipole-dipole correlations can be recap-
tured if the model is extended with the proper energy function.

Since the local fluctuations of electric fields are more re-
stricted and dipole couplings between neighboring cells are
stronger in all-atom MD, the Ucor[p] term ought to impose
restraints in the deviation of dipole moment density fields be-
tween neighboring grid cells. Therefore, to capture such phe-
nomena, we impose the simple form of harmonic coupling
between polarization densities as the starting point:

Ucor.[p] =
Nc∑
i=1

⎧⎨⎩k1

2

∑
j∈NN(i)

(pi − pj )2

+k2

2

∑
j∈NNN(i)

(pi − pj )2 + . . .

⎫⎬⎭ . (28)

With Ucor. added to Eq. (7), the dynamics of the dipole mo-
ment densities of Eq. (10) or Eq. (12) now experience the ad-
ditional forces of

− δUcor

δpi

= −k1

∑
j∈NN(i)

(pi − pj ) − k2

∑
j∈NNN(i)

(pi − pj ) − . . .

(29)
in the discretized analogs of Eqs. (10) and (12). Here i is
the index of an arbitrary grid cell and corresponds to x in
the continuum description in which those equations are pre-
sented. Therefore, only the constitutive equation of dipole
moment densities is changed and the rest of φ-FHD equa-
tions remain unchanged. An essential test of this approach of
modelling the free energy functional of dipole moment densi-
ties is whether adjusting the values of k1 to k3 can reproduce
the values of 〈(pi − pj )2〉 observed in all-atom MD and see
if the value of 〈p2〉 can also be captured while keeping 〈p2

tot〉
unchanged. Through a least-square minimization of the dif-
ferences in 〈(pi − pj )2〉 between the first, second, and third
nearest neighbors of grid cells, the optimal values of k1, k2 and
k3 are listed in Table IV in which the results of the extended
φ-FHD equations with Eq. (28) is denoted as φ-FHD(e).

Table III indicates that the values of 〈(pi − pj )2〉 calcu-
lated from all-atom MD can be matched by the φ-FHD equa-

TABLE IV. Specification of the parameterization of the extended φ-FHD
model for TIP3P water. In both cases α = 1.71 × 10−3 amu−1 e2 ps2.

k1α/Å6 13.68
k2α/Å6 0.5228
k3α/Å6 − 0.6609

tions with the functional of dipole moment density extended
to incorporate local couplings. At the grid cell size of 5.125 Å
for water, only the couplings to the first nearest neighbors of
grid cells assume a significant value and the force constants
of the second and third nearest neighbors are much smaller
as Table IV shows. Although the force constant values calcu-
lated by matching local correlations of dipole moments will
depend on the level of coarse graining dictated in this case
by the grid cell size, the φ-FHD framework allows the val-
ues to be determined from the statics calculated from the all-
atom MD trajectory. Furthermore, we note that 〈p2

tot〉 remains
invariant with respect to the matching of the local dipole mo-
ment fluctuations. Therefore, the φ-FHD equations developed
in this work can describe the macroscopic property of dielec-
tric response as well as the molecularly specific behaviors of
local fluctuations and correlations of dipole moments in the
solvent.

IV. CONCLUSION

In developing a theoretical framework for mesoscopic
scale simulation, we show for the first time that the electri-
cal forces due to interactions between charged and dipolar
species can be incorporated into the equations of fluctuating
hydrodynamics. For the electrostatic potential φ due to fluc-
tuations of dipole moments in the solvent, an Ansatz of dy-
namics of dipole moment densities was devised in Eq. (10)
based on the constitutive equation of dielectric response of
Eq. (8) and the phenomenological principle of fluctuation-
dissipation balance. For the resulting φ-FHD equations, the
scaling of computation time is O(N log N ) with the system
size by using a fast Fourier transform to solve the Poisson
equation of φ. Therefore, the φ-FHD framework can serve
as a platform to integrate the essential forces, including hy-
drodynamics and hydrophobicity in addition to electrostatics,
that govern the emergent behaviors of molecular systems at
the nanoscale. This unique capability is illustrated by showing
that the dielectric function of water and hydration free ener-
gies of ions in homogeneous and heterogeneous environments
can be calculated via mesoscopic simulation. We also estab-
lish that the φ-FHD representation can be coarse grained from
all-atom MD simulation by generalizing the electrical free en-
ergy functional as in Eq. (27) and Eq. (28) to capture the spe-
cific behaviors due to the molecular details not explicitly con-
sidered. The field variables in φ-FHD equations can thus be
mapped from a finer-grained simulation for model develop-
ment and parametrization. Therefore, the φ-FHD method pre-
sented in this work has promising potential as a useful tool at
an intermediate scale for the multiscale modeling and simula-
tion of complex molecular systems such as protein machines
and nanofluidic phenomena.
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APPENDIX: ELECTROSTATIC CONTRIBUTION TO THE
DIVERGENCE OF THE REVERSIBLE STRESS
TENSOR IN THE φ-FHD EQUATIONS

For a free energy density functional f [θ1, θ2, . . .]
= ∂F [θ1, θ2, . . .]/∂V , depending on the densities {θ i} of dif-
ferent components, the divergence of the reversible stress ten-
sor is defined as30

∇ · R = −
∑

i

θi∇
(

δf [θ1, θ2, . . .]

δθi

)
. (A1)

Here, we focus on the electrostatic contributions (neglecting
magnetic effects), and F is thus written as

F [ρ, ñ] = Fρ[ρ] + FC[̃n]. (A2)

In this form, we assume that the electrostatic component to the
free energy is separable from the other forces. We assume that
the non-electrostatic part of the divergence of the reversible
stress tensor is adequately given by some known expression,
for instance, from an equation of state or derived from a free-
energy density functional. The Coulombic part is

FC[̃n] = 1

2

∫ ∫
ñ(x)̃n(x′)

4πε|x − x′|d
3xd3x′, (A3)

and the corresponding free energy density at x is then

fC[̃n(x)] = 1

2

∫
ñ(x)̃n(x′)

4πε|x − x′|d
3x′. (A4)

Taking the functional derivative with respect to the charge
density, we have

δfC

δñ
=

∫
ñ(x′)

4πε|x − x′|d
3x′ (A5)

and then taking the gradient with respect to x yields

∇
(

δfC

δñ

)
= −

∫
ñ(x′)

4πε|x − x′|3 (x − x′)d3x′. (A6)

Clearly, this equation is the definition of the electrostatic field,
so that when inserted into Eq. (A1), the electrostatic contri-
bution to the divergence of the reversible stress tensor is ob-
tained as the second term in Eq. (3).
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